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Abstract The key contribution of this paper is the combined analytical analysis of both saturated

and non-saturated throughput of IEEE 802.11e networks in the presence of hidden stations. This

approach is an extension to earlier works by other authors which provided Markov chain analysis

to the IEEE 802.11 family under various assumptions. Our approach also modifies earlier expres-

sions for the probability that a station transmits a packet in a vulnerable period. The numerical

results provide the impact of the access categories on the channel throughput. Various throughput

results under different mechanisms are presented.
ª 2011 Cairo University. Production and hosting by Elsevier B.V. All rights reserved.
Introduction

Recently, there has been an increased interest in understanding

the behavior of IEEE 802.11 [1] and IEEE 802.11e Enhanced
Distributed Channel Access (EDCA) [2]. IEEE 802.11e
(EDCA) is a complex access protocol that attempts to provide

quality of service (QoS) for the various expected types of traf-
fic. Innovative analysis appears in Refs. [3–6] which address
X. Liu), saadawi@ccny.cuny.

Production and hosting by

o University.

lsevier
IEEE 802.11e (EDCA) using a detailed bi-dimensional Mar-
kov chain, each with different assumptions and approaches.
These analyses cover both the basic access as well as RTS/

CTS. Different from the original analysis of IEEE 802.11 in
Ref. [3], Huang [4] and Engelstad [5] provide the analysis for
MAC enhanced standard IEEE 802.11e (EDCA). Generally
the results show that the two parameters, minimum contention

windows and the number of stations strongly affect the perfor-
mance of the basic access mode in wireless network, while
these parameters marginally affect the RTS/CTS access

performance.
The Bianchi model [3] provides analysis for IEEE 802.11

under the assumption of saturation conditions. Huang and

Liao [4] extend the Bianchi model to the IEEE 802.11e
(EDCA), including the different AIFSN of Access Categories
(ACs) parameter set and virtual collision. The analysis has
been performed under the assumption of saturation condi-

tions. Engelstad and Østerbø [5] provide a non-saturation
mode analysis, using Markov chain which also includes the
saturation mode performance. Hung and Marsic [6] provide

analysis for the hidden station effect for the IEEE 802.11.
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Clearly IEEE 802.11 performance suffers tremendously from

the effect of the hidden station, See for example Xu and
Saadawi [7].

The proposed work relaxes many of the assumptions stated
in previous work, and provides analysis of IEEE 802.11e con-

sidering both the hidden stations effect as well as the non-sat-
uration condition (which includes the saturation mode as well).
Table 1 summarizes the difference of the previous works and

highlights our contribution.
The rest of the paper is organized as follows. The next section

provides the analytical analysis for IEEE 802.11e under non-

saturation. Section ‘Non-saturation Markov chain for IEEE
802.11e (EDCA)’ is the non-saturation Markov chain model,
while in Section ‘The presence of hidden stations’; the analysis

is extended to include the effect of the hidden station environ-
ment. Section ‘Numerical analysis’ provides the numerical
analysis results. Finally, last section provides the conclusion.

Analytical model for IEEE 802.11e (EDCA) with non-saturation

EDCA mechanism defines four Access Categories (ACs) ser-

vices. Each AC contends for channel using a set of AIFS
parameters and is associated with one transmission queue.
Considering virtual collisions within the QSTA, the data

frames from the higher priority AC receive the TXOP, and
the data frames from the lower priority collision AC(s) behave
as if there were an external collision.

Non-saturation Markov chain for IEEE 802.11e (EDCA)

In the analysis performance, we assume as previously reported

[3–6]: (a) the wireless networks operate in an ideal physical
environment, i.e., no frame error and the capture effect (b)
each packet collides with constant and independent probabil-

ity, regardless of the number of collisions already suffered;
and (c) fixed number of stations which transmit a packet under
non-saturation and saturation conditions.

We denote four ACs as ACi. For convenience, ACi provides
support for the delivery of traffic from the highest priority to
the lowest priority by subscripts 0, 1, 2 and 3 in the analysis.

In the discrete-time Markov chain, s(t) is defined as the
backoff stage, at time t;b(t) is the backoff counter at time t.
Let state parameters bi,j,k = limtfi1 Prob{AC= i,stage(t) =
j,backoff(t) = k}, be the stationary distribution probability

of the chain, where i is type of ACi and i 2 {0,1,2,3},j 2 [0,Li],
is called backoff stage. After each unsuccessful transmission
attempt,j will increase one in order to let the contention

window double until a retry limit or the maximum contention
window is reached. k 2 [0,wi,j � 1] is the backoff time counter.
k is decremented when the channel is sensed idle, ‘‘frozen’’

when a transmission is detected on the channel, and reacti-
Table 1 Summary of IEEE 802.11 analyses.

802.11 Saturation 802.11 Non-saturation

Bianchi [3] ·
Huang and Liao [4] ·
Engelstad and Østerbø [5] · ·
Hung and Marsic [6] ·
Proposed work · ·
vated when the channel is sensed idle again for more than a

DIFS. The station can transmit one packet when the backoff
time reaches zero. wi,j is the contention window size at backoff
stage j(wi,j) = 2jwi,0 for ACi, where i 2 {0,1,2,3} and j 2 [0,Li].
wi,0 is the minimum contention window size for ACi,Li is ACi’s

frame retry limit. Sometimes we use Li = mi + fi, where fi is
the amount of time the contention window will not double
for ACi after it is greater than is the maximum number of times

that the contention window may be doubled for ACi,
(maximum backoff stage).

We now show how to obtain a closed-form solution for this

Markov chain. In the Fig. 1, bi,j,k is simplified as {i,j,k}. In the
state {i,0,0,e}, the backoff has completed and is only waiting
for a packet to arrive in the queue. If assuming the queue re-

ceives a packet during a timeslot at a probability qi and senses
the channel busy at a probability pi, it moves to a new state in
the second row at a probability piqi. Otherwise, it moves to
state {i,0,0}, to do a transmission attempt at a probability

(1 � pi)qi, since a packet is now ready to be sent. The packet
waiting in a ACi queue is sent whenever the backoff counter
becomes zero regardless of the backoff stage. The transmission

starting in state {i,0,0} succeeds at a probability 1 � pi. It will
stay in the same state {i,0,0,e} at a probability 1 � qi if it does
not receive a packet during a timeslot.

When the state has received a packet it moves to a corre-
sponding state in the second row with a packet at probability
q�i . The state remains in the first row with no packets waiting
for transmission.

One-step transition state will stay in its previous state at a
probability p�i during a timeslot when the channel is busy
and the station is not able to count down backoff slots because

of different AC priority.
When the channel idles, the station is counting down the

backoff slots from its previous state {i,j,k+ 1} to {i,j,k}. If

the transmission does not succeed, queue doubles the conten-
tion window and goes into the next row backoff.

If the transmission is successful and a new received packet

is waiting in the transmission queue at the time when a trans-
mission is completed, the queue resets its contention window
and goes into second row backoff. If the transmission succeeds
and no packet is waiting in the transmission queue at the time

a transmission is completed, the queue reset its contention win-
dow and goes into the first row backoff.

If the transmission fails after the Li-th backoff stage, the

packet will be dropped and the state will start another backoff
procedure with probability one.

We let qi be the probability that there is a packet waiting in

the transmission queue of the backoff of ACi at the time a
transmission is completed. In the Markov chain, the states of
{i,0,k,e} the top row represent the channel is not fully satu-

rated and ACi queue of a backoff is empty at a probability
802.11e Saturation 802.11e Non-saturation Hidden stations

·
· ·

·
· · ·
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Fig. 1 Markov Chain model for a single AC inside the EDCA station and a vulnerable period in the presence of hidden station (both

saturation and non-saturation).
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Fig. 3 RTS/CTS access method.
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1 � qi when the time of a transmission is completed. If the
queue on the other hand is non-empty, the backoff is started

by entering the state {i,0,k} at probability qi.
pi is the collision probability at each transmission attempt

for ACi. p � i* is the probability that the backoff of ACi is sens-

ing the channel is busy and is thus unable to count down the
backoff slot from one timeslot to the other. 1� p�i is the prob-
ability that the backoff counter for ACi can be successfully de-

creased by one in a given time slot and moves to another state,
i.e., when there are no transmissions initiated by other stations
or other higher priority ACs inside the same station in the per-

iod between minimum of AIFS (i.e., DIFS) and AIFSN.
qi is a probability while a station receives a packet during a

timeslot in the state {i,0,0,e}.q�i is a probability that states
{i,0,k,e} have received a packet while in the previous state

{i,0,k+ 1,e}.

The presence of hidden stations

The basic access mechanism in IEEE 802.11 is a two-way
handshaking method. The hidden stations do not sense the

transmission from the source until they receive an ACK. Until
then, the channel is considered as idle. If any one of these hid-
den stations completes its backoff procedure before sensing the
ACK, it will send another data frame to the destination, which

will collide with the data frame from the existing source. The
vulnerable period in hidden stations equals the length of a data
frame of ACi, Fig. 2.

The RTS/CTS mechanism (four-way handshaking method)
reserves the medium before transmitting a data frame by trans-
mitting a RTS frame as the first frame of any frame exchange

sequence and replying a CTS frame after a SIFS period. The
hidden station effect on the RTS/CTS access method is shown
in Fig. 3. The vulnerable period Vi for the hidden stations
equals the length of the RTS frame plus a SIFS period. Unlike

the basic access method, the vulnerable period Vi for hidden
stations in RTS/CTS access method is a fixed length period
and is not related to the length of the data frame of ACi from
the source.

Analysis the performance in the presence of hidden stations

Let a ¼
PLi�1

j¼0 ð1� piÞbi;j;0 þ bi;Li ;0 and let b = aqi + piqibi,0,0,e.
The kernel rule of Markov chain is that the birth rate of a state
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will be equal to its death rate when the Markov chain becomes

a stationary distribution of the chain. With this, by writing all
the birth-death equations recursively through the chain from
right to left, from the top row to the bottom row, we have
the distribution probability

bi;0;k;e ¼
að1� qiÞ
wi;0 1� p�ið Þ

1� 1� q�i
� �wi;0�k

q�i
where k 2 ½1;wi;j � 1�

ð1Þ

bi;0;0;e ¼
að1� qiÞ
wi;0qi

1� 1� q�i
� �wi;0

q�i
ð2Þ

bi;0;k ¼
bðwi;0 � kÞ
wi;0 1� p�ið Þ þ q�i

Xwi;0�1

s¼kþ1
bi;0;s;e where k 2 ½1;wi;j � 1� ð3Þ

bi;0;0 ¼ bþ qið1� piÞbi;0;0;e þ q�i 1� p�i
� � Xwi;0�1

s¼1
bi;0;s;e ð4Þ

bi;j;k ¼
ðwi;j � kÞpjibi;0;0
wi;jð1� p�i Þ

where k 2 ½1;wi;j � 1�; j 2 ½1; ;Li� ð5Þ

bi;j;0 ¼ pibi;j�1;0 ð6Þ
From Eq. (6), we obtain

bi;j;0 ¼ pjibi;0;0 ð7Þ

Finally, as [3–6], the normalization requires that:

1 ¼
Xwi;0�1

k¼0
bi;0;k;e þ

XLi

j¼0

Xwi;j�1

k¼0
bi;j;k ð8Þ

we get

1

bi;0;0
¼
XLi

j¼0
pji 1þ

Xwi;j�1

k¼1

ðwi;j � kÞ
wi;j 1� p�ið Þ

 !

þ ð1� qiÞ
wi;0

1� 1� q�i
� �wi;0

q�i

" #
ðwi;0 � 1Þpi
2 1� p�ið Þ þ

1

qi

� �
ð9Þ

We know qi represents the probability that there is a packet

waiting in the transmission queue at the time a transmission

is completed or a packet is dropped. When qi fi 1, the second

part ð1�qiÞ
wi;0

1� 1�q�
ið Þwi;0

q�
i

� �
ðwi;0�1Þpi
2ð1�p�

i
Þ þ 1

qi

h i
in Eq. (9) will disappear, so

that the second part is the dominant term under non-satura-

tion. We can rewrite (11) using wi;j ¼ 2jwi;0 j 6 mi

2mwi;0 mi < j 6 Li

�
where i 2 {0,1,2,3} and j 2 [0,Li].

Since a transmission occurs whenever the backoff counter
becomes zero, the transmission probability in a randomly cho-
sen slot time (no matter whether the transmission results in a

collision or not ) for an AC can be expressed by si

si ¼
XLi

j¼0
bi;j;0 ¼

1� pLiþ1
i

1� pi
bi;0;0 where i 2 f0; 1; 2; 3g ð10Þ

Hence substituting Eq. (9) for Eq. (10), we obtain the station-

ary probability that the station transmits a packet in a ran-
domly chosen slot time.

We notice that collisions may occur among different ACi in

the same EDCA station (this is called virtual collisions), and
collisions may also take place among different EDCA stations
(this is called external collisions). Let Probvirti denote the

probability of virtual collisions for ACi, and Probext be the
probability of external collisions in the system.

The probability of virtual collisions Probvirti can be ex-
pressed as follows, considering that each AC will collide only

with higher priority ACi in the same station.

Probvirt0 ¼ 0

Probvirt1 ¼ s0
Probvirt2 ¼ 1� ð1� s0Þð1� s1Þ
Probvirt3 ¼ 1� ð1� s0Þð1� s1Þð1� s2Þ

8>>><
>>>:

ð11Þ

Because the data frames from the higher priority AC receive

the TXOP when there are collisions within a QSTA and the
data frames from the lower priority colliding AC(s) behave
as if there were an external collision. So we should modify si,
the transmission probability of ACi, for an EDCA station in

a randomly chosen slot time.
Let the modified si be denoted as svirti ; i 2 f0; 1; 2; 3g,

denoting the transmission probability of ACi for an EDCA

station. Thus,

svirt0 ¼ s0
svirt1 ¼ s1ð1� s0Þ
svirt2 ¼ s2ð1� s0Þð1� s1Þ
svirt3 ¼ s3ð1� s0Þð1� s1Þð1� s2Þ

8>>><
>>>:

ð12Þ

And the total transmission probability for all AC inside a sin-

gle EDCA enable station is

svirttotal ¼
X3
i¼0

svirti ð13Þ

With svirttotal, the probability of external collisions in the coverage
area can be expressed by

Probextcoverage ¼ 1� 1� svirttotal

� �Nc�1 ð14Þ

where NC is the number of stations in the coverage area. Each
station is an EDCA enabled station. NC is also the number of

each AC.
In order to calculate Si, the average throughput of ACi in a

hidden system, we need to derive the stationary probability ~si
that a station transmit ACi packets in its vulnerable period as
defined above. We know, after k slots counter down,bi;j;Vi

transmission probability is 1� p�i
� �k

bi;j;k. All states whose

counter is less than Vi, will count down one by one. They will
become in the period of Vi slots, and then become the state
which can transmit with some probability. So we get

~si ¼
PLi

j¼0
PVi�1

k¼0 1� p�i
� �k

bi;j;k, shown in Fig. 2. Calculating ~si,

we have

~si ¼
1� pLiþ1

i

1� pi
bi;0;0 1þ

1� p�i
� �

� 1� p�i
� �Vi

1� p�ið Þp�i

" #

þ
1� p�i
� �

� 1� p�i
� �Vi

p�i
� ðVi � 1Þ 1� p�i

� �Vi

" #
bi;0;0

1� p�ið Þp�i

�
XLi

j¼0

pji
wi;j

ð15Þ



Table 2 System default parameters/configuration.

MAC header 272 bits

PHY header 128 bits

ACK 112 bit + PHY header

RTS 160 bit + PHY header

CTS 112 bit + PHY header

Channel bit rate 1, 2, 11 Mbit/s

Slot time 50 ls
SIFS 28 ls
DIFS 128 ls
Stations From 3 to 100

Data payload length 216 octets

Table 3 System default parameters/configuration.

Setting one

AC[0] AC[1] AC[2] AC[3]

AIFSN 4 6 7 8

Mi 5 6 6 7

Li 7 8 8 9

CWmin 3 4 5 6

CWmax 15 31 1023 1023

Retry limit (long/short) 7/4 8/4 8/4 9/4

IEEE 802.11e (EDCA) analysis in the presence of hidden stations 223
Considering the virtual collision factor in hidden stations, let
~svirti be a modification of ~si; i 2 f0; 1; 2; 3g. We have,

~svirt0 ¼ ~s0

~svirt1 ¼ ~s1ð1� ~s0Þ
~svirt2 ¼ ~s2ð1� ~s0Þð1� ~s1Þ
~svirt3 ¼ ~s3ð1� ~s0Þð1� ~s1Þð1� ~s2Þ

8>>>><
>>>>:

ð16Þ

Considering virtual collision factor, the total transmission
probability of a hidden EDCA station in its vulnerable period

for all AC inside one EDCA station is ~svirttotal ¼
P3

i¼0~s
virt
i . So the

probability that at least a hidden station transmits packets dur-
ing the vulnerable period is Probexthidden ¼ 1� ð1� ~svirttotalÞ

Nh . Nh is

the number of hidden stations.
In the stationary state, the collision probability pi, in the

presence of hidden stations, can be expressed as:

pi ¼ Probvirti þ 1� Probvirti

� �
Probext ð17Þ

But the Probext is

Probext ¼ Probextcoverage þ 1� Probextcoverage

� �
Probexthidden

¼ 1� 1� svirttotal

� �Nc�1
1� ~svirttotal

� �Nh ð18Þ

where svirttotal and ~svirttotal can be found from previous equations. We

are now ready to derive the throughput for each ACi with hid-
den stations in the system. Let Probbusy denote the probability
that at least one station transmits ACi data frame in the con-

sidered time slot, and Probhiddeni be the probability that exactly
one station transmits on the channel. In the chosen time slot,
this probability can also be considered as the probability that

n stations transmit and none of its covered station transmits in
the slot and none of the hidden station transmits in the vulner-
able period.

Probbusy ¼ 1� 1� svirttotal

� �N ð19Þ

The total number of contending stations, N, is equal to
Nc + Nh.

Probshiddeni ¼
Ncsvirti 1� svirttotal

� �Nc�1
1� ~svirttotal

� �Nh

Probbusy
ð20Þ

and PFC denotes the probability that a transmission attempt
fails due to a collision given that there is at least one station
transmitting in the considered time slot. By definition,

PFC ¼
1� 1� svirttotal

� �N �Ncsvirttotal 1� svirttotal

� �Nc�1
1� ~svirttotal

� �Nh

Probbusy

ð21Þ

Let Shidden
i denote the average throughput of AC[i] in the sys-

tem. Thus,

Shidden
i ¼ Probhiddeni ProbbusyE½Length�

ð1�ProbbusyÞ� slotTimeþ
P3

i¼0ProbbusyProbs
hidden
i tSi þProbbusyPFC� tc

E½Length�
1�svirt

totalð ÞN�Ncþ1

Ncsvirti
1�~svirt

totalð ÞNh
� slotTimeþ

P3
j¼0

svirt
j

svirt
i

tSj þ PFC�tc
Probshiddeni

ð22Þ

Where PFC
Probshiddeni

¼ 1� 1�svirt
totalð ÞN�Ncsvirttotal

1�svirt
totalð ÞNc�1

1�~svirt
totalð ÞNh

Ncsvirti
1�svirt

totalð ÞNc�1
1�~svirt

totalð ÞNh
. The

expressions tc is the average time the channel is sensed busy
by each station during a collision and tsi is the average time

the channel is sensed busy (i.e., the slot time lasts) because of

a successful transmission, The tc and tsi can be derived based

on basic and RTS/CTS access modes.

The backoff countdown with AIFS differentiation

Without AIFS differentiation, the probability that a backoff

senses a slot as idle in the Markov chain equals the probability
that all other stations do not transmit (by setting p�i ¼ pi). We
know there are AIFS differentiations among ACi. The count-

down blocking probability p�i will not be equal to pi again.
Let difi denote the differences in the number of time slots

between minimum AIFS and AIFSN, i.e.,

difi ¼
AIFi � AIFmin

aslotTime
� AIFi �DIFs

aslotTime
ð23Þ

p�i will be one until the channel has been idle. After the wireless
medium becomes idle during AIFSi, ACi will start to count

down counter value, with 1� p�i probability. But during its
countdown, if the higher priority ACi of its inside station is
transmitting, those lower priority countdown will freeze. The
lower priority queue must wait until the higher priority finishes

transmission. With difi; p
�
i can be expressed by

p�0 ¼ 1 before AIFS½AC VI�
p�0 ¼ 0 after AIFS½AC VI�

�
ð24aÞ

p�1¼ 1 before AIFS½ACVO�

p�1¼ 1� 1� svirt0

� �
1� svirt0

� �N�1h idif1�dif0
after AIFS½AC VO�

8<
:

ð24bÞ
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p�2¼ 1 before AIFS½AC BE�

p�2¼ 1� 1� svirt0

� �
1� svirt0

� �N�1h idif1�dif0
�
Q1
i¼0

1� svirti

� �
1� svirti

� �N�1� �dif2�dif1
after AIFS½AC BE�

8>>>>><
>>>>>:

ð24cÞ
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Numerical analysis

Parameters for numerical calculations

For simplicity and to keep focus on the most important issues,

we have assumed that all traffic classes send packets of equal
lengths (i.e., of 216 bytes) so that each packet fits perfectly into
one TXOP and we simply used the default 802.11e values sum-

marized in Tables 2 and 3. The channel bit rate has been as-
sumed equal to 11 Mbit/s.

Maximum throughput

The analytical model given above allows us to determine the

maximum achievable saturation throughput when qi = 1.
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We show the throughput results without the hidden station ef-

fect in Fig. 4 (basic access) and Fig. 5 (RTS/CTS access). As
expected, we notice here that the throughput varies depending
on the access categories, ACi, with AC0 providing the highest
throughput.

We present the throughput results in the presence of hidden
stations in Fig. 6(basic access) and Fig. 7 (RTS/CTS access).
Again we notice the same throughput results patterns. Also

comparing Figs. 6 and 7 with their counterparts Figs. 4 and
5, we notice that the throughput degrades for the RTS/CTS
case when compared with the Basic Access.

Conclusion

In this paper, we have extended earlier works by other authors
dealing with IEEE 802.11e and applied the Markov chain
model for IEEE 802.11e under non-saturation conditions

and effects of the hidden stations. Our initial results show
the saturation throughput versus the number of stations for
different access categories. We intend to continue further our
analysis and to simulate such environments to help in the

understanding of IEEE 802.11e behavior.
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