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Trunk muscle electromyography (EMG) is often contaminated by the electrocardiogram (ECG), which
hampers data analysis and potentially yields misinterpretations. We propose the use of independent
component analysis (ICA) for removing ECG contamination and compared it with other procedures pre-
viously developed to decontaminate EMG. To mimic realistic contamination while having uncontami-
nated reference signals, we employed EMG recordings from peripheral muscles with different
activation patterns and superimposed distinct ECG signals that were recorded during rest at conventional
locations for trunk muscle EMG. ICA decomposition was performed with and without a separately col-
lected ECG signal as part of the data set and contaminated ICA modes representing ECG were identified
automatically. Root mean squared relative errors and correlations between the linear envelopes of
uncontaminated and contaminated EMG were calculated to assess filtering effects on EMG amplitude.
Changes in spectral content were quantified via mean power frequencies. ICA-based filtering largely pre-
served the EMG’s spectral content. Performance on amplitude measures was especially successful when a
separate ECG recording was included. That is, the ICA-based filtering can produce excellent results when
EMG and ECG are indeed statistically independent and when mode selection is flexibly adjusted to the

data set under study.

© 2012 Elsevier Ltd. Open access under the Elsevier OA license,

1. Introduction

Trunk muscle electromyography (EMG) appears very suitable to
study the activity of abdominal and back muscles, e.g., during
postural control. The frequency content of trunk muscle EMG
signals may provide information on fatigue development in these
muscles. Unfortunately, trunk muscle EMG recordings are often
contaminated by the electrocardiogram (ECG), which can hamper
analysis (Butler et al., 2009) and may result in misinterpretations.

In trunk EMG recordings the heart rate can often be determined
by mere visual inspection. Nonetheless it is difficult to remove the
contamination algorithmically because of the ECG’s complicated
waveform, which is accompanied by a broad-band spectral distri-
bution. This distribution covers many higher harmonics character-
izing the ECG but also reflects the transient nature of the heart rate,
which causes peaks at harmonics to broaden substantially. As a
consequence, the ECG spectrum typically overlaps the spectral dis-
tribution of the EMG and disentangling the two forms a challenge.
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ECG removal procedures used to date include high-pass filtering
(HPF), usually employing finite impulse response or Butterworth
filters with a cut-off frequency of about 30 Hz (Redfern et al.,
1993; Drake and Callaghan, 2006). The overlap of ECG and EMG
frequency content, however, causes such high-pass filtering (or
other types of frequency filters like consecutive notch filters) to al-
ter the frequency content of the EMG, affecting outcome measures
like mean frequency and mean amplitude. We note that HPF-
effects on amplitude can - in part - be compensated via proper
normalization, assuming that the frequency distribution scales
constantly over activation levels. Still, this is problematic in studies
involving muscle fatigue or when measuring patients who cannot
perform maximal voluntary contractions.

ECG contamination in EMG may also be removed via template
matching approaches exploiting archetypical ECG waveforms.
Unfortunately, the shape of the ECG waveforms strongly depends
on electrode location, which limits success of conventional tem-
plate detection. To avoid the need for generic archetypes, filter-
ing by adaptive sampling (FAS) has been suggested (Aminian
et al, 1988; Marque et al., 2005). If ECG is recognizable and
can be isolated as individual waveform using a single epoch, it
can be subtracted from the contaminated signal, resulting in a
‘clean’ EMG signal. This procedure has the potential advantage
of leaving the spectral content of the actual EMG largely
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unaffected, but the proper identification of ECG in EMG signals
remains rather difficult, if at all feasible. Aminian and colleagues
(1988) recommended recurrent application of a modified turning
point algorithm to distinguish between (fast fluctuations in)
EMG and (slower) ECG samples, in combination with a reference
amplitude to detect R-peaks. Although this procedure can track
changes in heartbeat over time, peak removal is limited by
recurrent application of the modified turning point algorithm,
since the highest peaks will be discarded.

To improve ECG removal from EMG recordings, Hof (2009) sug-
gested to record a separate ECG signal simultaneously with the
EMG recordings. By this, for each electrode location, a separate
ECG template can be constructed based on the impulse responses
to the ECG channel, which are fitted to a resting EMG recording.
In fact, this procedure requires a simultaneous ECG recording and
a measurement with minimal EMG activity of the trunk muscles. If
these supplementary recordings are available, Hof’s approach ap-
pears promising, though to our best knowledge the procedure
has not been thoroughly evaluated, yet.

Here we advocate the use of adaptive filters based on multivar-
iate assessments of EMG. This method is not new and found fre-
quent application in particularly in the neurosciences, e.g., for
artifact removal in the electro-encephalogram (EEG). EEG is often
contaminated by various confounding signals, predominantly by
eye-blinks. Capitalizing on the independence of EEG and eye-blinks
and, by the same token, exploiting the multivariate nature of EEG,
Makeig and colleagues (1996) suggested the use of independent
component analysis (ICA). ICA decomposes a set of time series into
a set of statistically independent or uncorrelated modes (‘source
signals’). This procedure is very similar to a principal component
analysis (PCA) with the addition that the simple singular value
decomposition of the covariance matrix in PCA is replaced by an
optimization of the source signals’ covariance and kurtosis.

We generally assume that the contaminating signal (here ECG)
can in first approximation (1) be considered as merely superim-
posed onto the signal under study (here EMG) and (2) is indepen-
dent thereof. For this case we expect ICA to result in subsets of
modes that only contain contaminations and - more importantly
- subsets of uncontaminated modes. A recent study indeed exam-
ined ICA-based ECG removal on a simulated data set of ECG-con-
taminated EMG signals (Mak et al, 2010). Results were
promising, but about 25% of all ICA modes were identified as
ECG-contaminated. Most probably this resulted in loss of EMG
but, unfortunately, EMG amplitude or frequency outcome mea-
sures have not been reported. Also, the suggested procedure relied
on a peak-detection algorithm used to identify ECG in the ICA
modes, which limits the general applicability to EMG with low
amplitude. In the present study we build on these early ideas
and examined automatic ICA-based removal of ECG from EMG
recordings by comparing it with the more traditional HPF and
FAS as well as the aforementioned method by Hof (2009). To assess
quantitative differences in both ECG removal and EMG preserva-
tion, we used artificially contaminated EMG recordings from
peripheral muscles with different patterns and levels of activation.
The ECG used for artificial contamination was recorded at 15 dif-
ferent electrode locations often used for trunk muscle EMG record-
ings, in order to mimic actual differences in ECG waveforms in
trunk muscle EMG. ICA-based filtering was realized with and with-
out the use of a separate ECG recording. We hypothesized that the
methods requiring a separate ECG recording are in general superior
to methods without the use of such a reference. From the latter, we
further hypothesized ICA-based filtering to be more successful
than both alternatives in removing ECG, because it is largely inde-
pendent of signal-to-noise ratio (which is known to limit template
matching) and because of its merely subtle effects on frequency
content of the signals.

2. Methods
2.1. Data collection and pre-processing

2.1.1. Generating artificially ECG-contaminated EMG

Surface EMG activity of 16 peripheral muscles in the upper and
lower extremities was recorded in a single subject (female, age 26,
BMI 22) using a conventional, bipolar montage (Porti 17, TMS, En-
schede, The Netherlands; 22 bits AD conversion after 20x amplifi-
cation, input impedance >10'? Q, CMRR >90 dB, 1000 samples/s,
with online 10-400 Hz band-pass filtering). A single subject design
(as also used by (Drake and Callaghan (2006)) was considered suit-
able for this methodological study, since signal characteristics of
ECG and EMG are similar between subjects.

Electrodes (Ag/AgCl, inter-electrode distance 25 mm) were
placed above selected arm and leg muscles according to SENIAM
recommendations (Hermens et al., 2000); see Table 1, left column.
During these EMG recordings the subject performed several tasks
(30 s each) requiring different levels and patterns of activation;
see Table 2 for an overview. Maximal voluntary contractions
(MVCs) were performed against the experimenter’s manual resis-
tance for each muscle.

ECG was recorded during rest (lying supine) at 16 locations
commonly used for recordings of trunk muscle activity (four back
and four abdominal muscles bilaterally, see Table 1, right column;
more details on electrode locations can be found in Willigenburg
et al. (2010)). Visual inspection revealed only minimal EMG
activity, implying that apart from some background noise largely
isolated ECG signals were recorded. From here-on we therefore
refer to these signals as ECG. Note that these 16 ECG channels
differed from each other in that each signal represented a
realistic ECG contamination at a specific trunk muscle. An occa-
sional 50-Hz interference was removed using a conventional
off-line notch filter (4th order bi-directional Butterworth, 49.5-
50.5 Hz).

Table 1
Muscles from which EMG was recorded; odd and even channels refer to right and left
muscles, respectively.

Channel Limb EMG recordings ECG recordings at trunk muscle
during five tasks electrode locations during rest

1-2 m. rectus femoris longissimus thoracis

3-4 . vastus medialis iliocostalis thoracis

5-6 . biceps femoris iliocostalis lumbalis

7-8 . gastrocnemius lateralis longissimus lumbalis

rectus abdominis

obliquus externus anterior
obliquus internus anterior
obliquus externus lateralis

. tibialis anterior
. biceps brachii
. brachioradialis

BEBEBEBEE

m
m
m

9-10 m. gastrocnemius medialis
m
m
m

Table 2
Experimental tasks during which EMG of peripheral muscles was recorded.

Task Activity

Lower extremity Upper extremity

1 Upright stance 90° elbow flexion
2 Upright (15 s) to squatted (15 s) Arms hanging down
stance
3 Squatted (15 s) to toe (15 s) stance  Arms forward (15 s) to upward

(155)

90° elbow flexion, arm sway
Various (randomly chosen)
activities

4 Rhythmic stepping
Various (randomly chosen)
activities

w
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EMG signals of peripheral muscles did not contain any recogniz-
able ECG contamination and were 10-400 Hz band-pass filtered
off-line (2nd order bi-directional Butterworth). We then created
artificially contaminated EMG recordings by superimposing the
ECG signals (recorded at trunk muscle electrode locations during
rest) on the EMG (of the active peripheral muscles). Superposition
was implemented by adding channels 2-16 of the ECG to channels
2-16 of the uncontaminated limb EMG recordings (EMGuucon)s
resulting in 15 contaminated EMG signals (EMGc,,,). Channel 1 of
the ECG recordings served as a ‘reference’ ECG channel, which
was used in the filtering procedures requiring a simultaneously re-
corded ECG signal; channel 1 of the EMG recordings was discarded.
During ‘real’ trunk muscle EMG recordings, the reference ECG sig-
nal could be recorded on a bony area close to the heart, e.g. the
sternum.

2.2. Data analysis

We employed three ECG removal techniques that do not require
a reference ECG recording: 30-Hz high-pass filtering (EMGypr), fil-
tering by adaptive sampling (EMGgss), and ICA-based filtering
(EMGjca). In addition, we evaluated two methods for ECG removal
including a simultaneously recorded ECG signal: Hof's procedure
(EMGhyy) and ICA-based filtering (EMGicasrer)-

2.2.1. HPF procedure

Most of the ECG’s spectral power is located below 30 Hz. This
concentration of the spectral distribution to low frequencies ren-
ders mere high-pass filtering the first choice for removal of ECG
contamination. As recommended by Drake and Callaghan (2006),
we therefore applied a 2nd order bi-directional high-pass Butter-
worth filter with cut-off frequency of 30 Hz to EMG,,,, resulting
in EMGHPF.

2.2.2. FAS procedure

The FAS procedure builds on the fact that the variations in
motor unit action potentials are much more rapid than those of
the ECG. This difference in time scales allows for recognizing
samples of ECG via a QRS-complex detection algorithm after
recurrent (four times) application of the modified turning point
algorithm (Aminian et al., 1988). Our QRS-detection algorithm
used an average R-peak width of 20 ms and an R-peak amplitude
threshold of four times the standard deviation of the raw EMG,,;,.
Q and S were determined as local minima preceding and follow-
ing the R-peaks. Linear interpolation of the so-detected QRS-sam-
ples were considered the ‘pure’ ECG, which was subtracted from
EMG,,. This subtraction led to a decontaminated EMG, here re-
ferred to as EMGpgs.

2.2.3. Hof’s procedure

Hof’s procedure (Hof, 2009) models the ECG contamination at
different electrode locations as a filtered version of the reference
ECG recording. The impulse responses of the ECG filters for each
EMG channel are determined based on least squares fitting to a
resting recording with minimal EMG activity. Subsequently, these
filtered ECGs are subtracted from the actual EMG recordings yield-
ing EMGpor. We note that we here did not implement a ‘conven-
tional’ 20 or 30 Hz high-pass filtering as was included in Hof’s
original proposal in order to avoid limitations as in the HPF proce-
dure above.

2.2.4. ICA-based filtering procedure

ICA is a multivariate statistical approach to (blind) source sepa-
ration (Jutten and Hérault, 1991). The multivariate input data con-
sisted of the aforementioned 15 contaminated EMG signals;
EMG,on. As said the ICA-based filtering procedure was realized in

the absence of an additional reference but also with an additional
reference ECG (as in Hof's approach). In the latter case an
amplified" ECG signal (channel 1) was used as 16th input EMG chan-
nel. In the first case, i.e. without external reference, we created a ref-
erence channel via averaging the 15 contaminated input EMG signals
after 8-18 Hz band-pass filtering.

For ICA decomposition we used the so-called FastICA algorithm
(Hyvdrinen and Oja, 2000, version 2.1, from http://research.ics.tkk.-
fi/ica/fastica) with a symmetric decorrelation approach and PCA
eigenvectors as initial guess. The optimization employed a fixed-point
algorithm with cubic non-linearity. In the resulting ICA modes, ECG
was identified by a tailor-made detection algorithm (soon available
via http://www.upmove.org/misc). In a nutshell, we first enhanced
possible ECG peaks in the ICA projection by setting all values within
a small range around the mean to zero, second we computed the
power spectral densities and selected those modes that displayed
pronounced higher harmonics of the ECG base frequency which had
to cover at least 5% of the total power of the mode. The so-defined
ICAgcc-modes were removed by zeroing the corresponding coeffi-
cients of the mixing matrix prior to reconstructing the 16-dimen-
sional data set from which the leading 15 signals represented
decontaminated EMG signals, referred to as EMGjca and EMGicasrer:

2.3. Filter performance

2.3.1. EMG amplitude

Linear envelopes were obtained by application of a 2.5 Hz (1st
order bi-directional) low-pass filter to the Hilbert amplitudes
(i.e., modulo of the corresponding analytic signal) of the various
EMG signals (Bruns, 2004). Amplitudes were normalized to
%MVC. With the HPF procedure, HPF was also applied to the
MVC recordings to correct for the loss of EMG with low frequency
content (<30 Hz). Root mean squared relative errors (RMSRE) and
correlation coefficients (R) of the linear envelopes of EMG,,
EMGgss, EMGypr, EMGica, EMGHOf and EMG)CA+rEf with respect to the
linear envelopes of EMGyncon Were calculated. RMS error was de-
fined as the RMS of the difference between the linear envelopes
of EMGyncon and the differently filtered EMGs for each channel. To
correct for differences in EMG activation levels between channels
within tasks, RMSRE was calculated by dividing RMS errors by the
mean amplitude of EMGy,con over the task for each channel.

2.3.2. EMG frequency

Spectral analysis of EMG,,con, EMG,,, and the five differently fil-
tered EMG Signals (EMGHPF, EMGgas, EMGica, EMGHgf and EMGICA+ref)
was performed using Welch’s averaged periodogram method
(Hamming window size 5 s with 50% overlap between consecutive
windows). From these power spectral densities, we calculated the
mean power frequency (MPF). Note that EMG_,, will underestimate
MPF with respect to EMG,ncon, Whereas HPF will (obviously) result
in an overestimation of MPF. Since the other filtering procedures
can result in errors in both directions, which could theoretically
cancel out, we calculated the absolute difference with respect to
MPF,,con. The absolute difference between the uncontaminated
MPF con and MPF ., MPFgas, MPFpr, MPFca, MPFHOf and MPFch+ref
divided by MPF,,c, resulted in six different MPF relative error
(MPFRE) values for each channel and task.

2.3.3. Bootstrapping procedure

To assess robustness of the filtering results, we applied a boot-
strapping procedure. Specifically, all calculations were repeated
using 50 surrogates by means of random combinations of the

! Amplifying the ‘reference’ ECG guaranteed that it always dominated at least one
of the ICA modes.
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EMG channels of 15 muscles and the ECG signals recorded at 15
locations on the trunk. By this, ECG signals with distinct ampli-
tudes and QRS-complexes were superimposed on EMG signals
with different amplitudes and activation patterns, resulting in a
variety of amplitude ratios between EMG and ECG which is also
found in ‘real’ contaminated EMG. The current method did not al-
low for further statistical comparison of the filtering procedures,
since a fundamental assumption for statistical testing was vio-
lated: the samples are not independent.

2.3.4. Trunk muscle EMG example

In addition to the quantitative evaluation of filter performance,
we further tested the different techniques on ‘real’ ECG contami-
nated trunk muscle EMG recordings. Obviously, the lack of a ‘gold
standard’ in such a data set does not allow for quantification of fil-
ter performance. However, a figure with examples of ECG removal
by HPF and the ICA-based procedure was included to allow for
visual inspection of filtering results.

3. Results
3.1. An example

We first illustrate our ICA-based filtering approach using signals
of task 3 (squatted to toe stance). Fig. 1 shows the 16 ICA modes
that resulted from decomposition of 15 EMG., and one con-
structed ‘reference ECG’ signal. Mode 16 (right lower panel) not
only had the highest coefficient for the constructed ECG channel
in the mixing matrix, but also met both criteria of equidistance
and relative power at the heart frequency (and its harmonics)
and was therefore removed prior to reconstructing the signals.

mode 2

mode 1
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Fig. 2 shows in gray the reconstructed EMGc,4 based on the
remaining 15 modes of Fig. 1. EMG)cs was superimposed onto
EMG,,, in black, revealing that ECG contamination largely disap-
peared with limited loss of EMG. Only in channel 5 some amplitude
loss at the higher activation level was observed. Note that with an
external reference ECG the ICA-filter generally performed better
than without that reference; apparently a simultaneously recorded
ECG signal provided a better ECG reference signal than the ‘refer-
ence’ signal (right lower panel) constructed by averaging over
EMG channels.

A closer look at the linear envelopes and power spectra of the
(un)contaminated versus the filtered EMG signals of channel 2 al-
lowed for an in-depth assessment of approaches (Fig. 3). The upper
panel demonstrates the effect of ECG contamination (black) on the
original EMG recording (gray). Although all procedures (in black in
the lower panels) reduced ECG contamination, differences in filter
performance were clearly visible.

HPF did not entirely remove ECG-peaks and, as expected,
caused a substantial overestimation of the MPF. Moreover, EMGppr
amplitude at higher activity levels was slightly underestimated,
despite application of the same HPF to the MVC data used for nor-
malization. Also, some EMG around the transition from high to
lower activation level was lost. FAS reduced ECG peak height at
the low EMG activation level, but failed to recognize all QRS-com-
plexes at higher EMG activity levels. FAS furthermore resulted in a
slight overestimation of the EMG amplitude at higher activation
levels and in a substantial underestimation of the MPF, due to
low frequencies originating from the QRS-template construction.
After ICA-based filtering without the use of a reference ECG signal,
residuals of ECG peaks were clearly present, but, in contrast with
HPF and FAS, the power spectrum of EMG,c4 largely resembled that
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Fig. 1. ICA modes after decomposition of EMG,, without reference ECG recording for task 3. Activity level on the y-axis is in arbitrary units (au) reflecting normalization of
the data prior ICA decomposition. The x-axis is limited to 10 of the 30 s and this order of ICA modes was prior to sorting. Note that ECG was largely isolated in mode 16, which

indeed became the first mode after sorting and was detected as ICAgcc-mode.
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Fig. 2. EMG_,, in black bold lines and EMGca+rer in gray thin lines for all channels (see Table 1 for an overview of the EMG and ECG origins). In the right lower corner the
‘reference’ ECG constructed by averaging over EMG signals is shown. Note that removal of ICAgcc mode 16 (see Fig. 1) resulted in successful ECG removal for all channels but

also caused some amplitude loss in Ch 5.

of EMGyneon yielding almost equal MPFs. The slight underestimation
of EMG amplitudes at high EMG activity levels with ICA probably
resulted from some common EMG other than ECG that was present
in the ICAgcc-mode (see mode 16 in Fig. 1). Both procedures based
on a separate ECG reference recording were very successful in
removing ECG while keeping EMG almost perfectly intact.

3.2. Overall results

The RMSREs for EMG,,, and the five differently filtered signals
with respect to EMGyucon are shown in Fig. 4 for the five different
tasks, averaged over channels. From the procedures without refer-
ence ECG recording, HPF substantially reduced RMSRE in tasks 1
and 2. In upright stance, with relatively low level and small varia-
tions of muscle activation, ICA without external reference
performed equally well and in task 3, which contained more sub-
stantial levels of muscle activation, only the ICA version reduced
RMSRE. None of the methods without reference ECG recording
was successful in tasks 4 and 5, where RMSREs were similar to or
even larger than RMSRE of EMG,,. Both procedures that required
a reference ECG recording (Hof and ICA plus external reference)
succeeded in reducing RSMRE in all tasks, but in particular per-
formed better than the other methods in tasks 3, 4 and 5.

As mentioned earlier, the robustness of filter performances was
tested with a bootstrapping procedure evaluating 50 random com-
binations of EMG and ECG channels. Averaging over 15 channels
and these 50 combinations respectively, resulted in means and
standard deviations of RMSRE, MPFRE and R as shown in Fig. 5.
Average RMSREs were comparable to the results for the single com-
bination of channels presented in Fig. 4. HPF was at least equally
successful to both procedures that required a separate ECG channel
in tasks 1 and 2. The large mean and standard deviation of RMSRE
for ICA in the absence of an external reference in task 1 indicated

that filter performance was not robust. Apparently, ECG removal
was successful in some combinations of EMG and ECG (as in
Fig. 4), but not in other combinations. Interestingly, in tasks 3
and 5, ICA without reference was the only method without a refer-
ence recording that resulted in (slightly) reduced RMSRE compared
to EMGcon-

Obviously, HPF affected the EMG'’s spectral content, resulting in
large overestimations of MPF (Fig. 5). Both procedures relying on a
reference ECG signal resulted in low MPFRE for all tasks, implying
that they left the EMG’s frequency content largely unaffected.
When no separate ECG recording was used, MPFRE was lowest with
the ICA (without reference) procedure. Correlations (lower panel)
were generally high, but some differences between filtering proce-
dures can be observed, especially in task 1.

3.3. Trunk muscle EMG

Fig. 6, shows an example of HPF and ICA (without and with
external ECG recording) in ‘real’ ECG-contaminated trunk muscle
EMG recordings. Note that, in general, all filtering procedures re-
duced ECG contamination. However, some differences between
procedures are clearly visible: residual ECG peaks remained after
HPF (middle and right panel), whereas the complete removal of
ECG peaks appeared to coincide with some loss of EMG amplitude
for ICA without external reference ECG (middle panel). Best results
were obtained when an external ECG recording was included in the
ICA-based filtering procedure (lower panel).

4. Discussion

We evaluated the use of ICA for removal of ECG contamination
from EMG recordings. The procedure was implemented with and
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lines representing MPFs and errors (MPFEs) indicated in the right upper insets. Note that MPFEs were later divided by MPF, .., for further analysis.
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Fig. 4. RMSRE for the different filtering procedures (colored bars) for the five different tasks, averaged over channels. Error bars represent SDs over channels. Note that the
scaling between tasks differs in order to emphasize differences between filtering procedures. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

without the use of a simultaneously recorded reference ECG signal
and its performance (ECG removal as well as EMG preservation)
was compared to three previously reported methods for ECG re-
moval (HPF, FAS, and Hof’s procedure). In terms of amplitude esti-
mates, HPF was at least equally successful as both procedures that
required a reference ECG recording (Hof and ICA plus reference) in
tasks with low (variation in) EMG activity levels. In tasks with
larger (variations in) EMG activation, the procedures that require
a reference ECG recording performed substantially better in reduc-
ing RMSRE. By and large, FAS displayed limited success, underscor-
ing the challenge when defining and detecting QRS templates in

inherently noisy EMG data sets. Since none of the methods per-
formed optimal at all outcome measures, the choice for a method
to remove ECG should be made dependent on the type of signals
and the circumstances under which data are recorded and, of
course, on the type of outcome measures one is interested in.
The HPF procedure resulted in large overestimations of MPF,
while ICA was more successful in preserving spectral content when
no reference ECG was available. The procedures using a reference
ECG recording come with a significant advantage as they preserve
the EMG'’s full spectral content, here demonstrated by MPFs largely
resembling those of EMG,c,. That is, when focusing on frequency
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EMG and ECG recordings; again the scaling differs between tasks.

measures, either ICA-based ECG removal or Hof's procedures
should be preferred - recall that the latter requires more supple-
mentary recordings. When no reference ECG signal is available,
ICA can improve estimations of MPF when compared to EMG,,,, ex-
cept for activation patterns that are rhythmic at approximately the
frequency of the heartbeat as in our task 4. When a separate ECG
recording is available, ICA is preferred whenever activation levels
are fairly low (as with upright stance in task 1), while Hof’s proce-
dure resulted in similar or even slightly better estimates for data
sets with larger (variations in) muscle activation.

Remarkably, residuals of ECG peaks often remained after HPF
(Figs. 3 and 6). When ECG peaks have to be removed entirely,
e.g., in order to detect onset of muscle activation), this method
may not suffice. Both procedures using a separate ECG recording
were better in completely removing ECG traces. If no reference
ECG is available and full ECG removal has a high priority, then
ICA should be considered, as Fig. 6 shows complete removal in a
signal where residual peaks remained after HPF. Moreover, the
proposed criteria for identification of ICAgcc-modes could be ad-
justed, to tune the ICA-based procedure for specific purposes. For
instance, if complete peak removal has priority over preserving
EMG, the 5% power criterion may be decreased or even omitted.

The two methods employing a reference ECG signal largely suc-
ceeded in removing ECG while preserving EMG amplitude and fre-
quency content in all tasks. Whereas ICA plus external reference
performed better in task 1, Hof's procedure appeared more suc-
cessful in the other tasks. Since Hof’s procedure also requires less
calculation time, can be applied when only a small number of
recordings is available, and provides deterministic results, it might
be preferred over ICA, which can only be applied to multivariate
data sets and provides results that may not be entirely reproduc-
ible, due to the here-applied optimization procedure in the ICA
decomposition. More important, if independence of EMG and

ECG cannot be guaranteed, by construction the ICA-based filter
has limited performance. In our example, in the absence of a sep-
arate ECG recording, ICA decomposition often resulted in more
than one mode, which not only contained ECG, but also some
(common mode) EMG. This emphasizes the importance of carefully
chosen criteria for identification of ICAgcc-modes, which can vary
over data sets. Optimizing criteria for ICAgcc-mode detection for
different data sets and purposes is beyond the scope of the current
study. Despite these ‘limitations’, however, the present results do
indicate the potential benefits of an ICA-based filtering as it can
clearly improve the validity of EMG outcome measures compared
to currently used methods.

In the present study, we determined the MVC normalization
factor from uncontaminated EMG signals. As contamination was
realized in terms of a superposition, the normalization meant that
the sum of two signals (i.e. ECG recorded at trunk muscle electrode
locations superimposed to EMG recordings of arm and leg muscles)
was scaled to the maximum of one of these signals and not the
maximum of their sum. By this, normalization could affect the ratio
of ECG amplitude between channels generating some bias in our
assessments. We note that we chose for the individual normaliza-
tion to %¥MVC as the use of non-normalized data might have penal-
ized the HPF method due to the loss of power below 30 Hz.
Another limitation is that we applied ICA-based filtering in one
specific way, while alternatives are also suggested. For instance,
Von Tscharner et al. (2011) proposed a method for ICA-based
ECG removal using non-linearly scaled wavelets, which may be
an effective method as well.

Our test protocol revealed important differences between proce-
dures for ECG removal. This resulted in recommendations for
choosing the optimal technique given a specific data set and out-
come measure of interest, which can improve interpretation of con-
taminated trunk muscle EMG. ICA-based filtering does not provide
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Fig. 6. Example of ‘real’ ECG contaminated trunk muscle EMG recordings. Contaminated EMG of three trunk muscles in the upper panel. The lower panels show the same
recording after HPF filtering, after ICA-based filtering without external reference ECG and after ICA-based filtering with inclusion of a separate ECG recording.

a solution to all possible artifacts but, if implemented properly,
forms a welcome and promising addition to EMG preprocessing.
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