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a b s t r a c t

Reconfiguration problems arise when we wish to find a step-by-step transformation
between two feasible solutions of a problem such that all intermediate results are
also feasible. We demonstrate that a host of reconfiguration problems derived from
NP-complete problems are PSPACE-complete,while some are alsoNP-hard to approximate.
In contrast, several reconfiguration versions of problems in P are solvable in polynomial
time.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Consider the bipartite graph with weighted vertices in Fig. 1(a) (both solid and dotted edges). It models a situation in
which power stations with fixed capacity (the square vertices) provide power to customers with fixed demand (the round
vertices). It can be seen as a feasible solution of a particular instance of a search problemwhichwemay call the power supply
problem [8,10]: Given a bipartite graph G = (U, V , E) with weights on the vertices, can G be partitioned into subtrees, each
of which contains exactly one vertex from U , such that the sum of the demands of the V vertices (customers) in each subtree
is no more than the capacity of the U vertex (power station) in it?

But suppose now that we are given two feasible solutions of this instance (the leftmost and rightmost ones in Fig. 1), and
we are asked: Can the solution on the left be transformed into the solution on the right bymoving only one customer at a time,
and always remaining feasible? This problem, which we call the power supply reconfiguration problem, is an exemplar of
the kinds of problems we discuss in this paper. (In this particular instance, it turns out that the answer is ‘‘yes’’; see Fig. 1.)
As one may have expected, the most basic reconfiguration problem is the satisfiability reconfiguration problem: Given a
CNF formula and two satisfying truth assignments s0 and st , are these connected in the subgraph of the hypercube induced
by the satisfying truth assignments? This problem has been shown to be PSPACE-complete [3].

In more generality, reconfiguration problems have the following structure: Fix a search problem S (a polynomial-time
algorithmwhich, on instance I and candidate solution y of length polynomial in that of I , determines whether y is a feasible
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a b c
Fig. 1. A sequence of feasible solutions for the power supply problem.

solution of I); and fix a polynomially testable symmetric adjacency relation A on the set of feasible solutions, that is, a
polynomial-time algorithm such that, given an instance I of S and two feasible solutions y′ and y′′ of I , it determineswhether
y′ and y′′ are adjacent. (In almost all problems discussed in this paper, the feasible solutions can be considered as sets of
elements, and two solutions are adjacent if their symmetric difference has size 1.) The reconfiguration problem for S
and A is the following computational problem: Given an instance I of S and two feasible solutions y0 and yt of I , is there a
sequence of feasible solutions y0, y1, . . . , yt of I such that yi−1 and yi are adjacent for i = 1, 2, . . . , t?

Reconfiguration problems can also arise from optimization problems, if one turns the optimization problem into a search
problem by giving a threshold. For example, the clique reconfiguration problem is the following: Given a graph G, an
integer k, and two cliques C0 and Ct of G, both of size at least k, is there a way to transform C0 into Ct via cliques, each of
which results from the previous one by adding or subtracting a single node of G, without ever going through a clique of size
less than k − 1?

Reconfiguration problems are useful and entertaining, have been coming up in recent literature [1,3,6,9], and are
interesting for a variety of reasons. First, they may reflect, as in the power supply reconfiguration problem above, a
situation where we actually seek to implement such a sequence of elementary changes in order to transform the current
configuration to amore desirable one, in a context inwhich intermediate stepsmust also be fully feasible, and only restricted
changes can occur — in our example, no two customers can change providers simultaneously, and we certainly do not
wish customers to be without power. In a complex, dynamic environment in which changing circumstances affect the
feasible solution of choice, determining whether such an adaptation is possible may be crucial. Reconfiguration problems
also model questions of evolvability: Can genotype y0 evolve into genotype yt via individual mutations which are each of
adequate fitness? Here a genotype is considered feasible if its fitness is above a threshold, and two genotypes are considered
adjacent if one is a simple mutation of the other. Finally, reconfiguration versions of constraint satisfaction problems (the
first kind studied in the literature [3]) yield insights into the structure of the solution space,whichmayhelp in understanding
heuristics, such as survey propagation, whose performance depends crucially on connectivity and other properties of the
solution space.

In this paper, we embark on a systematic investigation of the complexity of reconfiguration problems. Our main focus
is showing that a host of reconfiguration problems (including all those mentioned above and many more) are PSPACE-
complete. The proof for the power supply reconfiguration problem and those for certain other problems are explained
in Section 2. We then point out in Section 3 that certain reconfiguration problems arising from problems in P (such as
minimum spanning tree and matching) can be solved in polynomial time. In Section 4 we show certain approximability
and inapproximability results for reconfiguration problems. An extended abstract of the paper has been presented in [7].

2. PSPACE-completeness

In this section we show that a host of reconfiguration problems are PSPACE-complete. In Section 2.1 we first give a
proof for the power supply reconfiguration problem, and in Section 2.2 we then give proof sketches for certain other
reconfiguration problems.

2.1. Power supply reconfiguration

The power supply reconfiguration problem was defined informally in the Introduction. An instance is given in terms
of a bipartite graph G = (U, V , E), where each vertex in U is called a supply vertex and each vertex in V is called a demand
vertex. Each supply vertex u ∈ U is assigned a positive integer sup(u), called the supply of u, while each demand vertex v ∈ V
is assigned a positive integer dem(v), called the demand of v. We wish to partition G into subtrees, by deleting edges from G,
such that each subtree T has exactly one supply vertex whose supply is at least the sum of demands of all demand vertices
in T . We call an assignment f : V → U a configuration of G if there is an edge


v, f (v)


∈ E for each demand vertex v ∈ V .

A configuration f of G is feasible if the following condition holds: for each supply vertex u ∈ U ,

sup(u) ≥

−
dem(v) | v ∈ V such that f (v) = u


.

The adjacency relation on the set of feasible configurations is defined as follows: two feasible configurations f and f ′ are
adjacent if

{v ∈ V : f (v) ≠ f ′(v)}
 = 1, that is, f ′ can be obtained from f by changing the assignment of a single

demand vertex. Given a bipartite graph G = (U, V , E) and two feasible configurations f0 and ft of G, the power supply
reconfiguration problem is to determine whether there is a sequence of feasible configurations f0, f1, . . . , ft of G such that
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(a) Gxi . (b) Gφ .

Fig. 2. (a) Variable gadget Gxi , and (b) bipartite graph Gφ corresponding to a Boolean formula φ with three clauses C1 = (x1 ∨ x̄2), C2 = (x̄1 ∨ x2 ∨ x3) and
C3 = (x̄2 ∨ x̄3), and hence c = 2.

fi−1 and fi are adjacent for i = 1, 2, . . . , t . Note that power supply reconfiguration, as well as any reconfiguration problem
defined in this paper, does not ask for an actual reconfiguration sequence.

Fig. 1 illustrates three feasible configurations of a bipartite graph G, where each supply vertex is drawn as a square, each
demand vertex as a circle, and the supply or demand is written inside. Fig. 1 also illustrates an example of a transformation
from the feasible configuration in Fig. 1(a) to the one in Fig. 1(c), where the demand vertex whose assignment was changed
from the previous one is depicted by a thick circle.

We have the following theorem.

Theorem 1. Power supply reconfiguration is PSPACE-complete.

Proof. It is easy to see that this problem, as well as any reconfiguration version of a problem S in NP, can be solved in
polynomial space, as follows. Since S is in NP, we can enumerate all feasible solutions of S in nondeterministic polynomial
time. Since NP ⊆ PSPACE [11, p. 148], this enumeration can be done in PSPACE. We then nondeterministically traverse the
solutions that are adjacent with the current solution. (By the assumption, the adjacency can be checked in polynomial time
for each enumerated solution.) Savitch’s Theorem [12] says that this NPSPACE algorithm can be converted into a PSPACE
algorithm.

We give a polynomial-time reduction from the satisfiability reconfiguration problem to this problem. In that
problem we are given a Boolean formula φ in conjunctive normal form, say with n variables x1, x2, . . . , xn and m clauses
C1, C2, . . . , Cm, and two satisfying truth assignments s0 and st of φ. Then, we are asked whether there is a sequence of
satisfying truth assignments, starting with s0 and ending in st , and each differing from the previous one in only one variable.
This problem is known to be PSPACE-complete [3]. One may assume without loss of generality that the formula φ has no
clause which contains both positive and negative literals of the same variable. Let c be themaximumnumber of occurrences
of a literal in the clauses, and hence each literal appears in at most c clauses in φ.

Given such an instance of satisfiability reconfiguration, we construct an instance of power supply reconfiguration
as follows. We first make a variable gadget Gxi for each variable xi, 1 ≤ i ≤ n; Gxi is a binary tree with three vertices as
illustrated in Fig. 2(a); the root Fi is a demand vertex of demand c , and the two leaves xi and x̄i are supply vertices of supply
c. Then the bipartite graph Gφ corresponding to the formula φ is constructed as follows. For each variable xi, 1 ≤ i ≤ n, add
the variable gadget Gxi to the graph; and, for each clause Cj, 1 ≤ j ≤ m, add a demand vertex Cj of demand 1 to the graph.
Finally, join a supply vertex xi (or x̄i) in Gxi , 1 ≤ i ≤ n, with the clause demand vertex Cj, 1 ≤ j ≤ m, if and only if the literal
xi (respectively, x̄i) is in the clause Cj. (See Fig. 2(b) as an example.) Clearly, Gφ is a bipartite graph.

Consider a feasible configuration of Gφ . Then each demand vertex Fi, 1 ≤ i ≤ n, must be assigned to one of xi and x̄i; a
literal is considered false if Fi is assigned to its corresponding supply vertex. Notice that, since supply vertices have supply c and
the Fi’s have demand c , a false-literal supply vertex cannot provide power to any of the other demand vertices. Hence, all
clause demand vertices Cj, 1 ≤ j ≤ m, must be assigned to true-literal supply vertices that occur in them. Since each literal
xi (or x̄i), 1 ≤ i ≤ n, appears in at most c clauses in φ, the corresponding supply vertex xi (respectively, x̄i) in Gxi can provide
power to all clause demand vertices Cj whose corresponding clauses have xi (respectively, x̄i).

To complete the reduction, we now create two feasible configurations f0 and ft of Gφ corresponding to the satisfying
truth assignments s0 and st of φ, respectively. Each demand vertex Fi, 1 ≤ i ≤ n, is assigned to the supply vertex whose
corresponding literal is false, while each clause demand vertex Cj, 1 ≤ j ≤ m, is assigned to an arbitrary true-literal supply
vertex adjacent to Cj. Since s0 and st are satisfying truth assignments of φ, both f0 and ft are feasible configurations of Gφ .
This completes the construction of the corresponding instance of the power supply reconfiguration problem.

We know that a feasible configuration of Gφ corresponds to a satisfying truth assignment of φ plus an assignment of each
clause to a true literal. It is easy to see that this correspondence goes backwards: every satisfying truth assignment of φ can
be mapped to at least one (in general, to exponentially many) feasible configurations of Gφ .

What about adjacent configurations defined to be configurations differing in the assignment of just one demand vertex?
One can easily observe that there are only two types of reassignments to go from a feasible configuration ofGφ to an adjacent
one, as follows:

(1) One could change the assignment of a demand vertex Fi from xi to x̄i, or vice versa, if no clause demand vertex is currently
assigned to supply vertices xi or x̄i.
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Fig. 3. Graph ρ(φ) corresponding to a 3SAT formula φ with three clauses C1 = (x1 ∨ x̄2), C2 = (x̄1 ∨ x2 ∨ x3) and C3 = (x̄2 ∨ x̄3).

(2) Alternatively, if a clause demand vertex Cj is adjacent tomore than one true-literal supply vertex, then one could change
the assignment of Cj from the current one to another.

Therefore, any sequence of adjacent feasible configurations of Gφ can be broken down to subsequences, intermittently with
a reassignment of type (1) above; in each subsequence, every two adjacent configurations can go from one to another via a
reassignment of type (2) above. Therefore, all feasible configurations in each subsequence correspond to the same satisfying
truth assignment of φ, while any two consecutive subsequences correspond to adjacent satisfying truth assignments
(namely, differing in only one variable).

Conversely, for given any sequence of adjacent satisfying truth assignments of φ, there is a corresponding sequence of
adjacent feasible configurations of Gφ , obtained as follows: Consider a flip of a variable xi from true to false. (A flip of xi from
false to true is similar.) Then we wish to change the assignment of the demand vertex Fi from the supply vertex x̄i to xi.
(Remember that the literal to which Fi is assigned is considered false.) We first change the assignments of all clause demand
vertices, which are currently assigned to xi, to another true-literal supply vertex: since we are about to flip the variable
xi and we know that the truth assignment of φ after the flip will be also satisfiable, there must be a ‘‘second’’ true-literal
supply vertex for every clause demand vertex currently assigned to xi. After all such reassignments, we finally change the
assignment of Fi from x̄i to xi.

It is now easy to see that there is a sequence of adjacent satisfying truth assignments of φ from s0 to st if and only if there
is a sequence of adjacent feasible configurations of Gφ from f0 to ft . This completes the proof of Theorem 1. �

2.2. Other intractable reconfiguration problems

There is a wealth of reconfiguration versions of NP-complete problems which can be shown to be PSPACE-complete via
extensions, often quite sophisticated, of the original NP-completeness proofs; in this subsection we only sample the realm
of possibilities.

We have already defined the clique reconfiguration problem in the Introduction as an example of a general scheme
whereby any optimization problem can be transformed into a reconfiguration problem by giving a threshold (upper bound
for minimization problems, lower bound for maximization problems) for the allowed values of the objective function of the
intermediate feasible solutions; the independent set reconfiguration and vertex cover reconfiguration problems are
defined similarly. In the integer programming reconfiguration problem, we are given a 0–1 linear program seeking to
maximize cx subject to Ax ≤ b, and we consider two solutions adjacent if they only differ in one variable.

Theorem 2. The following problems are PSPACE-complete: independent set reconfiguration, clique reconfiguration,
vertex cover reconfiguration, set cover reconfiguration, integer programming reconfiguration.

Proof sketch. We sketch a proof for the independent set reconfiguration problem. The reduction can be obtained by
extending the well-known reduction from the 3SAT problem to the independent set problem [11]. We construct a graph
ρ(φ) from a given 3SAT formula φ with n variables andm clauses, as follows. (As in the proof of Theorem 1, wemay assume
without loss of generality that the formula φ has no clause which contains both positive and negative literals of the same
variable.) For each variable x in φ, we add an edge ex to the graph; its two endpoints are labeled x and x̄. Then, for each
clause C in φ, we add a clique of size |C | to the graph; each node in the clique corresponds to a literal in the clause C . Finally,
we add an edge between two nodes in different components if and only if the nodes correspond to opposite literals. (See
Fig. 3 as an example.) Then, it is easy to see that ρ(φ) has a maximum independent set of size k = n + m if and only if φ
is satisfiable; n nodes are chosen from the endpoints of n edges corresponding to the variables; a literal is considered true
if the corresponding endpoint is chosen. Consider all independent sets of size k = n + m in ρ(φ); they can be partitioned
into subclasses of the form ρ(s) corresponding to the satisfying truth assignments s of φ (the various independent sets in
the subclass ρ(s) correspond to the different possible ways to satisfy each clause by s). It is easy to see that all independent
sets in ρ(s) are connected via intermediate independent sets of size at least k− 1. Therefore, by similar arguments as in the
proof of Theorem 1, it is easy to observe that deciding whether two independent sets of size k in ρ(φ) can be transformed
into one another via intermediate independent sets of size at least k − 1 is PSPACE-complete.
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Fig. 4. (a) Initial independent set (Token configuration) and (b) target independent set (Token configuration).

It is easy to see that a subset I ⊆ V of vertices in a graph G = (V , E) is an independent set of G if and only if I induces
a clique in the complement of G. Also, I is an independent set of G if and only if V \ I is a vertex cover of G [2, Lemma 3.1].
Thus, the result for independent set reconfiguration yields those for clique reconfiguration and vertex cover
reconfiguration. Then, the result for set cover reconfiguration is immediate since it is a generalization of vertex
cover reconfiguration. Integer programming reconfiguration generalizes clique reconfiguration via the well-known
integer program for clique. �

One might compare our independent set reconfiguration problem with the sliding Token problem, which is also
known to be PSPACE-complete [6]. A Token configuration T of a graph G is an independent set of G such that a Token is placed
on each vertex in T . In the sliding Token problem, we are given a graph G and two Token configurations (independent sets)
T0 and Tt of G, both have the same number of Tokens, and we are asked whether there is a sequence of Token configurations
of G, starting with T0 and ending in Tt , and each resulting from the previous one by sliding only one Token from one
vertex to an adjacent vertex. Therefore, the two problems have slightly different adjacency relations: in our independent
set reconfiguration problem, a Token can ‘‘jump’’ from one vertex to any other vertex if it results in an independent set of
G; while, in the sliding Token problem,we can just slide a Token along an edge ofG. Consider the instance in Fig. 4, where the
vertices in independent sets (or Token configurations) are colored with black. Then, this is an Yes-instance for independent
set reconfigurationwith k = 2, but a No-instance for sliding Token. However, the PSPACE-completeness proof for sliding
Token by [6] indeed works to prove our result for independent set reconfiguration. Then, we can prove that independent
set reconfiguration and vertex cover reconfiguration remain PSPACE-complete even for planar graphs of maximum
degree 3.

3. Reconfiguration problems in P

Reconfiguration problems arise in relation to problems in P as well. For example, in the minimum spanning tree
reconfiguration problem, we are given an edge-weighted graph G, a threshold k, and two spanning trees of G, both of
weight at most k, and wish to transform one tree into another via edge exchanges, without ever getting into a tree with
weight > k. The matching reconfiguration problem is defined similarly (the formal definition will be given later). We
show in this section that both problems can be solved in polynomial time.

The result for the minimum spanning tree reconfiguration problem can be obtained from the following more general
proposition.

Proposition 1. LetM = (S, B) be a matroid, and let w : S → R be a weight function on S. Let B0 and Bt be two bases in B such
that max{w(B0), w(Bt)} ≤ k. Then, there always exists a sequence of |B0 \ Bt | (= |Bt \ B0|) exchanges that transforms one into
the other, without ever exceeding weight k, and maintaining a base at each step.

Proof. Since the adjacency relation is symmetric, we may assume without loss of generality that w(B0) ≤ w(Bt). Since B0
and Bt are bases, |B0| = |Bt | and hence let m = |B0 \ Bt | = |Bt \ B0|. The proposition trivially holds if m = 1. Therefore, by
applying induction, it suffices to prove the following claim: there exist y ∈ B0 \ Bt and z ∈ Bt \ B0 such that B0 − y + z is
a base in B and w(B0 − y + z) ≤ w(Bt), where we use the shorthand notation B − y + z = (B \ {y}) ∪ {z}. Observe that(B0 − y + z) \ Bt

 =
Bt \ (B0 − y + z)

 = m − 1 and w(B0 − y + z) ≤ k if the claim holds.
By Brualdi’s exchange property [14, Corollary 39.12a], we can always write B0 \ Bt = {y1, y2, . . . , ym} and Bt \ B0 =

{z1, z2, . . . , zm} such that B0 − yi + zi is a base in B for every index i, 1 ≤ i ≤ m. Suppose for a contradiction that

w(B0 − yi + zi) = w(B0) − w(yi) + w(zi) > w(Bt)

for all indices i = 1, 2, . . . ,m. Then, w(zi) − w(yi) > w(Bt) − w(B0), and hence

w(Bt) = w(B0) +

−
1≤i≤m


w(zi) − w(yi)


> w(B0) +

−
1≤i≤m


w(Bt) − w(B0)


= w(B0) + m ·


w(Bt) − w(B0)


≥ w(B0) +


w(Bt) − w(B0)


= w(Bt),

a contradiction. Therefore, there must exist some index i such that w(B0 − yi + zi) ≤ w(Bt), as required. �
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In the matching reconfiguration problem, we are given an unweighted graph G, a threshold k, and two matchings M0
and Mt of G, both of size at least k, and we are asked whether there is a sequence of matchings of G, starting with M0 and
ending in Mt , and each resulting from the previous one by either addition or deletion of a single edge in G, without ever
going through a matching of size less than k − 1.

Proposition 2. Matching reconfiguration can be solved in polynomial time.

In the remainder of this section, as a proof of Proposition 2, we give a polynomial-time algorithmwhich solvesmatching
reconfiguration.

We first introduce some terms. Let M be a matching of a graph G. A vertex v is called M-covered if v is incident with
an edge in M; otherwise, v is called M-exposed. A path (or a cycle) of G is called M-alternating if the edges along the path
(respectively, along the cycle) belong alternatively toM and not toM . AnM-augmenting path is anM-alternating pathwhose
endpoints are both M-exposed. For two matchings M and N of G, we denote by M △ N the symmetric difference of M and
N , that is, M △ N = (M \ N) ∪ (N \ M). A path (or a cycle) of G is called (M,N)-alternating if the edges along the path
(respectively, along the cycle) belong alternatively toM and to N . The length of a path P in a graph is defined as the number
of edges in P .

We may assume without loss of generality that |M0| ≤ |Mt |. Consider the subgraph H of G induced by all edges in
M0 △ Mt . Then, since M0 and Mt are both matchings of G, each vertex in H has degree at most 2. Therefore, H consists of
single edges, (M0,Mt)-alternating paths and (M0,Mt)-alternating cycles. The greedy algorithm for transforming M0 into Mt
is the following. Divide the components of H into the following four categories:

(1) single edges ofMt \ M0;
(2) (M0,Mt)-alternating paths which start and end with edges ofMt \ M0;
(3) (M0,Mt)-alternating cycles; and
(4) all the rest.

In this category order, transformM0 intoMt by repeatedly adding edges ofMt \M0 and deleting edges ofM0 \Mt along each
component of H . It is easy to see that intermediate matchings have size at least |M0| − 1 (≥k − 1) for exchanging edges
in Category (2). Therefore, we can always exchange the edges in Categories (1) and (2). Moreover, since each component in
Categories (1) and (2) is anM0-augmenting path, the matchingM obtained by exchanging all edges in Categories (1) and (2)
has size at least |Mt | (≥|M0|). We then exchange the edges in an (M0,Mt)-alternating cycle C in Category (3), as follows:
we first delete an arbitrary edge in C ∩M0, and then exchange the remaining edges along the obtained (M0,Mt)-alternating
path. Therefore, intermediate matchings have size at least |M| − 2 ≥ |Mt | − 2 for exchanging the edges in Category (3).
Similarly, the edges in Category (4) can be exchanged without ever going through a matching of size less than |Mt | − 2.

We show that the greedy algorithm correctly solves matching reconfiguration in polynomial time.

Case (a): |Mt | ≥ k + 1.

In this case, since the greedy algorithm transforms M0 into Mt without ever going through a matching of size less than
|Mt | − 2, all the intermediate matchings have size at least |Mt | − 2 ≥ k − 1, as required.

Case (b): |Mt | = k, and Mt is not a maximummatching of G.

In this case, we first transformMt into a matchingM ′
t of size k+ 1 along an arbitraryMt-augmenting path P; clearly, the

intermediate matchings for exchanging the edges in P have size at least |Mt | − 1 = k − 1. Then, the greedy algorithm can
transformM0 intoM ′

t so that all intermediate matchings are of size ≥ k− 1. Finally, we transformM ′
t intoMt along the path

P . In this way, a desired sequence always exists for this case.

Case (c): |Mt | = k, andMt is a maximummatching of G.

Since k ≤ |M0| ≤ |Mt |, M0 is also a maximum matching of G. Then, H consists only of (M0,Mt)-alternating paths with
even-length and (M0,Mt)-alternating cycles; otherwise, this contradicts that M0 and Mt are both maximum matchings of
G. Therefore, H contains components only of Categories (3) and (4).

Since every component in Category (4) is an even-length (M0,Mt)-alternating path, each path starts with an edge of
Mt \ M0 and ends at an edge ofM0 \ Mt . It is easy to see that all intermediate matchings have size at least |Mt | − 1 ≥ k − 1
for exchanging edges in the path. Therefore, if H contains no component of Category (3), then the greedy algorithm can
transformM0 intoMt without ever going through a matching of size less than k − 1.

Suppose now that H contains components of Category (3). In this case, there does not always exist a desired sequence
of matchings. (See Fig. 5 as an example.) Nonetheless, existence can be determined in polynomial time by the following
lemma.

Lemma 1. Suppose that both M0 and Mt are maximum matchings of G, and let k = |M0| = |Mt |. Then, there exists a sequence
of matchings which transforms M0 into Mt so that all intermediate matchings have size at least k − 1 if and only if, for every
(M0,Mt)-alternating cycle C, there exists an M0-alternating path in G starting with an M0-exposed vertex and ending at a vertex
in C.
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a b
Fig. 5. (a) No-instance and (b) Yes-instance for matching reconfiguration, whereM0 = {e1, e3},Mt = {e2, e4} and k = 2 in both instances.

For the example in Fig. 5(b), the (M0,Mt)-alternating cycle {e1, e2, e3, e4} has such an M0-alternating path {e5}. By
Lemma 1 one can easily determine whether there exists a desired sequence for Case (c) in polynomial time; we simply
check whether there exists such an M0-alternating path P in G, assuming that each vertex in an (M0,Mt)-alternating cycle
is the endpoint of P .

From now on, we prove Lemma 1 to complete the proof of Proposition 2. We first show a useful fact, which is a part of
the Edmonds–Gallai decomposition [14].

For a graph G = (V , E), let

D(G) = {v ∈ V | there exists a maximummatching N of G in which v is N-exposed}.

For a maximummatchingM of G, let

EVEN(M) = {v ∈ V | there exists an even-lengthM-alternating path from anM-exposed vertex to v}.

Note that we regard an M-alternating path of length 0 as even-length path, and hence EVEN(M) contains all M-exposed
vertices. We have the following lemma.

Lemma 2. For every maximum matching M of a graph G, EVEN(M) = D(G).

Proof. We first show that EVEN(M) ⊆ D(G). Let v be an arbitrary vertex in EVEN(M). Then, there exists an even-length
M-alternating path P from an M-exposed vertex to v. Consider the matching M ′

= M △ P . (Note that M ′
= M if P is an

M-alternating path of length 0.) Since the length of P is even,M ′ is also a maximummatching of G and v isM ′-exposed. We
thus have v ∈ D(G).

We then show that EVEN(M) ⊇ D(G). Let v be an arbitrary vertex in D(G). If v is M-exposed, then v ∈ EVEN(M), of
course. Suppose now that v isM-covered. Since v ∈ D(G), there exists amaximummatchingN of G in which v isN-exposed.
Consider the subgraph HM,N of G induced by all edges in M △ N . Then, since M and N are both maximum matchings of G,
HM,N consists only of (M,N)-alternating paths with even-length and (M,N)-alternating cycles. Since v is M-covered and
N-exposed, v must be an endpoint of an even-length (M,N)-alternating path P . Clearly, the other endpoint of the path P is
M-exposed (and N-covered), and hence v ∈ EVEN(M). �

Lemma 2 immediately implies the following corollary.

Corollary 1. For every two maximum matchings M and N of G, EVEN(M) = EVEN(N).

We are now ready to prove Lemma 1.

Proof of Lemma 1.
Necessity: Suppose that, for every (M0,Mt)-alternating cycle, there exists an M0-alternating path in G starting with an
M0-exposed vertex and ending at a vertex in the cycle. It suffices to show that we can exchange the edges in Category
(3) such that all intermediate matchings are of size ≥ k − 1.

LetC = {v0, v1, . . . , v2l}be an (M0,Mt)-alternating cyclewherev2l = v0, and suppose that there exists anM0-alternating
path P starting with an M0-exposed vertex x and ending at vr in C . (See Fig. 6(a).) Let x′ be the vertex in P adjacent to vr , as
illustrated in Fig. 6(a). Note that, since vr is in C , the edge (x′, vr) is not inM0. Then, we exchange the edges in C as follows:
first, exchange the edges of the path {x, . . . , x′

} along P , and obtain a matching M in which x′ is M-exposed (see Fig. 6(a)
and (b)); then, exchange the edges of the path {x′, vr , vr+1, . . . , vr−1} in this order (see Fig. 6(b) and (c)); finally, exchange
the edges of the path {vr−1, vr , x′, . . . , x} in this order (see Fig. 6(c) and (d)). Clearly, all intermediate matchings have size
≥ k − 1.

Let M ′ be the matching of G obtained by the edge exchanges above. Let E(C) be the set of edges in C . Since M0 ∩ M ′
=

M0 \ E(C), we can exchange the edges of each (M0,Mt)-alternating cycle independently. In this way, we can exchange the
edges of all components of Category (3) such that all intermediate matchings are of size ≥ k − 1, and hence there exists a
way to transformM0 into Mt without ever going through a matching of size less than k − 1.
Sufficiency: Suppose that Category (3) contains an (M0,Mt)-alternating cycle C such that there is no M0-alternating path in
G starting with an M0-exposed vertex and ending at a vertex in C . Then, no vertex in C is contained in EVEN(M0). Suppose
for a contradiction that there is a sequence of matchings which transformsM0 intoMt such that all intermediate matchings
are of size ≥ k − 1. Let M0,M1, . . . ,Mt be such a sequence of matchings whose length (i.e. the number of intermediate
matchings) is minimum. LetMq be the first matching in the sequence for whichwe remove an edge (u, v) ofM0 that belongs
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a b

c d
Fig. 6. Exchanging the edges in an (M0,Mt )-alternating cycle C = {v0, v1, . . . , v2l} using an M0-alternating path P starting with an M0-exposed vertex x
and ending at vr ∈ C , where each edge in a matching is drawn as a thick line.

to C . Then, since k is equal to the maximum size of a matching in G, we clearly have |Mq−1| = k, |Mq| = k − 1 and

Exposed(Mq) = Exposed(Mq−1) ∪ {u, v},

where Exposed(M) is the set of all M-exposed vertices in G for a matching M of G. Since all intermediate matchings are of
size ≥ k − 1, the matching Mq+1 must be obtained from Mq by adding some edge (y, z). Note that y and z must be both in
Exposed(Mq). If both y and z are also in Exposed(Mq−1), then this contradicts the fact thatMq−1 is amaximummatching of G.
We thus assume that y = u. If z = v, thenMq−1 = Mq+1; this contradicts the fact thatM0,M1, . . . ,Mt is a minimum-length
sequence. Therefore, z is some vertex in Exposed(Mq−1). But then, the path {z, u, v} is an even-lengthMq−1-alternating path.
Since z isMq−1-exposed andMq−1 is amaximummatching ofG, v is in EVEN(Mq−1). By Corollary 1, EVEN(M0) = EVEN(Mq−1)
and hence v ∈ EVEN(M0). This contradicts the fact that no vertex in C is contained in EVEN(M0). �

Besidesmatroid reconfiguration andmatching reconfiguration, it turns out that all polynomial-time solvable special
cases of satisfiability, as characterized by Schaefer [13], give rise to polynomially solvable reconfiguration problems:

Theorem 3 ([3]). Satisfiability reconfiguration for linear, Horn, dual Horn and 2-literal clauses are all in P.

4. Approximation

We have seen that an optimization problem gives rise to a reconfiguration problem by bounding the objective of
intermediate configurations. In turn, we can get a natural optimization problem if we try to optimize the worst objective
among all configurations in the reconfiguration sequence. For example, in the problem that we call the maxmin clique
reconfiguration problem, we are given a graph and two cliques C0 and Ct , and we are asked to maximize the minimum
size of any clique in a sequence which transforms C0 into Ct by additions and removals of single nodes. In this section, we
give some inapproximability and approximability results for such optimization problems.

4.1. Inapproximability

In this subsection, we show inapproximability results for two maxmin type reconfiguration problems.
We first give the following theorem for the maxmin clique reconfiguration problem.

Theorem 4. Maxmin clique reconfiguration cannot be approximated within any constant factor unless P = NP.

Proof. We give a polynomial-time reduction in an approximation-preserving manner from the (ordinary) clique problem
to this problem. For a given graph Gwith n nodes, we construct a new graph G′ with 3n nodes as the corresponding instance
of maxmin clique reconfiguration: a set of n nodes is connected as G, while two new sets of n nodes are connected each
as a clique (these two cliques of G′ are called C0 and Ct ); finally, there are edges in G′ between each new node and each node
in G.

Consider any sequence of cliques of G′, each resulting from the previous one by insertion or deletion of a single node,
starting from C0 and ending in Ct . We claim that one of themwill be a clique of G— this follows directly from the absence of
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any edges between C0 and Ct . Conversely, for every clique C of G, there exists a sequence from C0 to Ct via C: add the nodes of
C to the clique C0 and obtain the clique C0 ∪ C , then remove those of C0 and obtain C , then add those of Ct and obtain C ∪ Ct ,
and finally remove those of C and obtain Ct . Since |C0| = |Ct | = n and |C | ≤ n, the minimum clique size in the sequence is
the size of C , and hence solving (or approximating) this instance ofmaxmin clique reconfiguration is the same as solving
(respectively, approximating) the clique problem for G. Since it is known that clique cannot be approximated within any
constant factor unless P = NP [4], the result follows. �

In the maxmin maxsat reconfiguration problem, we are given a SAT formula and two truth assignments s0 and st
(which are not necessarily satisfying), and we are asked to maximize the minimum number of clauses satisfied by any truth
assignment in a path in the hypercube between s0 and st . Then, a similar argument establishes the following theorem.

Theorem 5. Maxmin maxsat reconfiguration cannot be approximated within a factor better than 15
16 unless P = NP.

Proof. We give a polynomial-time reduction in an approximation-preserving manner from the (ordinary)maxsat problem
to this problem. Suppose that we are given an instance φ of maxsat with n variables x1, x2, . . . , xn and m clauses
C1, C2, . . . , Cm. We construct a new formula φ′ in which each clause Cj, 1 ≤ j ≤ m, is replaced by (Cj ∨ y ∨ z) where y
and z are new variables, and the additional clause (ȳ ∨ z̄) with weight m. Notice that every truth assignment of φ′ with
z ≠ y satisfies all 2m clauses, and hence the truth assignments s0 : z = 1, y = 0, x1 = x2 = · · · = xn = 1 and
st : z = 0, y = 1, x1 = x2 = · · · = xn = 0 are both satisfying all 2m clauses.

For each truth assignment s of the original formula φ, let s′ be a truth assignment of the corresponding formula φ′ such
that z = y (namely, either z = y = 0 or z = y = 1) and each xi, 1 ≤ i ≤ n, is as in s. Then, it is easy to see that there is a
path in the (n + 2)-dimensional hypercube from s0 to st via s′ such that y ≠ z in all intermediate truth assignments except
for s′. Clearly, every truth assignment, except for s′, in the path satisfies all 2m clauses, and hence the objective value for the
path is the number of clauses satisfied by s′.

Consider now an optimal path in the (n + 2)-dimensional hypercube between s0 and st . Since at s0 : z = 1, y = 0 and
at st : z = 0, y = 1, there must exist a truth assignment s∗ on this path such that z = y. Since the clause (ȳ ∨ z̄) has weight
m and the path is assumed to be optimal, it must be that z = y = 0. Thus, the remaining variables xi, 1 ≤ i ≤ n, must spell
an optimal satisfying truth assignment of the original formula φ. Hence, from the optimal value OPT′ for the corresponding
instance ofmaxmin maxsat reconfiguration, we can compute the optimal value OPT for the original instance φ ofmaxsat:
since at s∗ : z = y = 0, we have

OPT = OPT′
− m. (1)

Suppose now that we have an α-approximation for maxmin maxsat reconfiguration, and hence we can compute an
approximate value A′ for the corresponding instance such that

A′
≥ α · OPT′. (2)

One may assume without loss of generality that A′
≥ m; otherwise there must exist at least one truth assignment such

that z = y = 1 in the path; but, by replacing all such truth assignments with z = y = 0, we can easily obtain a better
objective ≥ m. Thus, there exists a truth assignment for the original formula φ which satisfies a number (A′

−m) of clauses.
Let A = A′

− m. By Eqs. (1) and (2) we have

A = A′
− m ≥ α · OPT′

− m = α · OPT + (α − 1)m. (3)

Sincem ≥ OPT, by Eq. (3) we have A ≥ (2α −1) ·OPT. Therefore, we can obtain a (2α −1)-approximation formaxsat, from
an α-approximation formaxmin maxsat reconfiguration. Since it is known thatmaxsat cannot be approximated within a
factor better than 7

8 unless P = NP [5], the result follows. �

4.2. Approximability

In this subsection, we show the approximability results for two minmax type reconfiguration problems.
In the minmax set cover reconfiguration problem, we are given an universal set U , a family S of subsets of U , each of

the subsets has a nonnegative cost, and two covers C0 and Ct of U , where a cover C of U is a subfamily of S whose union
is U . Then, we are asked to minimize the maximum total cost of any cover in a sequence which transforms C0 into Ct via
covers of U , each of which results from the previous one by adding or deleting a single set in S.

Theorem 6. There is a linear-time 2-approximation algorithm for minmax set cover reconfiguration.

Proof. For a cover C of U , we denote by ω(C) the sum of costs of all subsets in C. Consider an optimal sequence
C0, C1, . . . , Ct for an instance of minmax set cover reconfiguration. Let OPT be the objective value for the sequence,
and hence OPT = max{ω(Ci) | 0 ≤ i ≤ t}. Therefore, we clearly have

max{ω(C0), ω(Ct)} ≤ OPT. (4)
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As our approximation solution, we consider the following sequence of covers: (i) add the subsets in Ct \ C0 one by one
to C0, and obtain the cover C0 ∪ Ct of U; (ii) delete the subsets in C0 \ Ct one by one from C0 ∪ Ct , and obtain Ct . Clearly,
our approximate value A is A = ω(C0 ∪ Ct), and hence by Eq. (4) we have

A = ω(C0 ∪ Ct) ≤ ω(C0) + ω(Ct) ≤ 2 · max{ω(C0), ω(Ct)} ≤ 2 · OPT.

This completes the proof of Theorem 6. �

Returning to the power supply problem, there is a natural optimization version of the problem, in which the constraint
that the total demand of all demand vertices in each subtree T be within the supply of the supply vertex in T is replaced by a
‘‘soft’’ criterion: we allow that the total demand in T exceeds the supply in T , but wish to minimize the sum of the ‘‘deficient
power’’ of all supply vertices in the graph.

We now define the minmax power supply reconfiguration problem. For a configuration f of a bipartite graph G =

(U, V , E) and a supply vertex u ∈ U , the deficient power d(f , u) of u on f is defined as follows:

d(f , u) =

−
dem(v) | v ∈ V such that f (v) = u


− sup(u).

If f is infeasible, then there is at least one supply vertex u such that d(f , u) > 0. On the other hand, if f is feasible, then
d(f , u) ≤ 0 for all supply vertices u ∈ U; in fact, a nonpositive deficient power d(f , u) represents the marginal power of u
on f . The cost c(f ) of a configuration f is defined as follows:

c(f ) =

−
u∈U

|d(f , u)|.

Note that c(f ) contains themarginal power of supply vertices, because it is difficult to change the supplies quickly and hence
we waste the marginal power. Clearly, c(f ) =

∑
u∈U sup(u) −

∑
v∈V dem(v) for every feasible configuration f of G. In the

problem that we call the minmax power supply reconfiguration problem, we are given a bipartite graph G = (U, V , E)
and two feasible configurations f0 and ft of G, and we are asked to minimize the maximum cost of any configuration in a
sequence which transforms f0 into ft by reassignments of single demand vertices. Then, we have the following observation.

Observation 1. The objective value for a sequence which transforms f0 into ft is
∑

u∈U sup(u) −
∑

v∈V dem(v) if and only if all
configurations in the sequence are feasible. Moreover, such a sequence is optimal if it exists.

In the remainder of this subsection, we give a linear-time 2-approximation algorithm for the minmax power supply
reconfiguration problem if a given bipartite graph G has exactly two supply vertices. We first show that the problem is
strongly NP-hard even for more restricted instances.

Lemma 3. Minmax power supply reconfiguration is stronglyNP-hard, even for the restricted problem consisting of instances
on a complete bipartite graph with exactly two supply vertices.

Proof. We give a polynomial-time reduction from the 3-partition problem [2] to this problem for a complete bipartite
graph with exactly two supply vertices. In 3-partition, we are given a positive integer bound b, and a set A of 3m elements
a1, a2, . . . , a3m; each element ai ∈ A has a positive integer size s(ai) such that b/4 < s(ai) < b/2 and such that∑

a∈A s(a) = mb. Then, the 3-partition problem is to determine whether A can be partitioned into m disjoint subsets
A1, A2, . . . , Am such that

∑
a∈Aj

s(a) = b for each j, 1 ≤ j ≤ m. 3-partition is known to be strongly NP-complete [2].
For a given instance of 3-partition, we first construct a complete bipartite graph G = (U, V , E) with |U| = 2, as follows:

U consists of two supply vertices u1 and u2 such that sup(u1) = mb and sup(u2) = (m+ 1)b; and V consists of 4m demand
vertices v1, v2, . . . , v3m and b1, b2, . . . , bm such that dem(vi) = s(ai) for each i, 1 ≤ i ≤ 3m, and dem(bj) = b for each j,
1 ≤ j ≤ m. We then give two feasible configurations f0 and ft of G, as follows:

f0(x) =


u1 if x = vi, 1 ≤ i ≤ 3m;

u2 if x = bj, 1 ≤ j ≤ m,

and

ft(x) =


u2 if x = vi, 1 ≤ i ≤ 3m;

u1 if x = bj, 1 ≤ j ≤ m.

Clearly, d(f0, u1) = d(ft , u1) = 0 and d(f0, u2) = d(ft , u2) = −b (that is, only the supply vertex u2 has an amount b of
marginal power), and hence c(f0) = c(ft) = b.

It is easy to see that there exists a desired partition {A1, A2, . . . , Am} for a given instance of 3-partition if and only if there
exists a sequencewhich consists of only feasible configurations ofG for the corresponding instance ofminmax power supply
reconfiguration. Therefore, by Observation 1 we can answer whether the set A has a desired partition by determining
whether the optimal value is b or not for the corresponding instance of minmax power supply reconfiguration. �
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By Lemma 3 it is very unlikely that the minmax power supply reconfiguration problem can be solved even in pseudo-
polynomial time. However, the problem can be solved in linear time for the following special case.

Suppose in the remainder of this subsection that we are given a bipartite graph G = (U, V , E) having exactly two
supply vertices u1 and u2. (Note that G is not necessarily complete.) For two given feasible configurations f0 and ft of G,
let W = {v ∈ V | f0(v) ≠ ft(v)}, that is, W is the set of demand vertices which must be reassigned to the other supply
vertex. Notice that all (demand) vertices inW are adjacent to both the two supply vertices. Let v∗ be a demand vertex inW
having the maximum demand, that is, dem(v∗) = max{dem(v) | v ∈ W }. Then, we have the following lemma.
Lemma 4. If c(f0) ≥ 2 · dem(v∗), then an optimal sequence for the instance consists of only feasible configurations of G, and it
can be found in linear time.
Proof. Suppose without loss of generality that W ≠ ∅. If all demand vertices in W are assigned to the same supply vertex
u on f0, then we just reassign the demand vertices in W from u to the other one by one. Notice that all intermediate
configurations are feasible since both f0 and ft are feasible. Therefore, we may assume in the following that each of the
two supply vertices has at least one demand vertex inW .

Since f0 is feasible, c(f0) = sup(u1) + sup(u2) −
∑

v∈V dem(v) and the cost c(f0) denotes the sum of marginal powers
of the two supply vertices. Moreover, since the sum is at least 2 · dem(v∗), one of the two supply vertices has marginal
power of at least dem(v∗). Therefore, we can change the assignment of at least one demand vertex v ∈ W from the initial
supply vertex to the target one, since dem(v) ≤ dem(v∗). Clearly, the resulting configuration f1 is also feasible, and hence
it satisfies c(f1) = c(f0) ≥ 2 · dem(v∗). In this way, by reassigning the demand vertices in W one by one, we can obtain a
desired sequence f0, f1, . . . , ft which consists of only feasible configurations. By Observation 1 the sequence is an optimal
solution. The length of the sequence is |W | (≤|V |) since each demand vertex inW moves exactly once and any of the other
demand vertices does not move in the sequence. We can thus find an optimal solution in linear time. �

Using Lemma 4, we have the following theorem.
Theorem 7. There is a linear-time 2-approximation algorithm forminmax power supply reconfiguration if a given bipartite
graph has exactly two supply vertices.
Proof. Let OPT be the optimal value for a given instance of minmax power supply reconfiguration. Since the demand
vertex v∗ having the maximum demand in W must be reassigned at least once in any sequence from f0 to ft , it is easy to
observe that

OPT ≥ dem(v∗). (5)
By Lemma 4 it suffices to consider the case c(f0) < 2 · dem(v∗). Note that, since f0 is feasible, sup(u1) + sup(u2) <

2 · dem(v∗) +
∑

v∈V dem(v) in this case. Consider a slightly modified instance in which the supplies of the two supply
vertices are increased by the same amount ε so that the total supply is equal to 2 · dem(v∗) +

∑
v∈V dem(v), that is, the

supply sup(u) of a supply vertex u in the modified instance is sup(u) = sup(u) + ε where

ε =
1
2


2 · dem(v∗) +

−
v∈V

dem(v) − sup(u1) − sup(u2)

.

In themodified instance, both the configurations f0 and ft remain feasible and c̄(f0) = c̄(ft) = 2·dem(v∗), where c̄(f )denotes
the cost of a configuration f in the modified instance. Therefore, by Lemma 4 we can find in linear time a sequence which
consists of only feasible configurations for the modified instance; by Observation 1, the objective value is 2 · dem(v∗). Note
that some configurations in the sequence may be infeasible for the original instance. Consider an arbitrary configuration f
in the sequence which is infeasible for the original instance; let V1 ⊆ V be the set of demand vertices such that f (v) = u1,
and let V2 = V \ V1. Since f is feasible for the modified instance, we have

c̄(f ) =


sup(u1) −

−
v∈V1

dem(v)


+


sup(u2) −

−
v∈V2

dem(v)


= 2 · dem(v∗). (6)

On the other hand, since f is infeasible for the original instance, exactly one of d(f , u1) and d(f , u2) is positive, say u1;
otherwise, either f is feasible or f0 would be infeasible in the original instance. Then, we have

c(f ) =

−
v∈V1

dem(v) − sup(u1)


+


sup(u2) −

−
v∈V2

dem(v)


=

−
v∈V1

dem(v) − sup(u1) + ε


+


sup(u2) − ε −

−
v∈V2

dem(v)


≤ sup(u2) −

−
v∈V2

dem(v)

since
∑

v∈V1
dem(v)−sup(u1) ≤ 0. Then, by Eq. (6)wehave c(f ) ≤ c̄(f ) = 2·dem(v∗). By Eq. (5)we thus have c(f ) ≤ 2·OPT.

Since the cost of a feasible configuration is smaller than the cost of an infeasible configuration, the objective value of this
sequence in the original instance is at most 2 · OPT, as required. �
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5. Open problems

There are many open problems raised by this work, and we mention some of these below:

• Can the matching reconfiguration problem for edge-weighted graphs be solved also in polynomial time? We
conjecture that the answer is positive.

• Is the traveling salesman reconfiguration problem (where two tours are adjacent if they differ in two edges) PSPACE-
complete?

• Are there better approximation algorithms for the minmax power supply reconfiguration problem? Lower bounds?
• Are the problems in Section 4 PSPACE-hard to approximate (not just NP-hard)?
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