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Harmonic Functions Starlike in the Unit Disk
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Complex-valued harmonic functions that are univalent and sense-preserving in
the unit disk A can be written in the form f=h + g, where h and g are analytic
in A. We give univalence criteria and sufficient coefficient conditions for normal-
ized harmonic functions that are starlike of order «, 0 < @ < 1. These coefficient
conditions are also shown to be necessary when /4 has negative and g has positive
coefficients. These lead to extreme points and distortion bounds.  © 1999 Academic
Press
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1. INTRODUCTION

A continuous function f=u + iv is a complex-valued harmonic func-
tion in a complex domain ¢ if both u and v are real harmonic in Z. In any
simply connected domain & C @ we can write f = h + g, where 7 and g
are analytic in &. We call & the analytic part and g the co-analytic part
of f. A necessary and sufficient condition for f to be locally univalent
and sense-preserving in < is that |h'(z)| > |g’(2)| in 2. See Clunie and
Sheil-Small [2].

Denote by .#Z the class of functions f = h + g that are harmonic univa-
lent and sense-preserving in the unit disk A = {z: |z| < 1} for which
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h(0) = f(0) = f.(0) — 1 = 0. Then for f =h + g €# we may express the
analytic functions 4 and g as

h(z) =z+ Ya,z"  g(z)= XLb,z" (1)
n=2 n=1

Note that /# reduces to the class of normalized analytic univalent
functions if the co-analytic part of its members is zero. In 1984 Clunie and
Sheil-Small [2] investigated the class /# as well as its geometric subclasses
and obtained some coefficient bounds. Since then, there have been several
related papers on /# and its subclasses. For more references see Duren [3].
In this note, we look at two subclasses of /# and provide univalence
criteria, coefficient conditions, extreme points, and distortion bounds for
functions in these classes.

For 0 < @ <1 we let %, (a) denote the subclass of .# consisting of
harmonic starlike functions of order a. A function f of the form (1) is
harmonic starlike of order o, 0 < a < 1, for |z] =r < 1 (e.g., see Sheil-
Small [4, p. 244)) if

%(arg f(re')) = a, lzl=r<1. (2)

We further denote by ,.(a) the subclass of %, (@) such that the
functions 4 and g in f=h + g are of the form

Bz =z— Tlal,  g(z) = X lbe". 3)
n=2 n=1

2. MAIN RESULTS

It was shown by Sheil-Small [4, Theorem 7] that la,|<(n + 1)
‘2n+1)/6 and bl <(n —1D2n—-1/6 if f=h+5ge.5 (). The
subclass of ., («) where a = b; = 0 is denoted by .2 (0). These bounds
are sharp and thus give necessary coefficient conditions for the class
72 (0). Avci and Zlotkiewicz [1] proved that the coefficient condition
Yo_,n(la,l +1b,) < 1issufficient for functions f = & + g to be in .7 (0).
Silverman [6] proved that this coefficient condition is also necessary if
b, =0 and if a, and b, in (1) are negative. We note that both results
obtained in [1, 6] are subject to the restriction that b, = 0. The argument
presented in this paper provides sufficient coefficient conditions for func-
tions f = h + g of the form (1) to be in .%, () where 0 < « < 1 and b, is
not necessarily zero. It is shown that these conditions are also necessary
when f e 7. (a).
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THEOREM 1. Let f = h + g be given by (1). Furthermore, let

o

n o n—+ «
Y la,| + _alb,,l <2, (4)

o1\l —a 1

where a;, =1 and 0 < a <1. Then f is harmonic univalent in A, and
fe (a).

Proof.  First we note that f is locally univalent and sense-preserving
in A. This is because

0 oo oo

n— a
h'(z)l=1— Y nlar"*>1—- Y nla,l=1- ) la,,|
n=2 n=2 n=2 1-
* n+a« b b
> ) bl = Y nlb,|> Y nlblr" ' >|g'(2)l.
n=1 l1-« n=1 n=1

To show that f is univalent in A we notice that if g(z) = 0, then f(z) is
analytic and the univalence of f follows from its starlikeness (e.g., see [5)).
If g(z) # 0, then we show that f(z,) # f(z,) when z, # z,.

Suppose z,, z, € A so that z, # z,. Since A is simply connected and
convex, we have z(¢t) = (1 — )z; + #z, € A, where 0 <t < 1. Then we
can write

£(z,) = f(z) = fol[(zz — 2 (2(0) + (75 — )€ (2(0)] .

Dividing the above equation by z, — z, # 0 and taking the real parts we
obtain

el (2(0)) + =& =) | d

f(Zz)_f( z;) f

> fol [Re h'(2(1)) — lg'(2(0))] de (5)

On the other hand

oo

Reh'(z) —lg'(z)| = Reh'(z) — ) nlb,l

n=1
>1— Y nla,l— Y nlb,|
n=2 n=1
“ n-—a« “ n+a
>1- Y la,| = ¥ ——Ib,l
nzZl_a n:ll_a
>0, by(4).

This in conjunction with the inequality (5) leads to the univalence of f.
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Now we show that f €.%, (a). According to the condition (2) we only
need to show that if (4) holds then

zh'(z) —z8'(z)

> a,
h(s) +8(2)

where z=re®, 0 < <27, 0<r<1,and0 < a <1

Using the fact that Rew > a ifand only if [1 —a+w|>1 + a — w|,
it suffices to show that

J i0 J i0
&—e(arg f(re'”)) = Im(&—g log f(re )) = Re

|A(z) + (1 — @)B(z)| — |A(z) — (1 + a)B(2)| =0,  (6)

where B(z) = h(z) + g(z) and A(z) = zh'(2) — zg'(2).
Substituting for B(z) and A(z) in (6) yields

|A(z) + (1 — a)B(z)| —A(z) — (1 + a)B(2)|

=[(1 - a)h(z) +zh'(z) + (T - a)g(2) — ()|
—|(1 + a)n(z) —zh'(2) + (T + a)g(z) +25'(2)]

=[(2—-a)z+ i(n+l—a)anz"— i(n—1+a)bnz”

n=2 n=1

—az+ Y (n—1-a)a,z"— Y. (n+1+a)b,z"

n=2 n=1

>(2—-a)lzl= Y (n+1-a)la,llzl"— Y (n—1+ a)lb,||z|"
n=2 n=1

%] ]

—alzl—= Y (n—=1=a)la,llzI"= Y (n+ 1+ a)lb,llz|"
n=2 n=2

o]

— 21— a)|z|{l > '11 -

n=2

a “ n+ o
-1 -1
la,l1zI""" = Y ——Ib,llz|"
o' o1 1l—a

oo

>2(1 - a)|z|{1 - ( L ilal+ y Z’f—?m)} >0, by (4).

n=2

The starlike harmonic mappings

xz+Z

1n+a

f(z)=z+§’11 A (7)
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where ¥ _, |x,| + X7 _,ly,| = 1, show that the coefficient bound given by
(4) is sharp.
The functions of the form (7) are in %, () because

o

)»

n=1

n—a« n+a«a ot ot
la,| + bl =1+ Y Ix, |+ Y ly,l=2.

l1-« n=2 n=1

l-—«

The restriction placed in Theorem 1 on the moduli of the coefficients of
f = h + g enables us to conclude for arbitrary rotation of the coefficients
of f that the resulting functions would still be harmonic starlike and
univalent. Our next theorem establishes that such coefficient bounds
cannot be improved.

THEOREM 2. Let f = h + g be given by (3). Then f € F,(«) if and only if

o

)»

n=1

a + «
la,| + b,l] <2, (8)
o —

1- 1

where a;, =1 and 0 < a < 1.

Proof. The if part follows from Theorem 1 upon noting that if the
analytic and co-analytic parts of f=h + g €.%, («a) are of the form (3)
then f e 7, (a).

For the only if part, we show that f & .7, («) if the condition (8) does
not hold.

Note that a necessary and sufficient condition for f = 4 + g given by (3)
to be starlike of order a, 0 < @ <1, is that Z(arg f(re’®)) — a > 0,
0 < a < 1. This is equivalent to

h'(z) ~g(2)
R r3(2)

el MZ R (n—@)la,l2" — X,y (n + o)lb |2

z =X Lla,lz" + X _,1b,|2"

> 0.

The above condition must hold for all values of z, |z| =r < 1. Upon
choosing the values of z on the positive real axis where 0 <z =r < 1 we
must have

l—a)=-Y_(n—a)la|r" ' =X_.(n+ a)lb |r"?
n=2 n n=1 n

1= Llalrt+ X2_ b, lr" 1

>0. (9)
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If the condition (8) does not hold then the numerator in (9) is negative for
r sufficiently close to 1. Thus there exists a z, = r, in (0, 1) for which the
quotient in (9) is negative. This contradicts the required condition for
f €7, (a) and so the proof is complete.

Next we determine the extreme points of the closed convex hulls of
I (a), denoted by clco 7, ().

THEOREM 3. f € clco Z, () if and only if

f(z) = ¥ (Xoh, + Y,5,). (10)

n=1

where h(z) =z, h,(z) =z — +=2z" (n=2,3,-), g(z) =z + =—4z"

(n=123-) % _(X,+Y)=1 X,>0, and Y, = 0. In particular,
the extreme points of 7, («a) are {h,} and {g,}.

Proof.  For functions f of the form (10) we have
) =) o0 1 — o

n=1 1 n=2 N —

n=

Then

and so f € clco 7, ().

Conversely, suppose that feclcoZ,(a). Set X, =i1=%|a,| (n=
2,3,--)and Y, = 7=21p,| (n = 1,2,3,---). Then note that by Theorem 2,
0<X,<1(m=23--)and0<Y, <1(n=223,-) We define X,
=1-%Y"_,X,—X,_,Y, and note that, by Theorem 2, X; > 0. Conse-
quently, we obtain f(z) = ¥,_,(X,h, + Y,g,) as required.

Using Theorem 2 it is easily seen that 7, (a) is convex and closed,
so clco.7, (a) = 7, (a). Then the statement of Theorem 3 is really for
f e, (a).

Finally we give the distortion bounds for functions in .7, («), which yield
a covering result for 7, (a).




476 JAY M. JAHANGIRI

THEOREM 4. If f € 7, (a) then
l—-«a 1+
1f(2)l < (1 + |byl)r + ( -
and

2 — « 2 —
)= (3= - |

o
16,172, Izl =r < 1,
o

l1—«a 1+«
2—« 2—«w

|b1|)r2, Izl =r < 1.

Proof. Let f e %, (a). Taking the absolute value of f we obtain

[f(2) < (1 +1byl)r + i (la,l + 1b,1)r"

oo

< (1+byr + (la,| + 1b,)r?

n=2

l—-a 2 (2—« 2—« )
= (14 Iby)r + 2—an22(1—a|a"|+ 1—a|b"|)r

l—-a 2 (n—« + « )
< (1+1Ib)r+ 2—an¥2(1—a|a”|+ b,

l—-« 1+« )
< (L +1b)r+ 2_a(l— l—a|b1|)r , by (8),

(1—a 1+«

2 -« 2 -«

= (1 + Iby)r + Ibll)rz.

and
lf(2)= @ +1b)yr + ) (la,]l + 1b,])r"
n=2
> (1 = |byl)r — i (la,| +1b,])r?

n=2

l—-a > (2 -« 2—«
= (1 —1byl)r - Z( la,| + _albnl)rZ

2—a,,\1-a 1
l—-a 2 (n—a«a n+ «a
> (1 —|by)r — + b,||r?
( b1l Z—angz(l—a|a"| l—a| "|)r

l1—« 1+« 5
> (1 —byl)r + 2—a(1_ 1_a|b1|)r by (8),

l1—« 1+«

= (l — |b1|)r — (m - m|bl|)r2.
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The bounds given in Theorem 4 for the functions f = h + g of the form
(3) also hold for functions of the form (1) if the coefficient condition (4) is
satisfied. The functions

l—« 1+«

2—« 2 —«

f(z) =z + bz + ( Ibll)Z2

and

l1-« l1+a

F2) = @Iz = (5 = e

|b1|)22

for |b;| < (1 — @)/(1 + «) show that the bounds given in Theorem 4 are
sharp.

The following covering result follows from the left hand inequality in
Theorem 4.

CoroLLARY. Iff e Z,(a) then

lwl '
: <
{w wi< o—

1+ (2a- 1)|b1|} Cf(A).

Remark. For a = b, =0 the covering result in the above corollary
coincides with that given in [2, Theorem 5.9] for harmonic convex func-
tions.

A function f .7 is harmonic convex of order @, 0 < a < 1 for |z| =
r < 1 (see [4] p. 244) if L(arg(Lf(re'?)) > a, |z| =r < 1.

The corresponding definition for harmonic convex functions of order «
leads to analogous coefficient bounds and extreme points.
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