Journal of Mathematical Analysis and Applications **235**, 470–477 (1999) Article ID jmaa.1999.6377, available online at http://www.idealibrary.com on IDEAL®

Harmonic Functions Starlike in the Unit Disk

Jay M. Jahangiri*

Kent State University, Burton, Ohio 44021-9500

metadata, citation and similar papers at core.ac.uk

Received July 20, 1998

DEDICATED TO KSU LATE PROFESSOR KENNETH B. CUMMINS 7/27/1911-5/13/1998

Complex-valued harmonic functions that are univalent and sense-preserving in the unit disk Δ can be written in the form $f=h+\bar{g}$, where h and g are analytic in Δ . We give univalence criteria and sufficient coefficient conditions for normalized harmonic functions that are starlike of order α , $0 \le \alpha < 1$. These coefficient conditions are also shown to be necessary when h has negative and g has positive coefficients. These lead to extreme points and distortion bounds. © 1999 Academic Press

Key Words: Harmonic; sense-preserving; univalent; starlike.

1. INTRODUCTION

A continuous function f=u+iv is a complex-valued harmonic function in a complex domain $\mathscr C$ if both u and v are real harmonic in $\mathscr C$. In any simply connected domain $\mathscr D\subset\mathscr C$ we can write $f=h+\bar g$, where h and g are analytic in $\mathscr D$. We call h the analytic part and g the co-analytic part of f. A necessary and sufficient condition for f to be locally univalent and sense-preserving in $\mathscr D$ is that |h'(z)|>|g'(z)| in $\mathscr D$. See Clunie and Sheil-Small [2].

Denote by $\mathscr H$ the class of functions $f=h+\bar g$ that are harmonic univalent and sense-preserving in the unit disk $\Delta=\{z\colon |z|<1\}$ for which

*This work was initiated while the author was a Visiting Scholar at the University of Kentucky, where he enjoyed numerous stimulating discussions with Professor Ted J. Suffridge.

 $h(0) = f(0) = f_z(0) - 1 = 0$. Then for $f = h + \bar{g} \in \mathcal{H}$ we may express the analytic functions h and g as

$$h(z) = z + \sum_{n=2}^{\infty} a_n z^n, \qquad g(z) = \sum_{n=1}^{\infty} b_n z^n.$$
 (1)

Note that \mathscr{H} reduces to the class of normalized analytic univalent functions if the co-analytic part of its members is zero. In 1984 Clunie and Sheil-Small [2] investigated the class \mathscr{H} as well as its geometric subclasses and obtained some coefficient bounds. Since then, there have been several related papers on \mathscr{H} and its subclasses. For more references see Duren [3]. In this note, we look at two subclasses of \mathscr{H} and provide univalence criteria, coefficient conditions, extreme points, and distortion bounds for functions in these classes.

For $0 \le \alpha < 1$ we let $\mathscr{S}_{\mathscr{R}}(\alpha)$ denote the subclass of \mathscr{H} consisting of harmonic starlike functions of order α . A function f of the form (1) is harmonic starlike of order α , $0 \le \alpha < 1$, for |z| = r < 1 (e.g., see Sheil-Small [4, p. 244]) if

$$\frac{\partial}{\partial \theta} \left(\arg f(re^{i\theta}) \right) \ge \alpha, \qquad |z| = r < 1. \tag{2}$$

We further denote by $\mathscr{T}_{\mathscr{R}}(\alpha)$ the subclass of $\mathscr{S}_{\mathscr{R}}(\alpha)$ such that the functions h and g in $f=h+\bar{g}$ are of the form

$$h(z) = z - \sum_{n=2}^{\infty} |a_n| z^n, \qquad g(z) = \sum_{n=1}^{\infty} |b_n| z^n.$$
 (3)

2. MAIN RESULTS

It was shown by Sheil-Small [4, Theorem 7] that $|a_n| \leq (n+1) \cdot (2n+1)/6$ and $|b_n| \leq (n-1)(2n-1)/6$ if $f=h+\bar{g}\in\mathscr{S}^o_{\mathscr{R}}(0)$. The subclass of $\mathscr{S}_{\mathscr{R}}(\alpha)$ where $\alpha=b_1=0$ is denoted by $\mathscr{S}^o_{\mathscr{R}}(0)$. These bounds are sharp and thus give necessary coefficient conditions for the class $\mathscr{S}^o_{\mathscr{R}}(0)$. Avci and Zlotkiewicz [1] proved that the coefficient condition $\sum_{n=2}^{\infty} n(|a_n|+|b_n|) \leq 1$ is sufficient for functions $f=h+\bar{g}$ to be in $\mathscr{S}^o_{\mathscr{R}}(0)$. Silverman [6] proved that this coefficient condition is also necessary if $b_1=0$ and if a_n and b_n in (1) are negative. We note that both results obtained in [1, 6] are subject to the restriction that $b_1=0$. The argument presented in this paper provides sufficient coefficient conditions for functions $f=h+\bar{g}$ of the form (1) to be in $\mathscr{S}_{\mathscr{R}}(\alpha)$ where $0\leq \alpha<1$ and b_1 is not necessarily zero. It is shown that these conditions are also necessary when $f\in\mathscr{T}_{\mathscr{R}}(\alpha)$.

THEOREM 1. Let $f = h + \bar{g}$ be given by (1). Furthermore, let

$$\sum_{n=1}^{\infty} \left(\frac{n-\alpha}{1-\alpha} |a_n| + \frac{n+\alpha}{1-\alpha} |b_n| \right) \le 2, \tag{4}$$

where $a_1 = 1$ and $0 \le \alpha < 1$. Then f is harmonic univalent in Δ , and $f \in \mathcal{S}_{\mathbb{F}}(\alpha)$.

Proof. First we note that f is locally univalent and sense-preserving in Δ . This is because

$$|h'(z)| \ge 1 - \sum_{n=2}^{\infty} n|a_n|r^{n-1} > 1 - \sum_{n=2}^{\infty} n|a_n| \ge 1 - \sum_{n=2}^{\infty} \frac{n-\alpha}{1-\alpha}|a_n|$$

$$\ge \sum_{n=1}^{\infty} \frac{n+\alpha}{1-\alpha}|b_n| \ge \sum_{n=1}^{\infty} n|b_n| > \sum_{n=1}^{\infty} n|b_n|r^{n-1} \ge |g'(z)|.$$

To show that f is univalent in Δ we notice that if $g(z) \equiv 0$, then f(z) is analytic and the univalence of f follows from its starlikeness (e.g., see [5]). If $g(z) \not\equiv 0$, then we show that $f(z_1) \not= f(z_2)$ when $z_1 \not= z_2$.

Suppose z_1 , $z_2 \in \Delta$ so that $z_1 \neq z_2$. Since Δ is simply connected and convex, we have $z(t) = (1-t)z_1 + tz_2 \in \Delta$, where $0 \le t \le 1$. Then we can write

$$f(z_2) - f(z_1) = \int_0^1 \left[(z_2 - z_1)h'(z(t)) + \overline{(z_2 - z_1)g'(z(t))} \right] dt.$$

Dividing the above equation by $z_2 - z_1 \neq 0$ and taking the real parts we obtain

$$\operatorname{Re} \frac{f(z_{2}) - f(z_{1})}{z_{2} - z_{1}} = \int_{0}^{1} \operatorname{Re} \left[h'(z(t)) + \frac{\overline{z_{2} - z_{1}}}{z_{2} - z_{1}} \overline{g'(z(t))} \right] dt$$

$$> \int_{0}^{1} \left[\operatorname{Re} h'(z(t)) - |g'(z(t))| \right] dt.$$
 (5)

On the other hand

$$\operatorname{Re} h'(z) - |g'(z)| \ge \operatorname{Re} h'(z) - \sum_{n=1}^{\infty} n|b_n|$$

$$\ge 1 - \sum_{n=2}^{\infty} n|a_n| - \sum_{n=1}^{\infty} n|b_n|$$

$$\ge 1 - \sum_{n=2}^{\infty} \frac{n-\alpha}{1-\alpha}|a_n| - \sum_{n=1}^{\infty} \frac{n+\alpha}{1-\alpha}|b_n|$$

$$\ge 0, \quad \text{by (4)}.$$

This in conjunction with the inequality (5) leads to the univalence of f.

Now we show that $f \in \mathscr{S}_{\mathscr{X}}(\alpha)$. According to the condition (2) we only need to show that if (4) holds then

$$\frac{\partial}{\partial \theta} \left(\arg f(re^{i\theta}) \right) = \operatorname{Im} \left(\frac{\partial}{\partial \theta} \log f(re^{i\theta}) \right) = \operatorname{Re} \left(\frac{zh'(z) - \overline{zg'(z)}}{h(s) + \overline{g(z)}} \right) \ge \alpha,$$

where $z = re^{i\theta}$, $0 \le \theta < 2\pi$, $0 \le r < 1$, and $0 \le \alpha < 1$.

Using the fact that Re $w \ge \alpha$ if and only if $|1 - \alpha + w| \ge |1 + \alpha - w|$, it suffices to show that

$$|A(z) + (1 - \alpha)B(z)| - |A(z) - (1 + \alpha)B(z)| \ge 0,$$
 (6)

where $B(z) = h(z) + \overline{g(z)}$ and $A(z) = zh'(z) - \overline{zg'(z)}$.

Substituting for B(z) and A(z) in (6) yields

$$|A(z) + (1 - \alpha)B(z)| - |A(z) - (1 + \alpha)B(z)|$$

$$= |(1 - \alpha)h(z) + zh'(z) + \overline{(1 - \alpha)g(z) - zg'(z)}|$$

$$- |(1 + \alpha)h(z) - zh'(z) + \overline{(1 + \alpha)g(z) + zg'(z)}|$$

$$= |(2 - \alpha)z + \sum_{n=2}^{\infty} (n + 1 - \alpha)a_nz^n - \sum_{n=1}^{\infty} (n - 1 + \alpha)b_nz^n|$$

$$- |-\alpha z + \sum_{n=2}^{\infty} (n - 1 - \alpha)a_nz^n - \sum_{n=1}^{\infty} (n + 1 + \alpha)b_nz^n|$$

$$\geq (2 - \alpha)|z| - \sum_{n=2}^{\infty} (n + 1 - \alpha)|a_n||z|^n - \sum_{n=1}^{\infty} (n - 1 + \alpha)|b_n||z|^n$$

$$-\alpha|z| - \sum_{n=2}^{\infty} (n - 1 - \alpha)|a_n||z|^n - \sum_{n=2}^{\infty} (n + 1 + \alpha)|b_n||z|^n$$

$$= 2(1 - \alpha)|z| \left\{ 1 - \sum_{n=2}^{\infty} \frac{n - \alpha}{1 - \alpha}|a_n||z|^{n-1} - \sum_{n=1}^{\infty} \frac{n + \alpha}{1 - \alpha}|b_n||z|^{n-1} \right\}$$

$$\geq 2(1 - \alpha)|z| \left\{ 1 - \left(\sum_{n=2}^{\infty} \frac{n - \alpha}{1 - \alpha}|a_n| + \sum_{n=1}^{\infty} \frac{n + \alpha}{1 - \alpha}|b_n| \right) \right\} \geq 0, \text{ by } (4).$$

The starlike harmonic mappings

$$f(z) = z + \sum_{n=2}^{\infty} \frac{1-\alpha}{n-\alpha} x_n z^n + \sum_{n=1}^{\infty} \frac{1-\alpha}{n+\alpha} \bar{y}_n \bar{z}^n, \tag{7}$$

where $\sum_{n=2}^{\infty} |x_n| + \sum_{n=2}^{\infty} |y_n| = 1$, show that the coefficient bound given by (4) is sharp.

The functions of the form (7) are in $\mathcal{S}_{\mathcal{H}}(\alpha)$ because

$$\sum_{n=1}^{\infty} \left(\frac{n-\alpha}{1-\alpha} |a_n| + \frac{n+\alpha}{1-\alpha} |b_n| \right) = 1 + \sum_{n=2}^{\infty} |x_n| + \sum_{n=1}^{\infty} |y_n| = 2.$$

The restriction placed in Theorem 1 on the moduli of the coefficients of $f=h+\bar{g}$ enables us to conclude for arbitrary rotation of the coefficients of f that the resulting functions would still be harmonic starlike and univalent. Our next theorem establishes that such coefficient bounds cannot be improved.

Theorem 2. Let $f = h + \bar{g}$ be given by (3). Then $f \in \mathcal{T}_{\mathcal{X}}(\alpha)$ if and only if

$$\sum_{n=1}^{\infty} \left(\frac{n-\alpha}{1-\alpha} |a_n| + \frac{n+\alpha}{1-\alpha} |b_n| \right) \le 2, \tag{8}$$

where $a_1 = 1$ and $0 \le \alpha < 1$.

Proof. The *if* part follows from Theorem 1 upon noting that if the analytic and co-analytic parts of $f = h + \bar{g} \in \mathscr{S}_{\mathscr{R}}(\alpha)$ are of the form (3) then $f \in \mathscr{T}_{\mathscr{R}}(\alpha)$.

For the *only if* part, we show that $f \notin \mathcal{T}_{\mathcal{X}}(\alpha)$ if the condition (8) does not hold.

Note that a necessary and sufficient condition for $f=h+\bar{g}$ given by (3) to be starlike of order α , $0 \le \alpha < 1$, is that $\frac{\partial}{\partial \theta}(\arg f(re^{i\theta})) - \alpha \ge 0$, $0 \le \alpha < 1$. This is equivalent to

$$\operatorname{Re} \frac{zh'(z) - \overline{zg'(z)}}{h(z) + \overline{g(z)}} - \alpha$$

$$= \operatorname{Re} \frac{(1 - \alpha)z - \sum_{n=2}^{\infty} (n - \alpha)|a_n|z^n - \sum_{n=1}^{\infty} (n + \alpha)|b_n|\overline{z}^n}{z - \sum_{n=2}^{\infty} |a_n|z^n + \sum_{n=1}^{\infty} |b_n|\overline{z}^n}$$

$$> 0.$$

The above condition must hold for all values of z, |z| = r < 1. Upon choosing the values of z on the positive real axis where $0 \le z = r < 1$ we must have

$$\frac{(1-\alpha)-\sum_{n=2}^{\infty}(n-\alpha)|a_n|r^{n-1}-\sum_{n=1}^{\infty}(n+\alpha)|b_n|r^{n-1}}{1-\sum_{n=2}^{\infty}|a_n|r^{n-1}+\sum_{n=1}^{\infty}|b_n|r^{n-1}}\geq 0.$$
 (9)

If the condition (8) does not hold then the numerator in (9) is negative for r sufficiently close to 1. Thus there exists a $z_o = r_o$ in (0, 1) for which the quotient in (9) is negative. This contradicts the required condition for $f \in \mathcal{T}_{\mathscr{H}}(\alpha)$ and so the proof is complete.

Next we determine the extreme points of the closed convex hulls of $\mathscr{T}_{\mathscr{U}}(\alpha)$, denoted by clco $\mathscr{T}_{\mathscr{U}}(\alpha)$.

Theorem 3. $f \in \operatorname{clco} \mathscr{T}_{\mathscr{R}}(\alpha)$ if and only if

$$f(z) = \sum_{n=1}^{\infty} (X_n h_n + Y_n g_n),$$
 (10)

where $h_1(z)=z$, $h_n(z)=z-\frac{1-\alpha}{n-\alpha}z^n$ $(n=2,3,\cdots)$, $g_n(z)=z+\frac{1-\alpha}{n+\alpha}\bar{z}^n$ $(n=1,2,3,\cdots)$, $\sum_{n=1}^{\infty}(X_n+Y_n)=1$, $X_n\geq 0$, and $Y_n\geq 0$. In particular, the extreme points of $\mathcal{T}_{\mathscr{K}}(\alpha)$ are $\{h_n\}$ and $\{g_n\}$.

Proof. For functions f of the form (10) we have

$$f(z) = \sum_{n=1}^{\infty} (X_n h_n + Y_n g_n) = \sum_{n=1}^{\infty} (X_n + Y_n) z - \sum_{n=2}^{\infty} \frac{1 - \alpha}{n - \alpha} X_n z^n + \sum_{n=1}^{\infty} \frac{1 - \alpha}{n + \alpha} Y_n \bar{z}^n.$$

Then

$$\begin{split} \sum_{n=2}^{\infty} \frac{n-\alpha}{1-\alpha} \left(\frac{1-\alpha}{n-\alpha} X_n \right) + \sum_{n=2}^{\infty} \frac{n+\alpha}{1-\alpha} \left(\frac{1-\alpha}{n+\alpha} Y_n \right) \\ &= \sum_{n=2}^{\infty} X_n + \sum_{n=1}^{\infty} Y_n = 1 - X_1 \le 1 \end{split}$$

and so $f \in \operatorname{clco} \mathscr{T}_{\mathscr{H}}(\alpha)$.

Conversely, suppose that $f\in\operatorname{clco}\mathscr{T}_{\mathscr{R}}(\alpha)$. Set $X_n=\frac{n-\alpha}{1-\alpha}|a_n|$ $(n=2,3,\cdots)$ and $Y_n=\frac{n+\alpha}{1-\alpha}|b_n|$ $(n=1,2,3,\cdots)$. Then note that by Theorem 2, $0\leq X_n\leq 1$ $(n=2,3,\cdots)$ and $0\leq Y_n\leq 1$ $(n=2,2,3,\cdots)$. We define $X_1=1-\sum_{n=2}^\infty X_n-\sum_{n=1}^\infty Y_n$ and note that, by Theorem 2, $X_1\geq 0$. Consequently, we obtain $f(z)=\sum_{n=1}^\infty (X_nh_n+Y_ng_n)$ as required.

Using Theorem 2 it is easily seen that $\mathscr{T}_{\mathscr{K}}(\alpha)$ is convex and closed, so $\operatorname{clco}\mathscr{T}_{\mathscr{K}}(\alpha)=\mathscr{T}_{\mathscr{K}}(\alpha)$. Then the statement of Theorem 3 is really for $f\in\mathscr{T}_{\mathscr{K}}(\alpha)$.

Finally we give the distortion bounds for functions in $\mathscr{T}_{\mathscr{U}}(\alpha)$, which yield a covering result for $\mathscr{T}_{\mathscr{U}}(\alpha)$.

Theorem 4. If $f \in \mathcal{T}_{\mathcal{H}}(\alpha)$ then

$$|f(z)| \le (1 + |b_1|)r + \left(\frac{1-\alpha}{2-\alpha} - \frac{1+\alpha}{2-\alpha}|b_1|\right)r^2, \qquad |z| = r < 1,$$

and

$$|f(z)| \ge (1 - |b_1|)r - \left(\frac{1 - \alpha}{2 - \alpha} - \frac{1 + \alpha}{2 - \alpha}|b_1|\right)r^2, \qquad |z| = r < 1.$$

Proof. Let $f \in \mathcal{T}_{\mathbb{Z}}(\alpha)$. Taking the absolute value of f we obtain

$$\begin{split} |f(z)| & \leq \left(1 + |b_1|\right)r + \sum_{n=2}^{\infty} \left(|a_n| + |b_n|\right)r^n \\ & \leq \left(1 + |b_1|\right)r + \sum_{n=2}^{\infty} \left(|a_n| + |b_n|\right)r^2 \\ & = \left(1 + |b_1|\right)r + \frac{1 - \alpha}{2 - \alpha} \sum_{n=2}^{\infty} \left(\frac{2 - \alpha}{1 - \alpha}|a_n| + \frac{2 - \alpha}{1 - \alpha}|b_n|\right)r^2 \\ & \leq \left(1 + |b_1|\right)r + \frac{1 - \alpha}{2 - \alpha} \sum_{n=2}^{\infty} \left(\frac{n - \alpha}{1 - \alpha}|a_n| + \frac{n + \alpha}{1 - \alpha}|b_n|\right)r^2 \\ & \leq \left(1 + |b_1|\right)r + \frac{1 - \alpha}{2 - \alpha} \left(1 - \frac{1 + \alpha}{1 - \alpha}|b_1|\right)r^2, \quad \text{by (8)}, \\ & = \left(1 + |b_1|\right)r + \left(\frac{1 - \alpha}{2 - \alpha} - \frac{1 + \alpha}{2 - \alpha}|b_1|\right)r^2, \end{split}$$

and

$$\begin{split} |f(z)| &\geq \left(1 + |b_{1}|\right)r + \sum_{n=2}^{\infty} \left(|a_{n}| + |b_{n}|\right)r^{n} \\ &\geq \left(1 - |b_{1}|\right)r - \sum_{n=2}^{\infty} \left(|a_{n}| + |b_{n}|\right)r^{2} \\ &= \left(1 - |b_{1}|\right)r - \frac{1 - \alpha}{2 - \alpha} \sum_{n=2}^{\infty} \left(\frac{2 - \alpha}{1 - \alpha}|a_{n}| + \frac{2 - \alpha}{1 - \alpha}|b_{n}|\right)r^{2} \\ &\geq \left(1 - |b_{1}|\right)r - \frac{1 - \alpha}{2 - \alpha} \sum_{n=2}^{\infty} \left(\frac{n - \alpha}{1 - \alpha}|a_{n}| + \frac{n + \alpha}{1 - \alpha}|b_{n}|\right)r^{2} \\ &\geq \left(1 - |b_{1}|\right)r + \frac{1 - \alpha}{2 - \alpha} \left(1 - \frac{1 + \alpha}{1 - \alpha}|b_{1}|\right)r^{2} \quad \text{by (8)}, \\ &= \left(1 - |b_{1}|\right)r - \left(\frac{1 - \alpha}{2 - \alpha} - \frac{1 + \alpha}{2 - \alpha}|b_{1}|\right)r^{2}. \end{split}$$

The bounds given in Theorem 4 for the functions $f=h+\bar{g}$ of the form (3) also hold for functions of the form (1) if the coefficient condition (4) is satisfied. The functions

$$f(z) = z + |b_1|\bar{z} + \left(\frac{1-\alpha}{2-\alpha} - \frac{1+\alpha}{2-\alpha}|b_1|\right)\bar{z}^2$$

and

$$f(z) = (1 - |b_1|)z - (\frac{1 - \alpha}{2 - \alpha} - \frac{1 + \alpha}{2 - \alpha}|b_1|)z^2$$

for $|b_1| \le (1-\alpha)/(1+\alpha)$ show that the bounds given in Theorem 4 are sharp.

The following covering result follows from the left hand inequality in Theorem 4.

COROLLARY. If $f \in \mathcal{T}_{\mathcal{H}}(\alpha)$ then

$$\left\{w: |w| < \frac{1}{2-\alpha}(1+(2\alpha-1)|b_1|\right\} \subset f(\Delta).$$

Remark. For $\alpha = b_1 = 0$ the covering result in the above corollary coincides with that given in [2, Theorem 5.9] for harmonic convex functions.

A function $f \in \mathcal{H}$ is harmonic convex of order α , $0 \le \alpha < 1$ for |z| = r < 1 (see [4] p. 244) if $\frac{\partial}{\partial \theta}(\arg(\frac{\partial}{\partial \theta}f(re^{i\theta})) \ge \alpha$, |z| = r < 1.

The corresponding definition for harmonic convex functions of order α leads to analogous coefficient bounds and extreme points.

REFERENCES

- Y. Avci and E. Zlotkiewicz, On harmonic univalent mappings, Ann. Univ. Mariae Curie-Sklodowska Sect. A 44 (1990), 1–7.
- J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Aci. Fenn. Ser. A I Math. 9 (1984), 3–25.
- P. L. Duren, A survey of harmonic mappings in the plane, Texas Tech. Univ. Math. Ser. 18 (1992), 1–15.
- 4. T. Sheil-Small, Constants for planar harmonic mappings, J. London Math. Soc. 2 (42) (1990), 237–248.
- H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51 (1975), 109-116.
- H. Silverman, Harmonic univalent functions with negative coefficients, J. Math. Anal. Appl. 220 (1998), 283–289.