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Abstract

As software and hardware systems grow in complexity, automated techniques for en-

suring their correctness are becoming increasingly important. Many modern formal

verification tools rely on back-end satisfiability modulo theories (SMT) solvers to dis-

charge complex verification goals. These goals are usually formalized in one or more

fixed first-order logic theories, such as the theory of fixed-width bit-vectors. The theory

of bit-vectors offers a natural way of encoding the precise semantics of typical machine

operations on binary data. The predominant approach to deciding the bit-vector theory

is via eager reduction to propositional logic. While this often works well in practice, it

does not scale well as the bit-width and number of operations increase. The first part of

this thesis seeks to fill this gap, by exploring efficient techniques of solving bit-vector

constraints that leverage the word-level structure. We propose two complementary ap-

proaches: an eager approach that takes full advantage of the solving power of off the

shelf propositional logic solvers, and a lazy approach that combines on-the-fly algebraic

reasoning with efficient propositional logic solvers. In the second part of the thesis, we

propose a proof system for encoding automatically checkable refutation proofs in the

theory of bit-vectors. These proofs can be automatically generated by the SMT solver,

and act as a certificate for the correctness of the result.
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Introduction

Designing correct software and hardware systems is an ongoing challenge. Deploying

buggy systems can have grave consequences, either monetary or worse. To address

this issue formal verification tools employ formal reasoning to give certain guarantees

on the correctness of the systems under verification. Such tools include extended static

checkers [5,40], bounded and unbounded model-checkers [3,28,49], symbolic execution

tools [56], and program verification environments [16, 84] The verification conditions

generated by these tools are usually encoded in a formula over a set of fixed first-order

logic theories. The task of checking if the formula is satisfiable or not is often delegated

to a satisfiability modulo theories (SMT) solver.

One such theory, is the theory of fixed-width bit-vectors. A bit-vector is a sequence

of zero or one bits. The bit-vector theory offers a natural way of encoding the semantics

of operations that manipulate binary data, the building block almost all modern com-

puter systems. Bit-vectors can model the properties of hardware and software systems,

ranging from hardware combinational logic to C/C++ programs.

Many subtle errors arise when a programmer’s mental abstraction clashes with the

semantics of the implementation, as is often the case with machine arithmetic. For

example the assertion x < x+1 will always hold for mathematical integers, but may fail

for machine integers due to the wrap-around behavior of two’s complement arithmetic.

Efficiently reasoning about this kind of behavior is essential for detecting subtle bugs.

A significant part of this thesis explores approaches to efficiently solving bit-vector

constraints. Decision procedures for the bit-vector theory have traditionally relied on

eager reduction to propositional logic via a technique vividly known as bit-blasting.

The first part of this thesis focuses on the features of the eager solver cvcE implemented
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in the SMT solver CVC4. In particular we discuss a new technique of reducing the size

of the bit-blasted formula by factoring out isomorphic sub-circuits.

While often efficient in practice, the eager bit-blasting approach does not scale well

when algebraic operators over large bit-width bit-vectors are involved. One reasons is

that bit-blasting loses the word-level structure and word-level simplifications can only

be applied before solving. The second part of this thesis, explores an alternative to eager

bit-blasting, a lazy bit-blasting approach to solving bit-vector constraints based on the

DPLL(T ) SMT solver framework. We propose several novel techniques within this lazy

framework: (i) a dedicated SAT solver for bit-vector theory that supports bit-blasting-

based propagation with lazy explanations; (ii) specialized bit-vector sub-solvers that

reason about fragments of the bit-vector theory, and (iii) inprocessing techniques to

reduce the size of the bit-blasted formula when possible. These features significantly

improve performance and enable us to solve hard problems no other solvers can.

SMT solvers are at the heart of many formal verification tools. Guaranteeing the

correctness of the SMT solvers’ results is a longstanding concern. The third part of

the thesis, describes an approach to increasing the trustworthiness of SMT solvers by

instrumenting the solver to emit an externally-checkable certificate of correctness in

the form of a proof of unsatisfiability. The combination of algebraic and propositional

reasoning in the bit-vector theory makes bit-vector proofs particularly challenging. To

address this. we propose a machine checkable proof system for proofs in the bit-vector

theory.

The thesis is structured as follows. Chapter 1 introduces background information

on SAT and SMT that will be referenced throughout the thesis. Chapter 2 describes the

architecture of the SMT solver CVC4, while highlighting the features essential to bit-

vector solving. The features of the eager bit-vector solver are covered in Chapter 3, and

2



those of the lazy bit-vector solver in Chapter 4. Chapter 5 evaluates the performance

of the two approaches compared to each other, as well as compared to other state-of-

the-art SMT solvers. This chapter also illustrates the complementary nature of the two

approaches. The proof infrastructure of CVC4 as well as the proof system for encoding

SMT generated bit-vector proofs are described in Chapter 6. Finally, we conclude by

summarizing the contributions of the thesis in Chapter 7.

3



Chapter 1

Preliminaries

This chapter gives a brief introduction to concepts that will be referenced later in the

thesis. While attempting to be self-contained, it assumes familiarity with the topics and

is intended to serve as a refresher.

Section 1.1 first gives a brief introduction to propositional logic which is then gener-

alized to first-order logic in Section 1.2. Here we also define theories and introduce the

notion of satisfiability modulo theories (SMT). Using these formalisms, we introduce

the theory of fixed-width bit-vectors in Section 1.3.

The following section, Section 1.4, describes a state-of-the-art procedure for decid-

ing propositional logic and highlights the aspects that will be relevant later in the thesis.

Finally, Section 1.5 describes a framework that extends the propositional logic decision

procedure to a decision procedure for first-order logic modulo theories.

4



a ::= v v ∈ V
| ⊥ | >
| ¬a | a ∧ a

Table 1.1: Propositional logic formulas.

1.1 SAT

Propositional logic is concerned with reasoning about the truth value of propositions:

“statements” that can be either true or false. More complex propositions can be built by

using Boolean connectives such as and and not. We will make this definition precise by

first giving the syntax of propositional logic and then its semantics.

Fix an infinite set of variable symbols V to represent the propositional variables.

Also fix the symbols > and ⊥ to represent the truth values true and false respectively.

Propositional formulas are built from propositional variables and the> and⊥ constants

using Boolean connective symbols ∧ (and) and ¬ (not). Table 1.1 gives the syntax of

propositional logic by showing the grammar for constructing propositional formulas.

A propositional assignment µ is a map from Boolean variables V to Boolean values,

µ : V → {true, false}. Given a propositional assignment µ we can generalize it to

evaluate arbitrary Boolean formulas by defining its homomorphic extension J_Kµ. We

define J_Kµ inductively as follows:

• JxKµ = µ(x) for x ∈ V

• J>Kµ = true

• J⊥Kµ = false

• J¬aKµ = true iff JaKµ = false

• Ja1 ∧ a2Kµ = true iff Ja1Kµ = true and Ja2Kµ = true

5



For convenience, we introduce other Boolean connectives, all of which could be

expressed in terms of the two already introduced: ∨ (or),⇒ (implies),⇔ (if-and-only-

if), ⊕ (exclusive or) and ite (if-then-else). The semantics of these other operators is

given below in terms of ∧ and ¬:

• a1 ∨ a2 = ¬(¬a1 ∧ ¬a2): at least one of a1 or a2 is true.

• a1 ⇒ a2 = ¬(a1 ∧ ¬a2): if a1 is true so must a2.

• a1 ⇔ a2 = (a1 ⇒ a2) ∧ (a2 ⇒ a1): a1 and a2 have the same truth value.

• a1 ⊕ a2 = ¬(a1 ⇔ a2): a1 and a2 do not have the same truth value.

• ite(c, a1, a2) = (c ⇒ a1) ∧ (¬c ⇒ a2): same truth value as a1 if c holds and a2

otherwise.

A Boolean assignment µ satisfies a propositional formula a if a evaluates to true

under the assignment: JaKµ = true. If there is no such assignment, we say a is unsatis-

fiable. A formula is valid (or a tautology) if evaluates to true under all possible assign-

ments. The problem of propositional satisfiability (SAT) is that of deciding whether a

given propositional formula is satisfiable or not. SAT is a well studied problem and one

of the classical NP-complete problems [29].

Definition 1. A literal is a Boolean variable or its negation. We say a literal has neg-

ative polarity if it is a negated variable and positive polarity otherwise. A clause is a

disjunction (or) of literals. We say a formula is in conjunctive normal form (CNF) if it

is a conjunction (and) of clauses.

Most decision procedures for SAT assume the input formula is in CNF. There are

known algorithms that can convert an arbitrary Boolean formula to an equisatisfiable

formula in CNF in linear time [81] by introducing intermediate variables.

6



Example 1. The following formula is in CNF:

(v1 ∨ ¬v2 ∨ ¬v3)

∧ (v2 ∨ v1)

∧ ¬v1

where v1, v2, and v3 are Boolean variables, v1,¬v1, v2,¬v2, v3,¬v3 are the literals

and v1 ∨ ¬v2 ∨ ¬v3, v2 ∨ v1, and ¬v1 are clauses.

We will sometimes represent a CNF formula as a set of clauses and a clause as a set

of literals.

1.2 SMT

First-order logic (FoL) extends propositional logic with function symbols and variables

that can now range over more expressive domains. In this section, we will focus on

multi-sorted first-order logic with equality. For a more detailed and formal introduction

see [38, 63]. 1

1.2.1 Syntax

Fix an infinite set of sort symbols S and a disjoint infinite set of variable symbols X

each uniquely associated with a sort σ ∈ S. We write x : σ to express that variable

x ∈ X has sort σ.

Definition 2. A signature Σ consists of the following:
1The presentation of FOL in this chapter differs from that of [38] by having the Boolean sort explicit.

While most presentations distinguish between terms and formulas, we will define formulas as terms of
Boolean sort. This allows for function symbols to take Boolean variables as arguments, a common feature
in SMT.

7



t ::= c c ∈ ΣF and c# = 0
| x x ∈ X
| f(t1, . . . , tn) f ∈ ΣF , f# = n, τ(f) = (σ1, . . . , σn, σ) and τ(ti) = σi
| iteσ(φ, t1, t2) f ∈ ΣF , τ(φ) = Bool and τ(t1) = τ(t2) = σ
| t1 =σ t2 τ(t1) = τ(t2) = σ
| ∀x : σ.ϕ x ∈ X , x : σ and τ(ϕ) = Bool
| > | ⊥
| ¬ϕ τ(ϕ) = Bool
| ϕ1 ∧ ϕ2 τ(ϕ1) = Bool and τ(ϕ2) = Bool

Table 1.2: Grammar for Σ-terms.

• a set of sort symbols ΣS ⊆ S

• a set of function symbols ΣF

• an arity mapping (_)# that maps each function symbol to an arity n ≥ 0.

• a sort mapping τ that uniquely maps each function symbol f ∈ ΣF to τ(f) =

(σ1, . . . , σn, σ) for f# = n.

Each signature will also include by default the Boolean sort symbol Bool, and sym-

bols =σ (equality) and iteσ (if-then-else) for each sort σ ∈ sorts. When the arity of a

function is 0 we can think of it as a function that takes no arguments. We will call such

0-arity function symbols constants.

The Boolean constants >,⊥, the Boolean connectives ¬,∧, and the ite and equality

symbols are mapped to the following fixed sorts by τ in all signatures Σ:

• τ(>) = τ(⊥) = Bool

• τ(∧) = (Bool, Bool, Bool)

• τ(¬) = (Bool, Bool)

• τ(=σ) = (σ, σ,Bool)
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• τ(iteσ) = (Bool, σ, σ, σ)

We extend the sort mapping τ to applications of function symbols as follows:

τ(f(t1, . . . , tn)) = σ where f ∈ ΣF , f# = n, τ(f) = (σ1, . . . , σn, σ) and τ(ti) = σi

Intuitively, τ maps a well-sorted function application to its return sort.

The grammar in Figure 1.2 shows how to build well-formed Σ-terms. For the equal-

ity =σ and iteσ symbols we will omit the sort σ when it is obvious from context. We will

refer to Σ-terms of sort Bool as Σ-formulas. A Σ-atom is a special kind of Σ-formula

that is either a variable, a constant, a quantified formula, the application of a function

symbol other than the Boolean connectives or an equality between non-Boolean terms.

Intuitively atoms are formulas with no Boolean structure. Σ-literals are Σ-atoms or

negations of Σ-atoms and Σ-clauses are disjunctions of Σ-literals.

Example 2. The signature for Presburger arithmetic is: ΣZ = (Int, 0, 1,+,−, <) where

Int is the integer sort, 0 and 1 are constant symbols, +,−, < are function symbols

(though part of the signature, we do not list the built-in symbols). In this signature,

x < 1 is an atom and x < 1 ∨ x = y + 1 is a formula, for variables x and y.

1.2.2 Semantics

We give meaning to first-order logic formulas using the notion of models. A model

maps each sort symbol to a set of values and the function symbols to operations over

these values.

Definition 3. Given a signature Σ, a Σ-modelM is defined as follows:
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• For each σ ∈ ΣS ,M associates a non-empty set Aσ called the domain of σ inM.

The Bool sort always maps to the set ABool = {false, true} with false 6= true.

• For each function symbol f ∈ ΣF with τ(f) = (σ1, . . . , σn, σ) and f# = n,M

associates fM where fM : (Aσ1 × . . .× Aσn)→ Aσ.

An assignment µ on a fixed Σ-model is a map from the set of variables X to values

in their respective domains: µ(x) = v for v ∈ Aσ and x : σ.

Given a Σ-modelM and an assignment µ, we define the evaluation mapping J_KMµ

as follows:

• For variable x ∈ X , JxKMµ = µ(x).

• For applications of function f , we have:

Jf(t1, . . . , t2)KMµ = fM(Jt1KMµ , . . . , Jt2KMµ ).

• For quantified formulas J∀x : σ.ϕKMµ = true iff for all v ∈ Aσ, JϕKMµ′ = true,

where µ′ is equivalent to µ except that it maps x to v.

• For equalities, we have Jt1 =σ t2KMµ = true if Jt1KMµ = JtnKMµ and otherwise

Jt1 =σ t2KMµ = false.

• For if-then-else terms Jite(ϕ, t1, t2)KMµ = Jt1KMµ if JϕKMµ = true and otherwise

Jite(ϕ, t1, t2)KMµ = Jt2KMµ .

• For the propositional constants, we have J⊥KMµ = false and J>KMµ = true.

• For propositional negation J¬tKMµ = true if JtKMµ = false and J¬tKMµ = false

otherwise.
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• For the propositional conjunction Jt1 ∧ t2KMµ = true iff Jt1KMµ = true and

Jt2KMµ = true.

Although we introduced propositional logic in a slightly different way, first-order

logic subsumes propositional logic. By restricting the signature to only the Boolean

symbols: (∧, ¬, >, ⊥) and variables of sort Bool, we can embed propositional logic in

FoL.

Definition 4. A Σ-interpretation I is a pair (M, µ) whereM is a Σ-model and µ is a

variable assignment onM.

We can formally define the notion of satisfiability in first-order logic using interpre-

tations:

• An interpretation I = (M, µ) satisfies a Σ-formula ϕ (I |= ϕ) if JϕKMµ = true.

• A Σ-formula φ entails Σ-formula ϕ (φ |= ϕ) if for all interpretations I, if I |= φ

then also I |= ϕ.

• A Σ-formula ϕ is unsatisfiable (ϕ |= ⊥) if there is no I that satisfies it.

• A Σ-formula ϕ is valid (|= ϕ) if for all Σ-interpretations I the following holds

I |= ϕ.

We are often not interested in all possible models of a signature. For example we

may want to interpret the function symbol + as mathematical addition. Such specific

models can be formalized using the notion of theories. Fixing the model not only allows

us to reason about domains of interest, but also enables the use of more efficient decision

procedures specialized for these domains.

We formally define a theory T as a class of models with the same signature.2

2We are following the definition in [10] which is more general than the standard first-order logic
definition.
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Definition 5. A Σ-theory T is a pair (Σ,A) where Σ is a signature and A is a class of

Σ-models.

A T -interpretation I = (M, µ) for a theory T = (Σ,A) is a Σ-interpretation such

thatM∈ A .

The notions of satisfiability from first-order logic can naturally be extended to satis-

fiability modulo theories (SMT) over T -formulas:

• We say that a T -formula ϕ is T -satisfiable in theory T if there exists a T -

interpretation I such that I |= ϕ.

• A T -formula ϕ is T -unsatisfiable written ϕ |=T ⊥, if there is no T -interpretation

I that satisfies ϕ.

• A T -formula ϕ is T -valid written |=T ϕ, if for all T -interpretations I we have

I |= ϕ

• A T -formula φ T -entails T -formula ϕwritten φ |=T ϕ if for all T -interpretations

I if I |= φ we have I |= ϕ.

The notions of atoms, literals and clauses naturally extend to T -atoms, T -literals

and T -clauses. A T -constraint is a conjunction of T -literals.

We are concerned with the constraint satisfiability problem for a theory T , which

consists of deciding whether a T -constraint is T -satisfiable, that is if there exists a T -

interpretation I that satisfies the constraint.

1.3 Theory of Bit-vectors

Almost all computing devices operate by manipulating finite sequences of zeros and

ones - bit-vectors. The bit-vector theory offers a natural way of encoding these oper-
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ations. It supports low-level operations such as extracting individual bits, as well as

arithmetic operations where the bit-vector is interpreted as a number.

In this section, we introduce the theory of fixed-width bit-vectors: Tbv. First we

present it in terms of the formalisms introduced in the previous section and then show

examples to give the intuition (or lack-of) behind its semantics.

1.3.1 Syntax

Table1.3 gives the signature Σbv for the bit-vector theory. The set of sorts ΣS
bv contains

infinitely many sort symbols [n] where n is a strictly positive natural number. Note

that, except for the constants, the function symbols in Table 1.3 are overloaded; for

example, + stands for any of the symbols in the infinite family {+ : ([n], [n], [n])}n>0.

For simplicity, we restrict our attention to a subset of the bit-vector operators described

in the SMT-LIB v2.0 standard [9]; the missing ones can easily be expressed in terms of

those given here. To illustrate that a bit-vector term t is of sort [n] we will write t[n] and

omit the subscript when it is obvious from context.

1.3.2 Semantics

We will give the semantics of the theory in terms of the standard model for the theory

of bit-vectors BV .

A natural way to think of a bit-vectors is as a fixed-length sequence of binary bits.

The domain of our model values will be the 0 and 1 bit values.3 For example 010101 is

a bit-vector of length 6. An alternative, but equivalent view is that of a function between

an index and the bit value at that index. The previous example can be represented as a

function that returns 0 for all odd indices and 1 for the even ones. While the sequence
3Not to be confused with the corresponding integer numbers or the Tbv signature symbols 0 and 1.
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Symbol Name
ΣS

bv [1] bit-vector sort of length 1
[2] bit-vector sort of length 2
... . . .

Symbol Name (_)# Sort map τ
ΣF

bv 0[1], 1[1] constants 0 [1]
00[2], 01[2] . . . 0 [2]

... 0
...

_ ◦ _ concat 2 ([n], [m], [n+m])
_[i : j] extract 1 ([n], [j − i+ 1]) for n > i > j ≥ 0
∼ _ bitwise not 1 ([n], [n])
_&_ bitwise and 2 ([n], [n], [n])
_ | _ bitwise or 2 ([n], [n], [n])
_ + _ plus 2 ([n], [n], [n])
−_ bvneg 1 ([n], [n])

_× _ times 2 ([n], [n], [n])
_÷ _ div 2 ([n], [n], [n])
_%_ remainder 2 ([n], [n], [n])

_ >> _ right shift 2 ([n], [n], [n])
_ << _ left shift 2 ([n], [n], [n])

Symbol Name (_)# Sort map τ
ΣP

bv _ =[n] _ equal 2 ([n], [n], Bool)
_ < _ less-than 2 ([n], [n], Bool)
_ ≤ _ less-than-or-equal 2 ([n], [n], Bool)

Table 1.3: Bit-vector theory signature.
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view is more intuitive, the function one makes it easier to give a precise definition of the

various operators. Therefore we will adopt the latter for defining the semantics of the

theory. We will switch between the two views depending on which is the clearest and

most convenient in the context.

We represent a bit-vector of length n as a lambda term of the form:

λx : [0, n).f(x)

where f : [0, n) → {0, 1} and [0, n) denotes the set of natural numbers {0, 1, . . . n −

1}. Note that a bit-vector of size n is represented by a total function with the domain

consisting only of the valid indices.

Example 3. The function representation of 0101010101 is:

λx : [0, 8). if (x odd) then 1

else 0

Another way to interpret a bit-vector is as a 2’s complement number. For example

0101010101 corresponds to 1365[8]. Let bitToNat be a map from bits to natural numbers

defined as follows:

bitToNat(b) = if b = 1 then 1 else 0.

Using bitToNat we define the following functions to easily convert between bit-

vectors and their corresponding natural number, natBvn : N → [n] and bvNat : [n] →

[0, 2n):

natBvn(x) = λi : [0, n).if (x÷ 2i) mod 2 = 0 then 0 else 1

bvNat(f) =
n−1∑
i=0

bitToNat(f(i)) · 2i
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We use +,×,÷ and % to refer to both the symbols in the bit-vector signature Σbv and

the integer number arithmetic operations of addition, multiplication, truncating division

and remainder. Which one we are referring to should be obvious from the context.

For brevity we will write J_K to refer to J_KBVµ for the remainder of the chapter, for

some variable assignment µ. Using the constructs above, we can formally define the

bit-vector model BV in terms of its evaluation mapping J_K as follows:

• For each [n] ∈ ΣS
bv, we have A[n] = {λx : [0, n).f(x) | f : [0, n)→ {0, 1}}.

• For the constant symbols, we have J0[1]K = λx : [0, 1).0, J1[1]K = λx : [0, 1).1 and

so forth.

• For function symbols:

Ja[n] ◦ b[m]K = λx : [0, n+m).if x < m then JbK(x) else JaK(x−m)

Ja[n][i : j]K = λx : [0, i− j + 1).JaK(j + x)

J∼ a[n]K = λx : [0, n).if JaK(x) = 0 then 1 else 0

Ja[n]&b[nK = λx : [0, n).if JaK(x) = 1 and JbK(x) = 1 then 1 else 0

Ja[n] | b[n]K = λx : [0, n).if JaK(x) = 1 or JbK(x) = 1 then 1 else 0

Ja[n] + b[n]K = natBvn(bvNat(JaK) + bvNat(JbK))

J−a[n]K = natBvn(2n − bvNat(JaK))

Ja[n] × b[n]K = natBvn(bvNat(JaK)× bvNat(JbK))

Ja[n] ÷ b[n]K = if bvNat(JbK) 6= 0 then natBvn(bvNat(JaK)÷ bvNat(JbK))

Ja[n]%b[n]K = if bvNat(JbK) 6= 0 then natBvn(bvNat(JaK)%bvNat(JbK))

Ja[n] >> b[n]K = natBvn(bvNat(JaK)÷ 2bvNat(JbK))

Ja[n] << b[n]K = natBvn(bvNat(JaK)× 2bvNat(JbK))

Ja[n] =[n] b[n]K = if bvNat(JaK) = bvNat(JbK) then true else false
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Ja[n] < b[n]K = if bvNat(JaK) < bvNat(JbK) then true else false

Ja[n] ≤ b[n]K = if bvNat(JaK) ≤ bvNat(JbK) then true else false

Note that the semantics of the division operations ÷ and % are only defined when

the divisor is not 0[n]. This is in accordance with the SMT-LIB v2.0 standard. The

concatenation _ ◦ _ and extract _[i : j] operations are the only ones that can alter the

length of bit-vectors. The Boolean operators ∼,& and | are the bit-wise equivalent of

the propositional logic operators ¬,∧ and ∨ if we map 0 to false and 1 to true. Other

bit-wise Boolean operators such as ⊕ can be expressed using the given ones.

The arithmetic operations interpret the bit-vector as a base-2 natural number and are

equivalent to the corresponding mod 2n arithmetic operations, where n is the size of

the bit-vectors. Note that this does not always match the semantics of natural number

arithmetic, as highlighted by the following example.

Example 4. Consider the following formula x < y ⇒ x < y + 1 in the theory of

integers. It is not hard to see that the formula is valid. However, the bit-vector equivalent

x[n] < y[n] ⇒ x[n] < y[n] + 1[n] is not. Let us fix n = 8. Consider the model that assigns

x[8] = 1[8] and y[8] = 255[8]. The bit representation of y[8] is 11111111 (or equivalently

λi : [0, 7).1). Computing the sum y[8] + 1[8]:

11111111 + 255[8]

00000001 1[8]

100000000 0[8]

However since the resulting bit-vector only has 8 bits an overflow occurs and the

top bit is dropped and y[n] + 1[n] = 0[n], which is not greater than 1[n]. The formula

x[n] < y[n] ⇒ x[n] + 1[n] ≤ y[n] is valid in the bit-vector theory and so is its integer
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equivalent.4

So far we have only defined unsigned arithmetic operations that interpret the bit-

vectors as positive integers. We can express signed arithmetic on bit-vectors by using

2’s complement arithmetic using the following two functions:

intBvn(x) = if x ≥ 0 0[1] ◦ natBvn−1(x)

elif x ≥ −2n−1 1[1] ◦ natBvn−1(2n + x)

else natBvn(x%E2n)

bvInt(f) = −2n−1 · bitToNatf(n− 1) +
n−2∑
i=0

f(i) · 2i

where %E represents Euclidian division (the remainder is always positive). Addition

and multiplication do not have a signed counterpart as they operate the same on both

interpretations.

The signed version of <, _ ÷ _ and _%_, <S , _ ÷S _ and _%S_ do have different

semantics:

Ja[n] <S b[n]K = if bvInt(JaK) < bvInt(JbK) then true else false

Ja[n] ÷S b[n]K = if bvInt(JbK) 6= 0 then intBvn(bvInt(JaK)÷ bvInt(JbK))

Ja[n]%Sb[n]K = if bvInt(JbK) 6= 0 then intBvn(bvInt(JaK)%bvInt(JbK))

The ÷ and % operators on integers represent truncated division. Bit-vector signed divi-

sion ÷s always returns the same value as integer division, except when dividing −2n[n]

by−1[n] which leads to an overflow. Note that we can express these signed operations in

terms of the unsigned ones, by just examining the sign bits of the operands. For example

<S can be expressed in terms of the unsigned < operator as follows:

4Example adapted from the SMT-LIB 2014-06-03 QF_BV pspace family of benchmarks.
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a[n] <S b[n] = if a[n− 1] = b[n− 1] then a[n− 2 : 0] < b[n− 2 : 0]

else b[n− 1] < a[n− 1]

The division operators can be translated in a similar way, albeit more involved. See

the SMT-LIB v2.0 QF_BV logic description for the details. For simplicity, we will

mostly focus on the unsigned operators from now on.

Example 5. Consider the following bit-vector formula:

0[n] ≤S (ite(x[n] <S 0[n],−x[n], x[n]))

Its integer counterpart is clearly valid. Consider the case when x[n] = −2n−1
[n] , the small-

est negative number that can be represented in n bits. We have:

−x[n] = ∼ (10 . . . 0) + 00 . . . 1

= 01 . . . 1 + 00 . . . 1

= 10 . . . 0

= −2n−1
[n]

which is a negative number. This counter-intuitive result is due to the fact that the

absolute value of the largest negative number that can be stored in n bits (−2n−1) is

bigger than the largest positive number that can be stored in n bits (2n−1 − 1).5

As shown above, the differences between the semantics of mathematical integers

and machine integers as encoded by bit-vectors are often counter-intuitive. Subtle bugs

arise when programmers intuitively think in terms of mathematical integers.
5This is why the abs C function is undefined for the most negative integer.
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It is not hard to see that the decision procedure for the bit-vector theory is at least

as hard as propositional logic (NP-complete): we can encode propositional logic in bit-

vectors by using bit-vectors of size 1 and the Boolean operators.

The reverse direction is a bit more subtle. Bit-vector satisfiability can be reduced to

SAT by replacing function symbols by their hardware circuit representation expressed

in propositional logic. The process of encoding a bit-vector formula into propositional

logic is called bit-blasting. Bit-vector addition for example can be modeled using a

ripple-carry adder circuit. We will make this concrete in Section 3.2. However, the

reduction to SAT is not always polynomial when considering a binary encoding of the

bit-width. The decision problem for the quantifier-free fixed-width bit-vector theory has

been shown to be NEXPTIME-complete [57].

1.3.3 Sub-theories

One of the main difficulties in reasoning algebraically about the bit-vector theory is the

fact that it combines bit-fiddling operations with arithmetic operations. The semantic

relationships between these operations are complex and not easily axiomatizable.

Example 6. The following bit-vector constraint combines bit-wise Boolean operations

and arithmetic to encode that x[n] is a power of 2 [83]:

(x[n] − 1[n])&x[n] = 0[n]

This is not immediately obvious or intuitive.

To reign in this complexity, we can think of Tbv as consisting of several (non-disjoint)

sub-theories. We partition the bit-vector signature into the sub-signatures in Table 1.4.
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Sub-signature Symbols Name
Σeq =[n], 0[1], 1[1] . . . equality

Σcon ◦, _[i : j] core
Σineq <, ≤ inequality
Σari +, −, ×, ÷,% arithmetic

Σbool ∼, |, &, Boolean
Σshift >>, << shift

Table 1.4: Bit-vector theory sub-signatures.

Using these sub-signatures we can define the sub-theories corresponding to the fol-

lowing signatures: Σeq, Σeq ∪Σcon, Σeq ∪Σineq, Σeq ∪Σari, Σeq ∪Σbool, and Σeq ∪Σshift.

The Tbv-satisfiability of conjunctions of equalities between terms over the core sub-

signature Σeq ∪ Σcon is decidable in polynomial time [24, 30]. However, adding almost

any of the additional operators, or allowing for arbitrary Boolean structure, makes the

Tbv-satisfiability problem NP-hard [11].

1.4 CDCL

Although the satisfiability problem in propositional logic (SAT) is NP-complete, mod-

ern SAT solvers can routinely decide problems with millions of clauses. They do so by

exploiting the problem structure to efficiently prune the search space. In this section, we

will describe one of the state-of-the-art SAT algorithms: conflict-driven clause learning

(CDCL). We first present the Davis-Putnam-Logemann-Loveland (DPLL) SAT algo-

rithm in 1.4.1, the precursor of CDCL. In 1.4.2 we show how CDCL extends DPLL,

and in 1.4.3 we present an extension of CDCL to allow incremental reasoning. All algo-

rithms in this section operate on formulas in CNF by converting the input propositional

formula ψ to an equisatisfiable formula C using the toCnf procedure [81].
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1.4.1 DPLL

A naive brute-force algorithm for SAT could just enumerate all possible truth assign-

ments (exponentially many), and check if any of them satisfy the input formula. How-

ever, sometimes it is not necessary to assign all variables to detect that an assignment

cannot satisfy the formula. For example the following formula cannot be satisfied by

the assignment b← true and c← false, regardless of the value of a or d:

(a ∨ b) ∧ (¬b ∨ c) ∧ (a ∨ ¬c ∨ d)

Furthermore, an assignment can entail truth values for the unassigned variables. In the

above example the assignment c← false entails b← false.

The DPLL algorithm exploits this insight. DPLL is a backtracking search algorithm:

at each step it guesses the value of a SAT variable in the input problem. It then explores

the logical consequences of this decision by assigning variables to their entailed values.

If no inconsistency is found and not all variables are assigned, another guess is made.

If an inconsistency is found, the algorithm backtracks and tries to flip the truth value

of the most recent guess. If it has been already flipped, the algorithm backtracks to the

previous guess. The process continues until either a full assignment is found or no more

backtracking is possible.

Next we will define some of the terms required to give a more precise description of

DPLL. We will refer to the clauses in the input CNF-formula C as the problem clauses.

The set of variables in a propositional formula ψ will be denoted by vars(ψ).

An ψ-assignment A for a propositional formula ψ is a partial map from the SAT vari-

ables vars(ψ) to the Boolean truth values {true, false}. We say a ψ-assignment is com-

plete if all variables in vars(ψ) are assigned. Otherwise it is partial. A C-assignment
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A for a propositional CNF formula C is inconsistent if A falsifies a clause c ∈ C. it is

consistent otherwise.

The assignment is represented using a trail: a sequence of literals, where variables

occurring in literals with a positive polarity are assigned to true and those with a negative

polarity to false. With abuse of notation we will use A to denote both the trail and the

map it represents.

For a given assignment A, a clause is satisfied if at least one of the literals it contains

is assigned to true and it is falsified if all its literals are assigned to false. A clause is

unit under assignment A if it has only one unassigned literal, and all the other literals

are assigned to false.

Note that if a clause is unit under assignment A, the assignment along with the

clause entail that the unassigned literal is true. This kind of reasoning is known as unit

propagation and it is at the core of the entailment check in DPLL. Boolean constraint

propagation (BCP) refers to applying unit propagation until no more literals can be

propagated or a contradiction is reached (both x and ¬x are propagated).

The guessed variables in the DPLL algorithm are called decision variables and we

will mark them with superscript (_)d. Each literal l has a decision level level(l) defined

as the number of decision literals occurring before it in the trail (including the literal

itself). The total number of decision variables in a trail is the current decision level. The

algorithms below explicitly store the current decision level in the dl variable. The level

of a literal l is the value of dl when l is added to the trail.

Algorithm 1 shows the pseudo-code for DPLL. All procedures take their argument

by reference and hence can change their values. The trail is stored in A and we use []

for the empty trail and “::” for adding a new literal to the end of the trail. The decide

procedure returns a new decision: it heuristically picks a literal that is not currently in the
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trail. The BCP procedure does Boolean-constraint propagation by adding the entailed

literals to A. If it detects an inconsistency it returns a conflict clause c such that all the

literals in c are assigned to false by the current trail.

BCP returns undef if no inconsistency is detected. The flipDecision procedure looks

for the most recent decision that has not been flipped. It returns the backtracking level

corresponding to this variable along with the literal representing the untried polarity. It

returns −1 if the first decision variable has been tried in both polarities. The backtrack

procedure pops the trail until it only contains literals at levels at most equal to the back-

track level b.

Algorithm 1: DPLL
Input: ψ input formula

1 C← toCnf(ψ);
2 〈A, dl〉 ← 〈[], 0〉 ;
3 while true do
4 c← BCP(C, A) ;
5 if c 6= undef then
6 〈b, l〉 ← flipDecision(A) ;
7 if b = −1 then
8 return unsat;

9 backtrack(b, A) ;
10 A← A :: ¬l ;
11 continue;

12 if allAssigned(A) then
13 return sat;

14 dl← dl + 1;
15 l′ ← decide();
16 A← A :: l′;
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1.4.2 CDCL

One can think of the DPLL algorithm as “optimistically” trying to building a satisfying

assignment. An alternative approach is to try to construct a proof that no satisfying

assignment exist. This can be done using the Boolean resolution rule:

v ∨ l1 ∨ . . . ∨ ln ¬v ∨ l′1 ∨ . . . ∨ l′n
1 ∨ . . . ∨ ln ∨ l′1 ∨ . . . ∨ l′n

Res(, )

If the same SAT variable v occurs in two different clauses, positive in one and neg-

ative in the other, the rule infers a new clause, containing the union of the literals in the

two clauses, with the exception of v and ¬v. Not only is this rule sound (the new clause

is logically entailed by the two clauses), but it is also refutationally complete [76].

The CDCL algorithm extends DPLL with learning and non-chronological backtrack-

ing [10]. It does so by alternating trying to build a satisfying assignment via decisions

with using resolution to learn new clauses that prune unfeasible parts of the search space.

Algorithm 2 shows the pseudo-code for CDCL. The highlighted lines are the lines

that differ from DPLL. At the heart of CDCL is the analyzeConflict conflict analysis

procedure which exploits the structure of the propagations to: (i) learn a new clause

L entailed by the problem clauses and (ii) compute a backtracking level b, potentially

lower than the most recent un-flipped decision. The learned clause L is added to the set

of working clauses at line 7.

We will explain clause learning in CDCL using the notion of an implication graph.

For each non-decision literal l let the reason clause reason(l) be the clause that led to l

being propagated. Note that l ∈ reason(l) by the definition of BCP.

Definition 6. Given an inconsistent assignment6 A and a set of clauses C the implication

6An implication graph can be defined for a consistent assignment by just dropping κ.
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Algorithm 2: CDCL
Input: ψ input formula

1 C← toCnf(ψ);
2 〈A, dl〉 ← 〈[], 0〉 ;
3 while true do
4 c← BCP(C, A);
5 if c 6= undef then
6 〈b, L〉 ← analyzeConflict(c) ;
7 C← C ∪ L;
8 if b = −1 then
9 return unsat;

10 backtrack(b, A);
11 continue;

12 if allAssigned(A) then
13 return sat;

14 dl← dl + 1;
15 l← decide();
16 A← A :: l′;

graph is G = (V,E) where:

V = {l|l is a literal in A} ∪ {κ}

E = {(l1, l2)|¬l1 ∈ reason(l2), A(¬l1) = false and A(l2) = true}

The set V of vertices consists of literals as well as a specially designated vertex κ

representing the conflict clause. Vertices without antecedents are decision literals or unit

clauses.
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Level 1 2 3 4
Trail xd1 ¬xd2 ¬x6 ¬xd5 xd3 x7 x4 ¬x8 x8

Reason ⊥ ⊥ c1 ⊥ ⊥ c2 c3 c4 c5

Figure 1.1: Trail for Example 7.

Example 7. Consider the following set of input clauses C:

c1 : ¬x1 x2 ¬x6

c2 : x6 ¬x3 x7

c3 : ¬x3 x4 ¬x7

c4 : ¬x4 ¬x8

c5 : x8 ¬x4 x5

with the corresponding trail and reason clauses shown in Figure 1.1. The first decided

literal is x1 at decision level 1, then ¬x2 at level 2. Due to clause c1 the literal ¬x6 is

now propagated at level 2 and so forth. Figure 1.2 shows the implication graph. Each

node corresponds to a literal on the trail, and the number in parentheses is its decision

level. Edges are labeled with the clause leading to the propagation.

The analyzeConflict procedure learns a new clause by finding a unique implication

point (UIP): a vertex u in the implication graph such that any path from the current

decision level of the graph to the conflict node κ goes through u. Intuitively, the UIP is

a core reason for the conflict. In Example 7 the UIP is x4.

An implication graph can contain more than one UIP but it has at least one (the

current decision variable is always a UIP). Most modern CDCL SAT solvers use the

first UIP from the conflict to determine the backtracking level and the learned clause.

Algorithm 3 shows the pseudo-code for analyzeConflict. The procedure starts with the

falsified conflict clause c and works backwards by resolving out literals until the first UIP
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x1(1)

¬x2(2)

x3(4) x4(4)
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x7(4) ¬x8(4)

κ
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c1 c2

c2 c3

c3

c4

c5

c5

c5

Figure 1.2: Implication graph for Example 7.

is found. The trail A can be viewed as a vector where indexA(l) returns the index of

literal l. The seen set keeps track of literals already processed. The algorithm traverses

the trail backwards: at each iteration the unprocessed literal in learned with the highest

indexA value is resolved out.

Algorithm 3: The analyzeConflict procedure.
Input: c conflict clause

1 learned← c ;
2 seen← ∅;
3 while not hasUIP(learned) do
4 lit← arg maxl{indexA(l)|l ∈ learned \ seen};
5 seen← seen ∪{lit};
6 if reason(lit) 6= ⊥ then
7 learned← Res(learned, reason(lit));

8 bl← max{d|l ∈ learned, d = level(l) and d 6= dl} ;
9 return 〈bl, learned〉 ;

The hasUIP function checks if learned contains a UIP. It does so by checking whether
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there is only one literal l in learned such that level(l) = dl. Because the learned clause

is obtained via resolution, it is entailed by the problem clauses. Furthermore, it is an

asserting clause: after backtracking to bl it will be unit under the current trail and prop-

agate the UIP in the opposite polarity.

In Example 7 the learned clause L : ¬x4 ∨ x5 is obtained by resolving c5 with c4.

The backtracking level is 3. After backtracking, x5 is still assigned to true, so ¬x4 is

propagated: the UIP has flipped.

1.4.3 CDCL with assumptions

The CDCL algorithm can easily be enhanced to support limited incrementality. As a mo-

tivating example consider checking whether certain combination of inputs/outputs are

valid for a circuit. The circuit can be modeled as a formula ψ and the fixed input/out-

puts as a set of literals assump called the assumption literals. We can then query the

SAT solver for the satisfiability of ψ ∧ assump for each set of assumptions assump. We

want to reuse some of the work of previous queries and not start from scratch for each

assumption set. Asserting ψ ∧ assump as an input prevents us from reusing the learned

clauses: these may not be implied by the next set of assumptions ψ ∧ assump′. Forc-

ing the literals in assump to be the first decisions the algorithm ensures that all learned

clauses are still entailed by the problem clauses and can be reused between queries.

This technique is called solve with assumptions and was first proposed in [36]. The

highlighted lines in Algorithm 4 show the changes needed to support assumptions. The

hasAssumps method checks whether there are still assumptions to “decide”. If not, a

regular decision is made. Otherwise, nextAssump gets the next undecided assumption

literal l. If l is already assigned to false, the problem is unsatisfiable. Because no

decisions were made yet, all the literals on the trail are entailed by the problem clauses
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and the assumptions processed so far. If l is already assigned to true (it was entailed by

previous assumptions), we push a fake decision level.7 This maintains the invariant that

each assumption introduces a new decision level after it has been processed, although it

is not necessarily the variable’s decision level (it may have been propagated at a lower

level). Note that with this invariant hasAssumps can be implemented efficiently by only

checking whether dl is less than the number of literals in assump. We will later leverage

this technique for solving bit-vector constraints in Section 4.2.

1.5 CDCL(T)

The propositional satisfiability algorithms described in Section 1.4 can be generalized

to decide the satisfiability of first-order formulas with respect to a background theory

by integrating one or more theory-specific solvers in the DPLL(T ) framework [71].

The framework is named after the Davis-Putnam-Logemann-Loveland (DPLL) decision

procedure for SAT. It extends propositional reasoning to reasoning in a theory T by

relying on a theory solver (T -solver): a decision procedure for the T -satisfiability of

T -constraints (conjunctions of T -literals).

Modern SMT solvers (including CVC4) have been taking advantage of the recent

advances in SAT, and actually extend the CDCL SAT decision procedure. For this

reason, we will refer to this framework as CDCL(T ), although its historical name in the

literature is DPLL(T ).

For the rest of the thesis we will focus on the problem of deciding a quantifier-free8

T -formula for a single theory T . The framework can be generalized to multiple disjoint

7For this to be consistent with the definition of decision level, we can think of making a ghost decision:
deciding a fresh variable that does not appear in the problem.

8While SMT techniques for dealing with quantified formulas exist, they are outside the scope of this
thesis.
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Algorithm 4: CDCL with assumptions.
Input: 〈ψ, assump〉 input formula and assumptions

1 C← toCnf(ψ);
2 〈A, dl〉 ← 〈[], 0〉 ;
3 while true do
4 c← BCP(C, A);
5 if c 6= undef then
6 〈b, L〉 ← analyzeConflict(c) ;
7 C← C ∪ L;
8 if b = −1 then
9 return unsat;

10 backtrack(b, A);
11 continue;

12 if allAssigned(A) then
13 return sat;

14 if hasAssumps(A, assump) then
15 l← nextAssump(A, assump) ;
16 if A(l) = false then
17 return unsat;

18 if A(l) = true then
19 dl← dl + 1;

20 else
21 l← decide();

22 dl← dl + 1;
23 A← A :: l;
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theories by explicitly incorporating a Nelson-Oppen style combination of the individual

theory solvers [52, 69].

Given T we denote by (_)P an arbitrary but fixed injective mapping from T -atoms to

propositional variables, and use (_)P also for its homomorphic extension to quantifier-

free T -formulas. (_)P provides a propositional abstraction of such formulas. We will

use |=P to denote propositional satisfiability.

Given an arbitrary quantifier-free T -formula ψ a CDCL-style SAT solver performs

a search for a propositional assignment that satisfies the propositional abstraction ψP of

ψ. The T -solver decides the T -satisfiability of the corresponding T -constraint obtained

by instantiating each variable in the assignment with the T -atom it abstracts. If the

constraint is not T -satisfiable, a conflict clause consisting of a subset of the negated

constraints is added to the SAT solver, forcing it to try a different assignment. The

process is repeated until either a T -satisfiable assignment is found or all propositional

assignments are exhausted and the formula is unsatisfiable. While for completeness the

T -solver is only required to decide the T -satisfiability of a conjunction of literals, for

efficiency a closer coupling of the theory and the SAT solver is desirable.

Algorithm 5 gives a simplified algorithmic view of the CDCL(T ) framework as it is

implemented in the CVC4 SMT solver. The algorithm takes as an input a T -formula ψ

and returns sat if ψ is satisfiable and unsat otherwise. For simplicity, the _P mapping

will be implicit: we assume that T -atoms are treated as propositional variables by the

SAT solver and are converted back to T -atoms when communicating with the theory via

T -propagate and T -check.

The highlighted lines are those that differ from CDCL. After BCP, the T -solver can

add to the trail T -literals that are T -entailed by the current assignment (T -propagate).

This prevents making unnecessary, potentially costly decisions. Like BCP T -propagate
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Algorithm 5: CDCL(T )
Input: ψ input formula

1 C← toCnf(ψ);
2 〈A, dl〉 ← 〈[], 0〉 ;
3 while true do
4 c← BCP(C, A);
5 if c = undef then
6 c← T -propagate(A)

7 if c = undef then
8 final← satisfies(ψ, A);
9 c← T -check(A, final);

10 if c 6= undef then
11 C← C ∪ c ;
12 if not falsified(c) then continue;

13 if c 6= undef then
14 〈b, L〉 ← analyzeConflict(c) ;
15 C← C ∪ L;
16 if b = −1 then
17 return unsat;

18 backtrack(b);
19 continue;

20 if final then
21 return sat;

22 dl← dl + 1;
23 l← decideRelevant();
24 A← A :: l;
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returns a conflict clause c if propagation detected a T -inconsistency, and undef if no

such inconsistency was found.9

Example 8. Consider the following set of Tbv clauses:

c1 : x = y b = 0[n]

c2 : ¬x = y ¬a = 0[n] z = x+ y

c3 : z = 7[n] x =∼ y

with the following trail A = [(x = y)d, (a = 0[n])
d, z = x+ y]. If x = y then z = 2×x,

so as a multiple of 2 it cannot be odd: ¬z = 7[n]. T -propagate can propagate this fact

and add it to the trail avoiding a potentially wrong decision: A = [(x = y)d, (a =

0[n])
d, z = x+ y,¬z = 7[n]]

Recall that during BCP, each propagated literal is assigned a reason clause, that

is used in analyzeConflict to learn the conflict clause. The same is required for T -

propagations. The theory solver must be able to provide an explanation (a T -reason) for

each theory-propagated literal l. This is a T -valid clause of the form ¬l1 ∨ · · · ∨ ¬ln ∨ l

for some subset {l1, . . . , ln} of A explaining why the literal was entailed. In practice,

a small subset of all propagations is involved in a conflict and requires explanations.

For this reason, it is important that theory solvers compute explanations lazily, only as

needed by analyzeConflict.

If no conflict is detected by T -propagate, the T -solver is asked to check the consis-

tency of the current partial assignment.

Example 9. Continuing Example 8, BCP detects that x =∼ y must be true to satisfy

9This does not necessarily mean the assignment is not T -inconsistent.
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clause c3 and adds it to the trail:

A = [(x = y)d, (a = 0[n])
d, z = x+ y;¬z = 7[n], x =∼ y].

The T -check procedure now detects an inconsistency and returns a conflict clause

c4 : ¬x = y ∨ ¬x =∼ y

which is added to the set of clauses. The analyzeConflict procedure must learn a new

clause. It first resolves out ¬x =∼ y with reason(x =∼ y) : c3 and obtains clause

¬x = y ∨ z = 7[n]. To resolve out the next literal z = 7[n] the T -solver must be able to

provide an explanation for ¬z = 7[n]:

explain(¬z = 7[n]) : x = y ∧ z = x+ y

The explanation is added as a clause to C and conflict resolution continues until a UIP

is reached:

c6 : ¬x = y ∨ ¬z = x+ y ∨ ¬z = 7[n].

The final variable indicates whether the current partial assignment propositionally

satisfies the original input formula ψ:10

Definition 7. An assignment A propositionally satisfies a quantifier-free formula ψ if

AP |=P ∀vψP, where v = {v | v ∈ vars(ψP), v 6∈ vars(AP)}.

Note that a propositionally satisfying assignment for a formula ψ need not be full,

i.e., defined for all variables of ψP, but it can be extended arbitrarily to a full one. An

10Note that this is the formula before CNF conversion.
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efficient implementation of satisfies is described in Section 2.3.

We say a call to T -check is final if A propositionally satisfies the input formula (i.e.

final is set to true). Final calls to T -check must either ensure that A is T -satisfiable,

return a conflict clause, or add one or more theory lemmas:

1. Return undef if A is T -satisfiable.

2. Return a T -inconsistent subset of the literals in A in the form of a clause if A is

T -unsatisfiable.

3. If T -check cannot efficiently determine the satisfiability of A, it may request a

split by returning a new clause c that is T -valid.

The third case above corresponds to the splitting on demand approach [8] that allows

theories to delegate internal splitting to the SAT solver.

If final is not true, the T -solver is allowed to do as much or as little work as it

wants. Because both the conflict and the lemma are T -valid, it is safe to add them to

the list of working clauses. If the T -check returned clause is not falsified by the current

assignment, we skip making a decision and propagate again.

The decideRelevant procedure picks an unassigned literal that is relevant to the sat-

isfiability of the input formula. The implementation of this procedure is related to that

of satisfies and is described in Section 2.3.

An important aspect of theory solvers is not captured in the T -interface of described

in Algorithm 5. Actual implementations of T -check and T -propagate are stateful: they

store a copy of the assignment A internally and are instructed to push and pop literals

from it as A is modified by the main loop. In practice, it is crucial that the theory solver

be able to backtrack efficiently when A is shrunk, and reason incrementally when it is

extended.
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In Chapter 4 we will use this framework to build a lazy T -solver for the fixed-width

bit-vector theory.
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Chapter 2

CVC4

The bit-vector solvers presented in this thesis have been implemented in the general pur-

pose SMT solver CVC4. This chapter gives an overview of CVC4’s architecture while

focusing on some of the core infrastructure that is particularly beneficial for solving

bit-vector constraints. Most of the features described in this chapter are shared across

multiple theories and have been implemented by various members of the CVC4 team.

Only the bit-vector specific rewrites and simplifications are contributions of this thesis.

CVC4 implements the CDCL framework described in Section 1.4 and has support

for several common first-order theories, including: bit-vectors, arrays, integer and real

linear arithmetic, inductive data-types, uninterpreted function symbols, and strings. It is

an open source software project: the source code is distributed under the Modified BSD

license. Source code and pre-compiled binaries for several platforms can be downloaded

from cvc4.cs.nyu.edu. For more details on CVC4 see [6].

Figure 2.1 shows a simplified view of CVC4’s architecture. The input formula ψ is

first preprocessed. Preprocessing consists of a series of equisatisfiable formula trans-

formations that serve several purposes including: simplifying the formula, learning new
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Figure 2.1: CVC4 architecture.

facts and putting the formula in a standard form that makes it easier for the rest of the

system to reason about.

The preprocessed formula is then passed to the propEngine that does most of the

propositional reasoning and maintains the map between the formula and its propositional

abstraction. The Boolean abstraction is converted to CNF and asserted to the CDCL-

style SAT solver. Optionally, the SAT solver can query a justification heuristic (SATJ )

engine (Section 2.3) to check whether the current partial assignment satisfies the formula

and help it guide the search to relevant parts of the formula.

If no conflict is found, the truth assignment is communicated to the theoryEngine.

The theoryEngine encompasses all theory reasoning. Its core component communicates

the truth assignment to the relevant theories. If more than one theory is involved it also

ensures that the theories agree on equalities over shared terms (theory combination).

The individual theory solvers can identify T -conflicts in the assignment, propagate T -

entailed literals and issue T -valid lemmas.

The formulas manipulated by the procedures described above are represented as

directed-acyclic graphs (DAGs) using the Node data-structure. The leaves of the DAG
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are either variables or constants. The inner nodes are operator applications and the

children the operator arguments. This data-structure uses hash-consing to ensure that

two structurally identical DAGs are represented by the same data-structure. As Nodes

are used extensively throughout the system, an efficient implementation of this data-

structure is key for performance.

2.1 Rewriting

CVC4 has a general rewriting module Rewriter that employs T -valid rewrite rules to

simplify terms and formulas. Its use is not limited to preprocessing operations: it is

used throughout the system to normalize and simplify expressions. For this reason care

must be taken to ensure that the rewrite rules are applied efficiently.

Each theory T implements a T -Rewriter that operates on T -literals and T -terms.

As T -rewrites can be applied during search, the T -Rewriter is not allowed to intro-

duce Boolean structure and it must rewrite equalities to other equalities or to a Boolean

constant.

Boolean simplifications are delegated to a special Boolean Rewriter. We will use

Rewrite(t) to denote the term the Rewriter rewrites t to and ≡ to denote syntactical

equivalence. The CVC4 Rewriter has the following invariants:

1. Rewrites are theory-valid:

|=T t = Rewrite(t)

2. Rewriting is idempotent:

Rewrite(Rewrite(t)) ≡ Rewrite(t)
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3. The Rewriter is strongly normalizing for terms over constants and interpreted

function symbols. For all terms s and t built from interpreted constant symbols

and interpreted function symbols:

|=T t = s iff Rewrite(t) ≡ Rewrite(s)

Intuitively, this requirement states that the Rewriter evaluates constant terms.

While for certain theories the Rewriter can be strongly-normalizing over arbitrary

terms, this is computationally intractable for theories like the bit-vector theory.

The CVC4 Rewriter consists of two passes over the DAG: a pre-rewriting pass where

a node is visited before its children and a post-rewriting pass where a node is visited after

all of its children have been rewritten. The pre-rewriting phase can eliminate potentially

large expressions before even rewriting them. For example, if the t[n] term only occurs in

the following sub-expression, the Rewriter can eliminate it without recursively rewriting

t[n]:

Rewrite(0[n]&t[n]) = 0[n]

The post-rewriting phase takes advantage of the simplifications applied to children to

simplify the parent Node and can assume the children have a specific form. For effi-

ciency, the results of the pre and post-rewriting passes are cached.

Example 10. We use Rewriter
====⇒ to show the intermediate steps in the rewriting process:

(x[32] + y[32])[8 : 0] ≤ (0[12] ◦ z[4])[15 : 8]
Rewriter
====⇒ (x[32] + y[32])[8 : 0] ≤ 0[8]

Rewriter
====⇒ x[8 : 0] + y[8 : 0] ≤ 0[8]

Rewriter
====⇒ x[8 : 0] + y[8 : 0] = 0[8]
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No rewrite rule applies during pre-rewriting, so the children are rewritten first. The sec-

ond child is simplified by pushing the extract operation over concatenation, and the first

one by pushing the other extract over addition. This decreases the size of the bit-blasted

addition circuit from 32 bits to 8. During post-rewriting, the inequality is rewritten to an

equality: as this is unsigned comparison, the only way the sum can be less than or equal

to 0 is if it is equal to 0.

2.2 Preprocessing

CVC4 has a sophisticated preprocessing module that heuristically combines several

simplification passes. Some simplifications can only be applied soundly to formulas

entailed by the input formula. We will say a T -formula l is top-level w.r.t. an input

formula ψ if ψ |=T l. A common case is that l is a conjunct of ψ: ψ = ψ′ ∧ l. In this

section we give a quick overview of the passes most useful for the bit-vector solvers:

Equality substitution. Top-level equalities of the form v = t where v is a variable and

t is an arbitrary term not containing v are used to substitute v for t in the entire

formula:

|=T (ψ ∧ x = t)⇔ ψ[v ← t]

where ψ[v ← t] is short-hand for substituting v by t in formula ψ.1 This is

especially useful for the bit-vector theory, as it reduces the size of the bit-blasted

formula by removing the circuit corresponding to the substituted equalities.

Unconstrained simplification. This pass identifies unconstrained terms [22]: terms

that are not forced to take a particular value. For example, assume the input for-

1As ψ is quantifier-free, substitution of bound variables under quantifiers is not an issue.
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mula contains the following sub-term v[32] + t[32], where v is a variable and t is

an arbitrary bit-vector term. If this is the only occurrence of the variable v, the

following equality can always be satisfied for any term t′[32] not containing v:

v[32] + t[32] = t′[32]

As v is unconstrained we can always set it to t′[32] − t[32]. Therefore v[32] + t[32]

is also unconstrained, and can be replaced by a fresh variable. This is particularly

useful for the bit-vector theory as potentially expensive circuits are removed from

the problem. Note that the unconstrained property does not propagate through all

operators. For example, even if v is unconstrained, 2[32]× v[32] is not as its last bit

must be 0.

Ite simplification. If-then-else terms implicitly contain a disjunction. They are usually

eliminated by introducing a fresh variable for the ite-term. For each ite-term

ite(c, t1, t2) occurring in the input formula ϕ, ite-removal will introduce a fresh

Skolem variable site:

ϕ[ite(c, t1, t2)]
RemoveIte
=====⇒ ϕ[site] ∧(c⇒ site = t1)

∧(¬c⇒ site = t2).

However, this can introduce redundancies. To counteract this effect, the CVC4

ite simplification pass is analogous to the procedure described in [54]. It applies

ite simplifications and heuristic ite co-factoring to simplify the formula and im-

prove the efficiency of the search. For example the following expression can be
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simplified to false:

5[8] = ite(c, ite(¬c, t, 3[8]), 7[8])
SimpIte
====⇒ 5[8] = ite(c, 3[8], 7[8])

SimpIte
====⇒ ⊥

Top-level simplifications. Certain simplifications may be sound or beneficial only if

the formula they apply to is top-level. These simplifications usually introduce

fresh Skolem variables or have the potential of increasing the size of the formula.

Example 11. One such top-level simplification is variable slicing. Slicing by

introducing Skolem variables can enable new substitutions. Consider the equality:

v[32][15 : 8] = c[8] (2.1)

where c[8] is a constant, and v is a variable. This is equivalent to:

v[32] = s[16] ◦ c[8] ◦ s′[8] (2.2)

for fresh Skolem variables s and s′. Replacing 2.1 by 2.2 enables substituting v by

the right-hand-side and can potentially lead to further simplifications. However, it

is not sound to apply this simplification if 2.1 is not top-level because s and s′ are

implicitly existentially quantified. Applying the simplification under a negation

would result in the following universally quantified formula:

¬(v[32][15 : 8] = c[8]) ⇔ ¬(∃x, x′.v[32] = x[16] ◦ c[8] ◦ x′[8])

⇔ ∀x, x′.v[32] 6= x[16] ◦ c[8] ◦ x′[8]

This is not equivalent to v[32] 6= s[16] ◦ c[8] ◦ s′[8].
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Example 12. The following equality is a common way of encoding the fact that

v is a power of 2:

v[n]&(v[n] − 1[1]) = 0[n]

An equivalent way of expressing the same fact is that v[n] is the result of left-

shifting 1[n] by some x < n:

∃x.(v[n] = 1[n] << x[n]) ∧ x[n] < n[n].

If the assertion is top-level, we can replace the existentially quantified formula by

a fresh Skolem s as free-variables are implicitly existentially quantified:

(v[n] = 1[n] << s[n]) ∧ s[n] < n[n].

The second form enables a new substitution and restricts the search space of all

possible values of v to n possible values as opposed to 2n.

2.3 Justification heuristic

The justification heuristic engine (SATJ ) relies on non-clausal reasoning to reduce the

number of T -atoms the T -solvers have to reason about. It achieves this goal in two

ways: (i) by identifying when a partial assignment A becomes propositionally satisfying

(Definition 7) and (ii) by preventing the SAT solver from deciding literals that are not

relevant in the current search context. Recall that traditional CDCL SAT solvers ter-

minate and conclude that the input is satisfiable if all the variables have been assigned

(allAssigned on line 12 in Algorithm 2, Section 1.4). If the input formula is purely
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propositional this is an efficient solution: keeping track of satisfied clauses is expensive

while assigning an irrelevant variable is usually cheap. Once a partial assignment A

satisfies a set of clauses C the SAT solver terminates with a linear amount of work in the

size of the clause data-base. In SMT however, each assignment has to be checked for

T -consistency which can lead to potentially expensive calls to T -solvers.

The non-clausal engine SATJ employs circuit-based techniques of maintaining jus-

tification frontiers. Initially proposed in the context of automatic test pattern genera-

tion [43], these techniques have later been adapted to SMT [7].2 The SATJ engine

keeps track of the relevant part of the formula by incrementally computing the justifica-

tion frontier as the assignment A changes.

Example 13. Let the input formula be ψ = ¬a ∧ (b ∨ ϕ), and the current assignment

A = [¬a; b]. SATJ traverses the formula ψ and determines whether ψ is justified true by

the assignment A. T -atoms are justified to the values they are assigned to and unjustified

otherwise. All other nodes are justified if their truth value is entailed by their justified

children. In our example, to justify that the conjunction ψ is true, we need to justify

both children as being true. The first conjunct is already justified as ¬a is part of the

assignment A. The second conjunct, (b ∨ ϕ), is true if at least one of b or ϕ is justified

true. In our case b is true in the assignment, so the disjunction is also justified. The

assignment of all other literals in ϕ is irrelevant.

Stopping the SAT search when a satisfying assignment is found does not prevent

the SAT solver from deciding on literals that may not be relevant to the satisfiability

of ψ. Instead of using the internal SAT solver heuristics, the SAT solver can rely on

the non-clausal engine to pick the literals to branch on each time it needs to make a

decision. Consider the formula ψ in the previous example, with the assignment A = [b].
2 A different technique of reducing the number of literals sent to theory solvers is proposed in [31].
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The clausal solver will query SATJ for a literal to decide on. As all the literals in ϕ are

irrelevant, SATJ will return ¬a.

The strategy for combining the non-clausal engine SATJ with the clausal CDCL

SAT solver in the CDCL(T ) framework is shown in Algorithm 5 in Section 1.5. The

justification heuristic engine is used in the procedure satisfies at line 8 to check whether

the current partial assignment is satisfying and in decideRelevant at line 23 to force the

SAT solver to decide a relevant literal.

The justification heuristic is usually enabled by default only for expensive theories

such as bit-vectors and quantified formulas. The performance impact of the justification

heuristic is detailed in Section 4.5. If the justification heuristic is disabled, satisfies

and decideRelevant behave like allAssigned and the internal SAT solver heuristic decide

respectively.

2.4 Bit-vector Solvers

CVC4 can be configured to use one of two different bit-vector solvers: an eager solver

(cvcE) or a lazy solver (cvcLz). The two solvers take advantage of the same preprocess-

ing techniques and rewrites, but employ different solving techniques.

The eager solver cvcE by-passes the CDCL(T ) infrastructure, and encodes the entire

Tbv-formula into propositional logic. It then relies on a second SAT solver to decide its

satisfiability. See Chapter 3 for a detailed description of cvcE.

The lazy solver cvcLz, behaves like the other T -solvers: the main SAT solver rea-

sons about the Boolean abstraction of the input formula, and the Tbv-solver only reasons

about conjunctions of Tbv constraints. Chapter 4 describes the algorithms used by cv-

cLz. Finally Chapter 5 gives a detailed comparison of the performance of the solvers,
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analyzing the strengths and weaknesses of the two approaches.
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Chapter 3

Eager Bit-vector Solving

Approaches to deciding the satisfiability of bit-vector formulas often rely on eager re-

duction to propositional logic and do not fit in the CDCL(T ) framework of general-

purpose SMT solvers. The properties of modular arithmetic combined with bit-level

manipulations make algebraic reasoning in the bit-vector theory challenging. Reduction

to SAT is appealing as it offers a unified way of reasoning about both the Boolean ab-

straction and the bit-vector constraints. This enables using the SAT solver as a black

box and readily taking advantage of progress in SAT solving. We will call solvers that

decide a Tbv-formula by bit-blasting the entire formula before starting the SAT search

eager bit-blasting solvers. These solvers usually do employ algebraic reasoning, but

only as a preprocessing step by first apply sophisticated word-level simplifications be-

fore bit-blasting.

In this chapter we described the implementation of the eager bit-vector solver cvcE

in the SMT solver CVC4. Initially implemented as a base-line to evaluate the perfor-

mance of the lazy solver cvcLz (see Chapter 4), the eager solver cvcE is now an essential

option for tackling hard bit-vector problems.
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Section 3.1 presents the overall architecture of the eager solver, and shows how it

relates to that of traditional CDCL(T ) theory solvers. Section 3.2 gives an overview

of the bit-blasting module that converts the Tbv input formula into a propositional logic

formula. This module is very similar to the one used by the lazy solver for its bit-

blasting. Section 3.3 describes the eager solver’s use of the abc AIG rewriting module

and its performance impact. Section 3.4 presents a method for reducing the size of the

bit-blasted circuit by refactoring isomorphic circuits. We conclude with related work in

Section 3.5.

3.1 Architecture

Given a quantifier-free Tbv input formula ψ, cvcE decides its satisfiability by first apply-

ing the preprocessing techniques described in Section 2.2. The preprocessed formula is

then converted to propositional logic by the bitblaster and then asserted to a CDCL-style

SAT solver. Figure 3.1 shows the architecture of the eager bit-vector solver cvcE.

The preprocessing module is extended with a special pass, bvToBool, that attempts

to lift bit-vector operations over bit-vectors of width 1 to operations over Booleans. For

example, consider the formula:

(
∼ (x[i : i]) & ite(c, x[1], 0[1]) = 1[1]

)
∧ ϕ

where ϕ and c are arbitrary formulas, and x is an arbitrary bit-vector term. It is equiva-

lent to the following:

¬(x[i : i] = 1[1]) ∧ ite(c, x[1] = 1[1],⊥) ∧ ϕ.

50



Pushing some of the operations over bit-vectors of size 1 into the Boolean layer

enables the other CVC4 preprocessing passes to exploit this Boolean structure to learn

new top-level facts. In the above example, we can learn x[i : i] = 0[1] ∧ c after applying

Boolean circuit propagation. This pass can also be helpful for the lazy bit-vector solver

as we will see in Chapter 4.

The cvcE solver has very limited support for theory combination via Ackermanniza-

tion [1]. This ackermannize pre-processing pass reduces constraints over the combina-

tion of Tbv and Tuf to Tbv as follows:

• For each application f(x̄) where x̄ = (x1, . . . , xn), introduce a fresh variable fx̄

and use it to replace all occurrences of f(x̄).

• For each f(x̄) and f(ȳ) with x̄ = (x1, . . . , xn) and ȳ = (y1, . . . , yn) occurring in

the input formula, add the following lemma:

(
n∧
i=1

xi = yi

)
⇒ fx̄ = fȳ.

The pre-processed Tbv-formula is converted to propositional logic by the bitblaster.

The bitblaster has two modes of operation: it can either bit-blast to an and-inverter-

graph (AIG) or to an arbitrary Boolean formula. If the AIG path is enabled, the abc

AIG rewriting package [20] is used to simplify the formula and convert it to CNF. If

the Boolean path is enabled, the formula is bit-blasted to Nodes and CVC4’s Boolean

rewrites are applied. The bit-blasted formula is then encoded in CNF using a Tseitin-

style conversion [81]. Finally, the CNF formula, obtained through either path, is asserted

to the CDCL-style SAT solver SATbb. Our implementation is based on MiniSAT 2.2.0

[37, 77], but the framework allows for plugging in another SAT solver. Note that SATbb

is not the same SAT solver used to drive the search over the Boolean abstraction of the
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formula in CDCL(T ). To distinguish between the two, we will refer to the CDCL(T )

SAT solver as SATmain.

This design choice poses some interesting trade-offs. An alternative implementa-

tion could communicate the bit-blasted formula to SATmain by asserting the bit-blasted

clauses as Tbv-lemmas and adding them alongside the clauses that model the Boolean

abstraction. In this scenario the Tbv solver would be just a “shell” that pushes the bit-

blasted formula to SATmain. An advantage of this approach is that it reuses existing

infrastructure and allows for seamless theory combination: SATmain already has the in-

frastructure to communicate with other involved theories and the Tbv solver is reduced

to a series of lemmas.

Our first prototype implementation used this idea. However, performance was sig-

nificantly poorer. We attribute this to several causes. First, using a separate SAT solver

for bit-vector reasoning allows for configuring the solver heuristic for bit-vector con-

straints. Second, SATmain is limited in the number of SAT preprocessing techniques it

can employ soundly: it is not usually sound to eliminate a T -literal. Using SATbb allows

for applying the MiniSAT preprocessing techniques, such as subsumption and variable

elimination [35]. Care must be taken of course not to eliminate the bits of input vari-

ables if models are requested. Lastly, SATmain requires non-trivial modifications to be

integrated in CDCL(T ). These modifications can add unnecessary overhead and restrict

the functionality of the solver. Furthermore, plugging in a new CDCL(T ) SAT solver

requires a significant implementation effort, while trying a new SAT solver for SATbb

requires implementing a minimal interface.
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Figure 3.1: cvcE architecture.

3.2 Bit-blasting

Bit-blasting is the process of encoding bit-vector terms and formulas into propositional

logic. In CVC4, bit-blasted terms are represented as a n-tuple of Boolean formulas,

each representing the corresponding bit:

bbTerm(t[n]) ≡ 〈bn−1, . . . , b0〉

where bi is the ith bit of t[n]. For a variable term, each bit is a fresh Boolean variable. For

constant terms zero bits are false and one bits are true. Bit-blasting the bit-vector term

operators proceeds recursively. Algorithm 6 shows the pseudo-code for bit-blasting the

bit-wise and operator &.

Bit-blasted atoms are represented as a Boolean formula: the formula corresponding
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Algorithm 6: Bit-blasting bit-wise and.
Input: t[n]&t

′
[n]

1 〈bn−1, . . . , b0〉 ← bbTerm(t[n]);
2 〈b′n−1, . . . , b

′
0〉 ← bbTerm(t′[n]);

3 return 〈bn−1 ∧ b′n−1, . . . , b0 ∧ b′0〉;

Algorithm 7: Bit-blasting equality.
Input: t[n] = t′[n]

1 〈bn−1, . . . , b0〉 ← bbTerm(t[n]);
2 〈b′n−1, . . . , b

′
0〉 ← bbTerm(t′[n]);

3 return
∧n−1
i=0 bi ⇔ b′i ;

to atom a is bbAtom(a). They are built recursively from the bit-blasted terms. For

example, equality is bit-blasted as shown in Algorithm 7. The final bit-blasted formula

is obtained by asserting that the bit-blasted definition of each Tbv-atom is equivalent to

the literal a occurring in the input formula:

bitblast(ψ) ≡ ψ ∧
∧

atom a∈ψ

(a⇔ bbAtom(a)) .

Bit-blasted terms and formulas are cached. Therefore, bit-blasting x[i : 0]×y[i : 0] after

having already bit-blasted x× y should not add any new clauses. Because we represent

bit-blasted terms as tuples of bits and do not explicitly introduce a fresh variable for

each bit until CNF conversion, our bit-blasting procedure does not introduce fresh vari-

ables for bit-propagating operations (e.g. concatenate and extract) as described in [66].

The formulas corresponding to the atoms are simplified, either by calling the Boolean

Rewriter or by using AIG rewriting, depending on which path is enabled.
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3.3 AIG Rewriting

If the solver is configured to bit-blast to AIG the bit-blasted input formula is simplified

using the combinational synthesis engine in abc [20].

And-inverter-graphs are a restricted form of Boolean formulas that only use the ∧

and ¬ Boolean operators. An AIG is a DAG in which each node has either 2 or 0

children. Nodes with 2 children are ∧-nodes, and nodes with no children are Boolean

variables. Edges can be inverted or not: an inverted edge indicates that the child is

negated. Such a restrictive representation has the advantage of making it easier to iden-

tify redundancies.

Our implementation uses by default the simplifications implemented by the abc com-

mand “balance; rewrite”, but it can be configured to use user-provided abc scripts. The

abc balance command minimizes the depth of the AIG by employing algebraic tree-

balancing of the ∧ nodes (inverted edges do not count towards the depth). The abc

rewrite command implements an AIG rewriting algorithm that extends the work of [14].

For each 4-input cut of an AIG node, it checks a pre-computed table for equivalent ways

to express the same Boolean function. The form that maximizes sharing in the overall

DAG is chosen [64].

After applying the abc simplifications, we rely on abc’s own CNF conversion algo-

rithm to convert the AIG to clauses and assert them to SATbb. Their algorithm has been

optimized for converting AIGs to CNF.

Experimental evaluation. While applying AIG rewriting to the entire bit-blasted for-

mula can add a significant overhead for large instances, it proved to be highly beneficial

for equivalence checking problems.

Experiments in this section were run on the StarExec [80] cluster infrastructure with
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Figure 3.2: cvcE vs cvcE+AIG.

a timeout of 900 seconds and a memory limit of 50GB.1 All scatter plots are on a log-

scale, the x and y-axis represent CPU time in seconds, unless otherwise specified. Fig-

ure 3.2 compares the CVC4 eager solver performance by bit-blasting to AIG and ap-

plying AIG simplifications (cvcE+AIG) to bit-blasting to Node and applying Boolean

rewrites (cvcE). The results are mixed, with the performance of cvcE+AIG being worse

overall.

Focusing on specific families sheds more light on the problem as distinct patterns

begin to emerge. Figure 3.3 shows the impact of AIG rewriting on the brummayerbiere*

(brummayerbiere, brummayerbiere2, brummayerbiere3, and brummayerbiere4) SMT-

LIB 2014-06-03 benchmark families. Most of the problems in these families encode

equivalence checking problems adapted from [83]: low-level bit-fiddling operations are

1Experiments were ran on the queue all.q consisting of Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
machines with 268 GB of memory.
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Figure 3.3: cvcE vs cvcE+AIG on brummayerbiere*.

Figure 3.4: cvcE vs cvcE+AIG on bruttomesso.
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Figure 3.5: cvcE vs cvcE+AIG on spear.

checked for equivalence to their word-level specification. Removing redundancy via

AIG rewriting is very helpful for these benchmarks.

On the other hand, AIG rewriting seems to have a very negative effect on problems

that are very structured, such as the crafted bruttomesso family. Figure 3.4 shows this

negative impact. On these problems, AIG rewriting does not take a long time, but in

some cases bit-blasting to AIG increases the number of literals in the bit-blasted formula

by 20% compared to bit-blasting to Nodes.

Figure 3.5 shows the performance on the larger industrial benchmark family spear

(1695 benchmarks). The plot shows how on easier problems the overhead of AIG rewrit-

ing hurts performance while for harder problems it is outweighed by the reduction in

solving time.
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3.4 Refactoring Isomorphic Circuits

Problems arising from practical applications are often very structured and can some-

times exhibit repeated occurrences of the same pattern. To take advantage of this struc-

ture we developed a preprocessing pass aimed at identifying isomorphic formulas and

factoring them out by introducing fresh variables. Consider the following constraint:


x0 = 2× y0 + y1 ∨

x0 = 2× y1 + y2 ∨

x0 = 2× y2 + y0

 ∧


x1 = 3× y0 + 2× x0 + 5 ∨

x1 = 3× y1 + 2× x0 + 5 ∨

x1 = 3× x0 + 2× y2 + 5


The disjuncts in each conjunct implement the same function applied to different

arguments:


x0 = f(y0, y1) ∨

x0 = f(y1, y2) ∨

x0 = f(y2, y0) ∨

 ∧


x1 = g(y0, x0) ∨

x1 = g(y1, x0) ∨

x1 = g(x0, y2) ∨


where f(x, x′) = 2×x+x′ and g(x, x′) = 3×x+ 2×x′+ 5. During bit-blasting each

application of f and g will be bit-blasted to a different but isomorphic set of clauses.

Any clause learned for one of the function applications will not translate to the others.

For example, in the x0 = 2 × y0 + y1 equality, x0 and y1 must have the same last bit,

since the last bit of 2 × y0 is 0. We would need to learn similar clauses encoding this
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fact, for each application of f :

x0[0 : 0] = 0 ∨ y1[0 : 0] = 1

x0[0 : 0] = 0 ∨ y2[0 : 0] = 1

x0[0 : 0] = 0 ∨ y0[0 : 0] = 1.

We can exploit this structure by introducing fresh variables for the arguments of f

and g and pushing the disjunction to equalities over the arguments as follows:

x0 = f(s0, s1)∧


(s0 = y0 ∧ s1 = y1) ∨

(s0 = y1 ∧ s1 = y2) ∨

(s0 = y2 ∧ s1 = y0) ∨

 ∧

x1 = g(s′0, s
′
1)∧


(s′0 = y0 ∧ s′1 = x0) ∨

(s′0 = y1 ∧ s′1 = x0) ∨

(s′0 = x0 ∧ s′1 = y2) ∨


If the circuits of f and g are large enough this can lead to a significant reduction in

the size of the bit-blasted circuit.

Algorithm 8 shows the pseudo-code for the refactoring isomorphic circuits pass. The

pass first identifies top-level disjunctions ϕ and looks for a recurring pattern within the

disjuncts. The patternOf procedure computes the pattern for each disjunct by replacing

each variable v by a placeholder 2n. For example:

patternOf(3× y + 2× x+ 5) = 3×20 + 2×21 + 5

patternOf(x× x+ 5) = 20 ×21 + 5

Note that in the second term, the second occurrence of x had the same place-holder as
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the first. This is to minimize the number of argument equalities we need to add.

It may be the case that a pattern is a special case of another pattern. We say a pattern

p′ is a generalization of pattern p (p′ � p) if there is a substitution that can be applied to

p′ that makes p syntactically equal to p′. For example:

20 + 5 � 20 + 21

20 + 5 ��� 20 + 20.

Note that this is not the same as unification: the second example is unifiable but the

second pattern is not a generalization of the first. The procedures getGeneralization and

setGeneralization ensure that the patterns used for refactoring are the most general ones

to maximize the number of disjuncts refactored.

The map args maps patterns to the arguments they need to be instantiated to. The

getArgs(ϕi, p) procedure returns the arguments p needs to be instantiated with to refac-

tor ϕi. Finally, skolemizeArgs introduces the disjunction of equalities and collapses

disjuncts with the same pattern into one instantiation of the pattern. Note that each

top-level disjunction ϕ can have more than one pattern that is refactored.

Experimental evaluation. This pass is very useful in reducing the size of the bit-

blasted circuit when it applies, and adds negligible overhead when it does not. The most

significant performance gain we observed was on the mcm family of benchmarks that

exhibit this structure extensively. The mcm family encodes the multiple constant multi-

plication problem: synthesize an optimal sequence of operations that result in multiply-

ing a given input by a fixed set of constants [62]. Figure 3.6 is a scatter plot comparing

the size of the bit-blasted formula before applying circuit refactoring (cvcE) and after

(cvcE+RIC). Each point is a benchmark and the x and y axis represent the thousands of
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Algorithm 8: Refactoring isomorphic circuits.
Input: ψ

1 ψ′ ← ψ;
2 for ϕ ∈ ψ and ϕ top-level do
3 if ϕ =

∨
ϕi then

4 P← ∅;
5 for ϕi ∈ ϕ do
6 p← patternOf(ϕi);
7 P← P ∪{p};
8 for p, p′ ∈ P do
9 if p � p′ then

10 setGeneralization(p, p’);

11 for ϕi ∈ ϕ do
12 p← getGeneralization(patternOf(ϕi));
13 args(p)← args(p) ∪ getArgs(ϕi, p);

14 ϕ′ ← skolemizeArgs(ϕ, args);
15 ψ′ ← ψ′[ϕ← ϕ′] ;

16 return ψ′;

literals in the bit-blasted formula.

Figure 3.7 shows the performance impact of the reducing the bit-blasted formula

size. The x-axis is number of problems solved, and the y axis is time taken to solve that

number of problems. The reduced circuit size results in one more problem solved and

requires significantly less time.

3.5 Related Work

There are several eager solvers that are specialized for only reasoning about Tbv for-

mulas, usually in combination with the theory of arrays (Tarr) and the theory of un-

interpreted function symbols (Tuf). For Tbv formulas, these solvers rely on sophisti-

cated word-level and bit-level rewrites and preprocessing techniques before encoding
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Figure 3.6: Literals in bit-blasted formula cvcE vs cvcE+RIC on mcm.

Figure 3.7: Run-time cvcE vs cvcE+RIC on mcm.
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the problem in SAT.

Boolector is a specialized solver for bit-vectors and arrays and the winner of the

2014 SMT-COMP for the QF_BV and QF_ABV logics. For pure bit-vector formulas,

it first employs word-level rewriting before bit-blasting the problem into AIG format,

followed by conversion to CNF [21]. The rewrite rules it employs are split in three lev-

els: simplification rewrites applied during formula construction, substitutions and static

analysis rules and arithmetic normalization rules. Boolector also supports lazy instan-

tiation of non-recursive first-order lambda functions (i.e. macros) [73]. Most other bit-

vector solvers expand these eagerly. In order to reason about the combination of arrays

and bit-vectors, Boolector incorporates efficient model driven lazy lemma instantiation

in an abstraction refinement loop where array read terms are abstracted to bit-vector

variables. Recent work improves this approach by using the notion of relevancy to only

refine the relevant part of the counter-example [70].

STP2 is another eager bit-vector solver specialized for handling the combination of

arrays and bit-vectors. For bit-vector constraints, it first applies word-level simplifica-

tions and then encodes the problem to CNF via AIG [44]. It uses the abc [20] AIG

package to apply AIG rewriting to the Boolean abstraction of the formula and then

encodes the formula to CNF. One of the features that distinguishes STP2 from other bit-

vector solvers, is its use of theory-level bit propagators [50]. For example, the following

equality a[8]&b[8] = c[7] ◦ 1[1] propagates that the least significant bit of a and b have to

be 1: b[0 : 0] = a[0 : 0] = 1[1]. This is a technique adapted from the CSP literature.

Although Z3 is a general purpose CDCL(T )-style SMT solver, its approach to de-

ciding bit-vector formulas is most similar to that of eager solvers. Z3 first applies word-

level rewrite techniques followed by eagerly encoding the formula into propositional

logic via bit-blasting [32]. Z3 also uses a technique known as relevancy to reduce the
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size of the problem that is being reasoned about [31].

Yices [34] is another general purpose SMT solver with support for bit-vectors. Its

bit-vector theory solver relies on rewriting to perform simplifications, then applies bit-

blasting to all bit-vector operators with the exception of equality, for which it uses spe-

cialized reasoning. It handles arrays over bit-vectors via a model-based combination

procedure.

The eager solver cvcE is similar to Yices and Z3 in that it is part of a general purpose

SMT solver, but it differs in its use of a separate SAT solver for bit-vector constraints.

Unlike the Z3 and Yices solvers, it uses a second SAT solver to reason exclusively about

bit-vector constraints. From our experience, having a SAT solver exclusively dedicated

to reasoning about bit-vector constraints had a significant performance impact.

Like STP2 cvcE relies on the abc AIG package to simplify the formula, but un-

like STP2 we apply the simplifications to the entire formula and not just the Boolean

abstraction. While this can be expensive for large formulas, we found it to be partic-

ularly beneficial for hardware equivalence problems. We found simplifying the entire

formula helpful on equivalence checking problems. We are not aware of related work

that implements a procedure similar to the word-level circuit refactoring described in

Section 3.4.
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Chapter 4

Lazy Bit-vector Solving

The standard technique for deciding the satisfiability of a Tbv quantifier-free formula

is to reduce the problem to Boolean satisfiability (SAT).This process is vividly called

bit-blasting. Current state-of-the-art decision procedures for Tbv build on bit-blasting

by applying powerful word-level simplifications to the input formula before the final

bit-blasting step. Chapter 3 described the implementation of one such eager bit-vector

solver (cvcE) in the SMT solver CVC4. While often efficient in practice, this eager

approach has several limitations: (i) the entire formula must be bit-blasted and solved

at once, which may be difficult if the problem is too large; (ii) word-level structure and

information can only be leveraged during preprocessing, not during solving; (iii) the

complexity of the problem is a function of the bit-width; and (iv) eager solvers do not

fit cleanly into theory combination frameworks. 1

A lazy solver can address these limitations, explicitly targeting problems that are

difficult for eager solvers and thus providing a complementary approach. In this chapter,

we revisit the approach first proposed in [23,42] by extending and improving it in several

1While the “shell” solver approach mentioned in Section 3.1 provides a way of combining Tbv with
other theories, it does not easily lend itself to optimizing theory combination.
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ways. The work in this chapter explores significant new ideas within the lazy framework,

with the following contributions: (i) a dedicated SAT solver for Tbv that supports bit-

blasting-based propagation with lazy explanations; (ii) specialized Tbv sub-solvers that

reason about fragments of Tbv; (iii) inprocessing techniques to reduce the size of the

bit-blasted formula when possible; and (iv) integration with the justification heuristics

to minimize the number of literals sent to the bit-vector solver by the main SAT engine.

The work in this chapter has been published in [48].

To evaluate the performance of the lazy approach, we implemented a lazy bit-vector

solver, cvcLz, in the CVC4 SMT solver. Section 4.1 gives an overview of the archi-

tecture of cvcLz and how it is integrated in the CDCL(T ) framework. Section 4.2 de-

scribes how to build an efficient incremental/backtrackable Tbv-solver using a second

SAT solver SATbb. Maintaining the word-level structure enables the use of algebraic

sub-solvers complete for certain fragments of Tbv. The implementation and performance

impact of these algebraic sub-solvers is presented in Section 4.3. The word-level struc-

ture can additionally be exploited by applying word-level inprocessing during solving

as described in Section 4.4). Section 4.5 describes some of the other techniques enabled

by the lazy framework and their performance impact. Generating models in the lazy

solver is briefly covered in Section 4.6. Finally we conclude by discussing related work

in Section 4.7 .

4.1 Architecture

Designed for easy plug-and-play combination with solvers for other theories, the pro-

cedure integrates an online lazy Tbv solver (LBV) into the CDCL(T ) framework [71],

separating theory-specific reasoning from the search over the Boolean structure of the
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input problem.

The lazy solver cvcLz combines algebraic, word-level reasoning with bit-blasting.

Figure 4.1 shows the architecture of the lazy solver cvcLz. For simplicity, unless oth-

erwise specified, we will assume the input formula ψ is a Tbv-formula, although the

procedures described in this chapter also work on the combination of Tbv with other

theories. The input formula ψ first goes through the preprocessing phases described in

Section 2.2. After CNF conversion, a CDCL-style SAT solver SATmain is used to search

for a satisfying assignment to the Boolean abstraction of the formula. The SAT solver

can query the justification heuristic SATJ described in Section 2.3 to stop early if the

current partial assignment is satisfying. This helps reduce the size of the sub-problems

the Tbv solver has to reason about by considering only literals relevant in the current

search context. Literals whose truth values are not required to satisfy the formula are

ignored.

SATmain communicates this [partial] assignment to the theoryEngine, which in turn

delegates Tbv reasoning to the bit-vector theory. The bit-vector truth assignment Abv

is the sub-sequence of the trail A that contains only Tbv literals (and so maintains the

order in A). The set of Tbv literals Abv is asserted to the algebraic sub-solvers in order of

efficiency and expressivity.

The lazy Tbv-solver is organized as a sequence of sub-solvers. If any of the sub-

solvers identifies a conflict, the Tbv-solver can return unsat without querying the other

sub-solvers. Similarly, if any of the sub-solvers is complete for the current truth assign-

ment Abv, the Tbv-solver can safely return sat without querying the other sub-solvers.

While not a sub-solver, the In-processing module uses heuristic algebraic simplifications

during search to detect word-level conflicts or reduce Abv to true. If none of the alge-

braic engines detect a conflict or is sufficient to conclude satisfiability, the bit-blasting
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Figure 4.1: cvcLz architecture.

sub-solver BVbb provides a complete decision procedure for deciding Abv.

4.2 Bit-blasting Solver

The bit-blasting solver BVbb is sufficient to decide the satisfiability of bit-vector con-

straints over the entire Σbv signature. At its heart is a second SAT solver SATbb distinct

from the CDCL(T ) Boolean engine SATmain. Our implementation is based on the open

source MiniSAT 2.2.0 SAT solver [37]. We instrumented MiniSAT to efficiently im-

plement the main requirements on a T -solver: incrementality, conflict detection and

69



propagation of entailed literals.

Incrementality Because Abv is a sub-sequence of the trail A, literals are pushed and

popped in an incremental fashion. It is important for BVbb to efficiently reason incre-

mentally in this manner. Most SAT solvers do not have full support for incremental

solving. While CDCL-style SAT solvers use backtracking to pop their trail, the set of

input clauses is usually fixed. Most solvers easily support adding more input clauses

during solving, a feature we take advantage of. However, efficiently removing problem

clauses is an area of active research, as removed clauses may have participated in the

derivation of learned clauses [39,68]. Bit-blasting almost any Tbv-atom requires multiple

clauses, and backtracking BVbb would require removing input clauses. Incrementality

can be simulated in a CDCL SAT solver using the solve with assumptions [37] feature

described in Section 1.4.3. Given a fixed set of input clauses C, the SAT solver can

check its satisfiability assuming a given set of literals are true (the assumptions).

We exploit this feature by associating to each Tbv-atom a in the input formula ψ a

corresponding marker variable aBB such that a holds iff aBB is assigned to true. We

denote by BB(ψ) = {aBB,¬aBB | a is an atom in ψ} the set of all marker literals in

a Tbv formula ψ. Let bbAtom be the bit-blasting function that takes a Tbv-atom a and

returns an equisatisfiable Boolean formula. (See Section 3.2 for a description of how

bbAtom works.) Before starting search, we assert the following formula to SATbb:

∧
atom a∈ψ

(
aBB ⇔ bbAtom(a)

)
.

We will denote by CBB the bit-blasting clauses corresponding to the above formula.

Since these are definitional clauses they are satisfiable by construction: because each
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aBB is unconstrained the logical equivalences can always be satisfied.

Given bit-vector constraints Abv asserted to BVbb, the corresponding call to SATbb

takes as assumptions ABB
bv = {lBB|l ∈ Abv}where lBB is the marker literal corresponding

to literal l.

When SATmain backtracks during conflict resolution, it ensures that SATbb also back-

tracks by calling the backtrack procedure in Algorithm 4 in Section 1.4.3. Note that the

decision levels in the two solvers do not match: one level in SATmain may correspond to

multiple levels in SATbb and vice-versa. For example one round of BCP in SATmain may

propagate multiple Tbv-literals at the same decision level. When asserted in SATbb, each

will correspond to its own decision level. On the other hand, if more than one theory

is involved, it may be the case that no Tbv-literals are asserted at some decision level d

in SATmain. In this case the decision level in SATbb would stay the same while that in

SATmain would increase.

Conflict generation If Abv is unsatisfiable, CBB ∧ ABB
bv must also be unsatisfiable.

SATbb can infer a (non-minimal) inconsistent subset of Abv via resolution. As CBB is

always satisfiable, the only way ABB
bv ∧ CBB can be unsatisfiable is if one of the assump-

tion literals lBB ∈ ABB
bv is falsified by a subset of the other assumptions.2 The assumption

literals corresponding to the conflict can be computed by resolving backwards from the

falsified assumption, until all the literals in the conflict clause are currently assigned

assumption literals. Algorithm 9 takes as its input the falsified literal p and computes

the conflict clause learned. All literals l ∈ learned are over variables in ABB
bv and the

corresponding Tbv clause is Tbv-valid. The procedure is similar to analyzeConflict in

Algorithm 3. Because we did not make any “real” decisions, all literals that do not have

2The subset may be empty if a literal itself is contradictory e.g. x[8] < 0[8].
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a reason must either be assumptions or units. The assumptions remain in learned, while

the units are resolved out. If assumption a1 entails another a2 via BCP, the a1 assump-

tion will be included in the conflict i.e. we resolve down to the earliest assumption.

Algorithm 9: Assumptions conflict.
Input: p falsified assumption literal

1 learned← reason(p);
2 seen← ∅ ;
3 while learned \ seen 6= ∅ do
4 lit← arg maxl{indexA(l)|l ∈ learned \ seen};
5 if reason(lit) 6= ⊥ then
6 learned← Res(learned, reason(lit));

7 else if lit 6∈ BB(ψ) then
8 learned← Res(learned, {¬lit});

9 seen← seen ∪{lit};
10 return learned ;

Propagation To infer that a Tbv-literal l is Tbv-entailed by Abv, the SATbb solver uses

only Boolean-constraint propagation (BCP) and makes no “real” decisions. We instru-

mented the SATbb solver to give explanations using its conflict resolution infrastructure

resolving backwards from the propagated literal l in a way similar to Algorithm 9. Al-

gorithm 11 shows the interaction between BVbb and SATbb. Because a complete satisfi-

ability check in SATbb can be very expensive, we only call Solve in final calls to check.

If Tbv-checkbb is not final, we rely on efficient bit-level reasoning to detect easy conflicts

and propagations using BCP.

For efficiency, it is important that a theory be able to explain the propagations in a

lazy fashion. However, requesting an explanation after search has already been done in

SATbb can lead to SATbb being in a state in which the explanation cannot be computed

anymore. Example 14 illustrates how this can happen. The example heavily relies on
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concepts introduced in Section 1.4.

Example 14. We will show how the explanation of an assumption literal can be lost

after SATbb backtracks during subsequent search. This problem is not specific to clauses

coming from bit-blasting Tbv-atoms, but applies to solve-with-assumptions CDCL SAT

solvers in general.

Assume we are starting with the following bit-blasted clauses CBB:

c1 : u p2

c2 : u p3

c3 : ¬p2 ¬p3 ¬a2

c4 : ¬a1 p0

c5 : ¬p0 ¬u ¬p1

c6 : ¬u p1

c7 : ¬d u

c8 : ¬a1 ¬a2 a3

The a1, a2 and a3 literals are marker literals: a1, a2, a3 ∈ BB(ψ). During the first conflict

the d literal will correspond to the “real” decision, the u literal will be the UIP and the

p1, p2, p3 literals will be propagated literals. Note that these roles only hold for the first

conflict and will change as the solver backtracks.

The following table shows the trail of SATbb after a non-final call to the check pro-

cedure of BVbb, Tbv-checkbb([a1, a2], false):

Level 1 2

Trail a1 p0 a2 a3

Reason ⊥ c4 ⊥ c8
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Because a3 is a marker literal that is entailed by the current assumptions, we can

propagate it out to SATmain. Note that at this point we could compute its explanation

using the reason map as explain(a3) : a1 ∧ a2. Say SATmain does not find any conflicts,

and the next call to Tbv-checkbb is final: Tbv-checkbb([a1, a2], true). Since there are no

more assumptions to process, SATbb can now make “real” decisions. Say it decides

literal d. This leads to a conflict as shown by the following trail:

Level 1 2 3

Trail a1 p0 a2 a3 dd u p1 ¬p1

Reason ⊥ c4 ⊥ c8 ⊥ c7 c6 c5

The corresponding implication graph is shown in Figure 4.2. Conflict resolution

proceeds as usual and identifies the first UIP u, leading to learning the following clause:

c10 : ¬u ¬p0

with the corresponding backtracking level of 1. The trail below shows the SATbb state

after backtracking to level 1 and a round of BCP (see Figure 4.3 for the corresponding

implication graph):

Level 1 2

Trail a1 p0 ¬u ¬d p2 p3 ¬a2 a2

Reason ⊥ c4 c10 c7 c1 c2 c3 ⊥

Because the new learned clause increased the propagation power of the clause data-

base, we discover a conflict before a3 is propagated again. Returning this conflict to

SATmain will force SATmain to do its own conflict resolution, which may require an

explanation for the propagated literal a3. However, in the current state of SATbb, a3

is unassigned. The problem is that during search, the learned clauses strengthen the
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Figure 4.2: Implication graph for Example 14 (first conflict).
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Figure 4.3: Implication graph for Example 14 (second conflict).

propagation power of the clause data-base. There is no guarantee that the order in which

assumption literals are propagated is maintained.

To ensure that we do not “lose” the explanation of any propagated literal, we need

to be careful about backtracking in SATbb when resolving a conflict. We will define the

assumption level assumpLevel as the highest decision level that corresponds to currently

assigned assumptions ABB
bv . If all the assumptions have been processed, this is equal to

the number of assumptions assump. Algorithm 10 shows the changes that need to be

made to the CDCL with assumptions (Algorithm 4) presented in Section 1.4.3 in order

to enable lazy explanations. When backtracking below assumpLevel due to a learned
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clause L, we now check whether the clause data-base strengthened by L would now

lead to a conflict. This is done by speculatively running BCP. If BCP does not identify

a conflict, it is safe to backtrack to level b: all the Tbv propagations will be propagated

again and can be explained. If BCP finds a conflict, it means that adding L proves the

assumptions are unsatisfiable. Recall that the learned clause L is an asserting clause: it

forces the UIP to be asserted in a polarity that is the opposite of what it was before. If

BCP finds a conflict, it means that both polarities of the UIP led to a conflict given the

current assumptions, so the problem must be unsatisfiable.

Experimental evaluation. Experiments in this chapter were ran on the StarExec [80]

cluster infrastructure with a timeout of 900 seconds and a memory limit of 50GB.3 The

benchmark set consists of all 32509 QF_BV problems in SMT-LIB 2014-06-03. All

scatter plots are on a log-scale, and the x and y-axis represent CPU time in seconds,

unless otherwise specified. We will denote by cvcLz the best configuration of the lazy

solver LBV implemented in CVC4, with all features described in Section 4.1 enabled.

To denote that a feature is disabled, we will use the − and to indicate that the feature is

enabled we will use +. For example cvcLz-P denotes cvcLz with propagation disabled,

while cvcLz+EP denotes cvcLz with eager computation of propagation explanations.

Figure 4.4 shows the impact of BVbb propagation with lazy explanations. This fea-

ture is essential for performance and leads to more problems solved in less time. To

explore whether computing explanations lazily for BVbb makes a difference in perfor-

mance, we implemented a version that computes the explanation eagerly (cvcLz+EP).

As Figure 4.5 illustrates, this leads to a significant degradation in performance. Note

that the explanation computed eagerly may differ from the explanation computed lazily.

3Experiments were ran on the queue all.q consisting of Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
machines with 268 GB of memory.
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Algorithm 10: CDCL with assumptions and lazy explanations.
Input: 〈ψ, assump〉 input formula and assumptions

1 C← toCnf(ψ);
2 〈A, dl〉 ← 〈[], 0〉 ;
3 while true do
4 c← BCP(C, A);
5 if c 6= undef then
6 〈b, L〉 ← analyzeConflict(c) ;
7 C← C ∪ L;
8 if b = −1 then
9 return unsat;

10 if b < assumpLevel then
11 backtrack(assumpLevel, A);
12 c← BCP(C, A);
13 if c 6= undef then
14 return unsat;

15 backtrack(b, A);
16 continue;

17 if allAssigned(A) then
18 return sat;

19 if hasAssumps(A, assump) then
20 l← nextAssump(A, assump) ;
21 if A(l) = false then
22 return unsat;

23 if A(l) = true then
24 dl← dl + 1;

25 else
26 l← decide();

27 dl← dl + 1;
28 A← A :: l;
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Algorithm 11: TBV-checkbb
Input: 〈A, final 〉

1 〈P,L〉 ← BCP(A) ;
2 if final and L = ∅ then
3 L← Solve(A) ;

4 return 〈P,L〉 ;

This is due to the fact that the clauses learned in-between assigning the propagated lit-

eral and requesting the explanations can change the propagation order in SATbb. This

explains the presence of the points above the diagonal for which the different explana-

tion changed the search. We examined the ratio of BVbb propagated literals that require

an explanation to the number of BVbb propagated literals. Out of the 32590 QF_BV

benchmarks, only 83 required explaining more than 1% of the propagated literals, with

the highest percent of explained propagation being 63%. Only 1719 problems required

any explanations from BVbb.4

4.3 Algebraic Sub-solvers

The LBV solver consists of four sub-solvers, each sufficient to decide the satisfiability of

constraints in the sub-solver’s own fragment of Tbv (see Table 4.1): the equality solver

BVeq, the core solver BVcore, the inequality solver BVineq, and the bit-blasting solver

BVbb. (See Table 1.4 in Section 1.3 for the precise definitions of Σeq, Σcon, Σineq. The

Σbv signature is just the full Tbv signature.) Each sub-solver is incremental and provides

the theory solver functionalities described in Section 1.5. Our current implementation

uses BVeq by default, but it can alternatively use BVcore. The architecture of LBV was

designed to be modular and extensible: all the bit-vector reasoning is confined within

4Part of the reason is that the benchmark selection is dominated by the sage family that contains 26K
problems out of the 32K in QF_BV. Most of these problems are easy.
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Figure 4.4: Disabling propagation (cvcLz-P).

Figure 4.5: Computing eager explanations (cvcLz+EP).
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the solver, and it is easy to enhance it by adding more sub-solvers.

Algorithm 12: TBV-check

Input: 〈A, final 〉
1 〈Peq, Leq, done〉 ← Tbv-checkeq(A, final) ;
2 if done then
3 return 〈Peq, Leq〉 ;

4 〈Pineq, Lineq, done〉 ← Tbv-checkineq(A; Peq, final) ;
5 if done then
6 return 〈Peq; Pineq, Lineq〉 ;

7 〈Pbb, Lbb, done〉 ← Tbv-checkbb(A; Peq; Pineq, final) ;
8 return 〈Peq; Pineq; Pbb, Leq ∪ Lineq ∪ Lbb〉

Algorithm 12 shows the implementation of Tbv-check, the T -check from Algo-

rithm 5 corresponding to the LBV solver. Given a partial assignment Abv, Tbv-check re-

turns a set of theory literals entailed by Abv, and a set of T -valid clauses. Tbv-check calls

the subsolvers in increasing order of computational cost. For each i ∈ {eq, ineq, bb},

Tbv-checki returns a sequence Pi of propagated literals, a set Li of learned clauses, and

a Boolean value indicating whether the solver is done or not. A solver i is done if

Tbv-checki has detected an inconsistency, or if it can determine that Abv is consistent,

i.e. all literals of Abv fall in the sub-solver’s fragment of Tbv. If no solver detects an

inconsistency, Tbv-check returns the collection of all the propagated literals and lemmas

generated by the individual sub-solvers.

The sub-solvers process all literals in Abv. However, except for BVbb, they reason

on an abstraction of the literals. In particular, BVeq treats all function and predicate

symbols other than = as uninterpreted, while BVineq (as well as BVcore) treats as fresh

Table 4.1: LBV sub-solver signatures

BVeq BVcore BVineq BVbb

Σeq Σeq ∪ Σcon Σeq ∪ Σineq Σbv
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variables any function or predicate symbols of arity greater than one which are not in its

signature.

4.3.1 Equality Solver

The equality solver BVeq, corresponding to Tbv-checkeq, uses a variant of well-known in-

cremental polynomial-time congruence-closure (CC) algorithms [33] to decide the satis-

fiability of its constraints. Standard CC algorithms assume that sorts have an unbounded

cardinality. This makes them incomplete for reasoning about equality and disequality

constraints in Tbv. For example, the formula x[1] 6= y[1] ∧ x[1] 6= z[1] ∧ y[1] 6= z[1] is not

satisfiable in Tbv because there are only two distinct bit-vectors of width 1.

The problem of deciding conjunctions of disequalities between terms of sort [n] in

Tbv is NP-complete. It is equivalent to graph coloring: nodes can be encoded using bit-

vectors and edges as disequalities over bit-vectors. There is a satisfying assignment if

the nodes in the graph can be colored with 2n colors such that no two adjacent nodes

share the same color.

We handle the finite cardinality of the bit-vector sorts by trying to build a satisfying

valuation for all the terms in a given Σeq-constraint. In final calls to check, once the

CC algorithm is done and has not detected any inconsistency, BVeq attempts to assign

a distinct constant value to each congruence class c0
[n], . . . , c

k
[n] for each sort [n] in the

input problem. If this is not possible, which means that k > 2n, it returns a lemma of

the form ∨
0≤i<j≤2n

ri[n] = rj[n]

where ri is a representative for class ci[n], stating that at least two of the first 2n + 1

congruence classes must be merged.
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This process continues until, either the splits lead to an inconsistency or the sub-

solver finds a satisfying valuation. The cardinality lemmas are currently generated only

if the congruence classes consist just of bit-vector constants and variables. While just

guessing a merge of congruence classes is a fairly unsophisticated way to deal with

sort cardinality constraints, we found that it works well in practice for bit-vectors. The

reason is simply that the cardinality of a sort [n] grows exponentially with n and so for

large enough bit-widths one needs to have a very large number of disequalities in the

input problem to force a merge.

4.3.2 Inequality Solver

The inequality solver BVineq can decide the satisfiability of (Σeq ∪ Σineq)-constraints.

It relies on an incremental special-purpose algorithm for deciding the satisfiability of

conjunctions of bit-vector inequalities.5 BVineq only needs to reason about < and ≤

since equality can be expressed in terms of ≤, and inequalities of the form x[n] 6= y[n]

can be eliminated by requesting the following split:

x[n] = y[n] ∨ x[n] < y[n] ∨ y[n] < x[n].

These lemmas are generated by Tbv-checkineq in final checks, only if A is a constraint

over Σeq ∪ Σineq.

For the rest of this section we assume all inequalities are unsigned. A similar ap-

proach can be used for signed inequalities. We will use C to denote both < and ≤, and

C∗ for the transitive closure of C. In the following, we will use I to denote a conjunction

of inequality constraints over variables and constants of the same sort [n].

5This problem is a special case of modular difference logic that can be reduced to integer difference
logic, as there is no wrap-around behavior due to overflows.
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Definition 8. Given the set of inequalities I, an I-valuation M is a mapping from bit-

vector variables v[n] ∈ I to constant values c[n].

For convenience we extend M to map constants to themselves, and other bit-vector

terms and formulas as expected.6 A valuation M satisfies a bit-vector constraint φ if

M(φ) = true.

Definition 9. We define a partial order � over valuations on I as follows: given valua-

tions M1 and M2, M1 � M2 iff for all bit-vector terms t ∈ I , M1(t) ≤ M2(t).

We say a valuation M is the least valuation of I if M satisfies I and for all valuations

M′ satisfying I, M � M′.

Lemma 1. Any satisfiable set of inequalities I has a least valuation.

Proof. We show that � has a least element over the set of all satisfying valuations of I.

Given two satisfying I valuations, M1 and M2, we define the u operator as follows:7

(M1 uM2)(t) := min(M1(t),M2(t)).

Next we show that the new valuation M = M1 u M2 satisfies I. Let x C y be an

inequality in I. We show that M(x) C M(y):

(C is <) : Because M1 and M2 are satisfying, M1(x) < M1(y) and M2(x) < M2(y).

As M(x) = min(M1(x),M2(x)) we have M(x) ≤ M1(x) and M(x) ≤ M2(x).

If M1(y) ≤ M2(y) we have M(y) = M1(y) which entails M(x) < M(y) (the

inequality is satisfied). Similarly for the M1(y) > M2(y) case.

(C is ≤) : Analogous to previous case.
6In our case M will only apply to variables, constants and inequalities.
7It can be shown that 〈�,u,t〉 form a lattice over all the satisfying valuations of inequality set I,

where t is defined using max
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By construction M � M1 and M � M2. Let S be the set of satisfying valuations

of I. Since bit-vectors are bounded, S is finite. Let the cardinality of |S| be N . Let

M1, . . . ,MN be an enumeration over S, and M′i be the result of applying u to the first i

valuations:

M′i = ((. . . (M1 uM2) uM3) . . . uMi)

Inductively, each M′i is a least valuation: each M′i+1 � M′i. Therefore the least valuation

of I is M′N .

Algorithm 13: ProcessInequality
Input: a C b

1 I ← I ∪{a C b} ;
2 val←M;
3 O←M;
4 val(b)← newVal(a Cb);
5 if not val(b) = M (b) then
6 PQ.push(b) ;

7 while not PQ.empty() do
8 x← PQ.pop() ;
9 fail← updateModel(x, val(x)) ;

10 if fail then
11 return 〈 unsat ,buildConflict(x)〉 ;

12 foreach x C y ∈ I do
13 val(y)← max(val(y), newVal(x Cy));
14 if not val(y) = M (y) then
15 PQ.push(y) ;

16 return 〈 sat ,∅〉 ;

The starting model M is defined as:

M(v[n]) = 0[n].
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Algorithm 14: updateModel

Input: 〈x, newX〉
/* Cannot update a constant */

1 if x is a constant and x 6= newX then
2 return true;
/* Overflow */

3 if newX < x then
4 return true;
/* Cycle containing a non-strict inequality */

5 if x = a then
6 return true;

7 M (x)← newX;
8 return false;

where 0[n] is the binary representation of 0 in n bits. We maintain the invariant that M

is the least model of I. Given a new inequality a C b, we want to extend M to a least

model of I ∪ {a C b}, or discover that the problem is unsatisfiable. If M(a) C M(b)

already holds, we are done. Otherwise, the least model property guarantees that terms a

and b have the least possible values. Therefore in order to satisfy a C bwe must increase

b’s value, if possible, to match that of a. The update cannot violate previously satisfied

inequalities of the form {t1 C t2 | t2 C∗ b}. The only terms whose values may need to

further be updated are terms t such that b C∗ t.

Given a set of inequalities I, BVineq builds the least model incrementally by process-

ing the inequalities using the ProcessInequality procedure described in Algorithm 13.

The procedure stores its inequalities as a set in the variable I, initialized to ∅. The val-

uation val maps each x to an intermediate value val(x) that x should have in order to

satisfy I: val(x) can be seen as refining the lower bound on the final value of x. Initially

val is equal to M. The original M is also saved in the O variable.

Assuming a is assigned M(a), the newVal(a C b) procedure returns the smallest
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value b can have in order to satisfy a C b. If M(a) C M(b), then newVal just returns the

current M(b). Otherwise, if C was ≤ then newVal will return M(a), and if it was <, it

will return M(a) + 1.8

If the value required to satisfy a C b is different from the current valuation M(b), b is

pushed onto the priority queue PQ. The priority queue PQ reduces the number of times

the value of each term is updated, by prioritizing terms with lower original model value:

it returns the element x with the least valuation O(x). If there are two elements x and

y that have the same valuation O(x) = O(y), PQ returns the element with the highest

val. Note that the valuations M and val change through the while-loop iterations, while

O stays the same.

During each iteration of the loop, an element x is popped from the queue. The

updateModel procedure shown in Algorithm 14 attempts to update the valuation of M(x)

to val(x). There are several ways in which this can fail: x is a constant and x 6= val(x)

(recall that newVal returns the original value if the inequality is satisfied); increasing

the value of x leads to an overflow (in other words x > val(x)); or there is a cyclic

sequence of inequalities with at least one strict inequality in it. Since ProcessInequality

is called when M is satisfying, we know that no such cycles could have already existed

in the graph. Therefore the a C b edge must have formed the cycle. The updateModel

procedure detects such cycles by checking whether x = a.

If updateModel fails, unsat is returned along with a conflict built by traversing the

graph backwards and collecting the reason for each value update. If updateModel suc-

ceeds, we examine all the successors y of x, and compute the least value they need to be

updated to, to satisfy the x C y edges. Note that y may already have required updating

due to some other incoming edge: we take the max of the two update values. If the

8Overflows will be caught by updateModel when it checks that M(x) ≤ val(x).
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valuation of y needs to be updated, we push y on the priority queue. The priority queue

PQ has the following invariant: all the nodes x ∈ PQ must be updated to at least val(x)

in order to satisfy I.

Claim 2. Given a least model M for a set of inequalities I, the least model M′ for any

other set of inequalities I ′ ⊇ I must satisfy M � M′.

Proof. Any M′ that satisfies I ′ also satisfies I. As M is the least model of I, M �

M′.

Claim 3. During the execution of Algorithm 13, val and M maintain the invariant that

they are less than the least valuation L of I: val � L and M � L.

Proof. We will prove this by induction on the number i of equalities processed by Pro-

cessInequality. We will use _i to denote the value of variables at step i, and _j to denote

the value of variables during the jth iteration of the loop at line 7. For the base case when

no inequalities have been processed yet, i = 0 and val0 and M0 are the zero valuation

that assigns 0 to everything. Therefore val0 � L and M0 � L.

For the inductive step, we assume that Mi � L and vali � L and show that after

processing the i+ 1 inequality this property still holds. We will prove this by induction

on the loop iterations of the while loop at line 7 by showing that valji � L and Mj
i � L is

a loop-invariant.

Base case: When no loop iterations have been executed, M0
i = Mi. By inductive as-

sumption M0
i � L. Before the while-loop, val0i (x) = Mi(x) for all x 6= b. The

newVal(a C b) procedure returns Mi(a) if C is ≤ and Mi(a) + 1 otherwise. Since

Mi � L (inductive hypothesis), newVal(a C b) returns a lower bound on the value

b can be assigned to in order to satisfy a C b. Therefore, before the while-loop

val0i � L.
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Inductive step: Let Mj
i and valji be the values of Mi and vali at the beginning of loop

iteration j. By the inductive hypothesis we know that Mj
i � L and valji � L.

Mj+1
i only differs from Mj

i at xj (updated at line 9), with Mj+1
i (xj) = valji (x

j),

if the updateModel call succeeded (if it failed the procedure terminates and M

and val are not updated anymore). However valji � L (inductive hypothesis) so

valji (x
j) ≤ L(xj).

Similarly, valj+1
i only differs from valji at each yj , where it is set to the maximum

value of valji (y
j) and newVal(xj C yj) (line 13). We know that valji (y

j) ≤ L(yj)

(inductive hypothesis), and that newVal(xj C yj) will return a lower bound on the

value of yj that satisfies xj C yj assuming xj has the value Mj
i (x

j). Therefore

valj+1
i (yj) ≤ L(yj) and valj+1

i � L.

Claim 4. The updateModel procedure only returns true if I is unsatisfiable.

Proof. The call to updateModel(x, val(x)) returns true only in the following cases:

1. x is a constant c such that c < val(x). Since we have already shown by induction

that val provides a lower bound on the satisfying value of x (val � L) it must be

the case that I is unsat.

2. updating x to val(x) leads to an overflow. Similarly, because val � L.

3. x = a. If updateModel reaches a, there must be a cycle involving a. Since the

updateModel procedure only gets called on x 6= val(x) and val(x) � L(x) the

cycle must have at least one strict edge. Therefore I is unsat.
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Claim 5. If I is satisfiable, the following is an invariant of the ProcessInequality proce-

dure at line 7: ∀x 6∈ PQ, M(x) = val(x).

Proof. We prove this claim by induction on the number of while-loop iterations j.

Base case: For j = 0, no loop iterations have been executed. M is the same as val at

all positions except b. However, if val(b) 6= M(b), then b is added to PQ (line 6).

Therefore the claim holds.

Inductive step: Assume all nodes x not in PQ at iteration j have Mj(x) = valj(x).

We want to show that at the end of this iteration, Mj+1(x) = valj+1(x) for all x.

Let xj be the node popped from PQ during the j + 1 iteration. If updateModel

succeeds, then Mj+1(xj) = valj+1(xj) (by line 9). By Claim 4, updateModel call

cannot fail as by assumption, I is satisfiable. This is the only position where Mj+1

differs from Mj , so ∀x 6∈ PQ,Mj+1(x) = valj(x). Next, we check when valj+1

is updated. The valj+1 valuation is updated only at line 13 for all the successors

y of xj . So for all y′ such that x C y′ 6∈ I, valj+1(y′) = valj(y′) = Mj+1(y′).

However, for the values that do get updated, if valj+1(y) 6= Mj+1(y), y is added

to PQ. Therefore for all y 6∈ PQ, valj+1(y) = valj(y) = Mj+1(y).

Claim 6. If I is satisfiable, the algorithm will terminate with a satisfying valuation M.

Proof. We prove this by induction on the number of inequalities already processed by

ProcessInequality. We will denote by Ii the set I corresponding to the ith call of the

ProcessInequality procedure. Base case: for i = 0, I0 = ∅ so the initial valuation M0 is

satisfying.
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Inductive step: assume that the valuation Mi satisfies Ii and we are processing the

(i+ 1)th inequality a C b. We will show that at each loop iteration step j, the following

invariant holds for all x C y ∈ Ii: Mi(x) C vali(y).

Base case: j = 0, we have not executed any loop iterations yet. By inductive assump-

tion, for all x C y ∈ Ii, Mi(x) C Mi(y). Before the loop iterations, vali is the

same as Mi for all terms except b. Updating vali(b) to newVal(a C b) ensures

that for the new inequality a C b, Mi(a) C vali(b), by the definition of newVal.

Next we check that this update does not break the invariant on any of the other

inequalities. Any inequality of the form a′ C b ∈ Ii must have been satisfied by

Mi: Mi(a
′) C Mi(b). Since by definition of newVal, newVal(a C b) ≥ Mi(b), the

a′ C b inequalities also satisfy the invariant Mi(a
′) C vali(b). Note that the update

to b’s value cannot violate the invariant on inequalities of the form b C a′.

Inductive step: assume that the invariant holds at iteration step j: forall x C y ∈ Ii,

Mj
i (x) C valji (y). Let xj be the value popped off the queue during the jth loop

iteration. M is only updated during the updateModel procedure: Mj+1
i (xj) =

valji (x
j). Assuming the previous valuation Mj

i satisfied all the inequalities, the

only inequalities that can violate the invariant after this update are of the form:

xj C y′. However, during the for-loop at line 12, valj+1
i (y′) is assigned to a

value that satisfies xj C y′ (by definition of newVal). Again, any inequality of

the form y′ C z cannot violate the invariant after the update to val since M(y′) is

unchanged.

Therefore, at the end of the while-loop for all x C y ∈ Ii+1, Mi+1(x) C vali+1(y).

By Claim 5 and because the loop exiting condition is PQ = ∅, Mi+1(x) =

vali+1(x) for all x. Therefore for all inequalities x C y ∈ Ii+1, Mi+1(x) C
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Mi+1(y) i.e. at the end of the procedure M is a satisfying model for I.

Lemma 7. If I is satisfiable, the BVineq algorithm maintains a least valuation M.

Proof. We will show this claim by proving that at each step i, the algorithm maintains

the least valuation for the set of inequalities Ii. Assume the set of input inequalities I

are satisfiable. The proof proceeds by induction on step i, where step i corresponds to

processing the ith inequality using Algorithm 13. We will denote by Mi the valuation at

step i and by Ii the set of inequalities at step i.

Base case : For i = 0 and I0 = ∅ the starting valuation M is the least valuation as it

assigns everything to 0.

Inductive step : Say we are processing a new inequality a C b. Since Ii+1 is satisfiable

there must exist some least valuation L that satisfies it. As shown by Claim 3,

Mi � L is an invariant for the while-loop at line 7. Therefore at the end of the

while-loop Mi+1 � L. By Claim 6, Mi+1 satisfies Ii+1, therefore Mi+1 must be a

least valuation for Ii+1.

Theorem 8. The BVineq algorithm is sound and complete for set of inequalities I.

Proof. The algorithm is trivially terminating, because at each iteration we increase the

current M, and there are finitely many valuations. If we reach line 16, the valuation M

must be a least valuation of I (by Lemma 7), so I must be satisfiable. By Claim 4, we

only reach line 11 when I is unsatisfiable. Therefore the BVineq algorithm is sound and

complete.
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Lemma 9. Algorithm 13 only updates the valuation M once for each node.

Proof. Let x1, . . . , xn be the sequence of literals popped from PQ during the loop iter-

ations. The corresponding PQ keys will be:

〈O(x1), val1(x1)〉 . . . 〈O(xn), valn(xn)〉

where we denote by _j the value of the variable at loop iteration j. Note that while val

changes, O stays the same. We will define the following ordering on the elements in the

sequence: xi v xj if O(xi) < O(xj), or if O(xi) = O(xj) and vali(xi) ≥ valj(xj). We

will show that the sequence of nodes popped from PQ is increasing with respect to thev

ordering. By line 12 any y pushed on the priority queue PQ has O(y) ≥ O(xj) where xj

is the element popped from PQ at that iteration. Therefore, because we always pop the

element with lowest O value, the only way the ordering may fail is if O(xj) = O(xj+1)

and valj(xj) < valj+1(xj+1). We will show by induction that if O(xj) = O(xj+1), then

it must be the case that valj(xj) ≥ valj+1(xj+1).

Base case: For j = 1, there is only one element in the sequence so it respects the v

ordering.

Inductive step: Assume that the v ordering holds up to index j. Let xj be the ele-

ment just popped off of PQ we are currently processing. We want to show that if

O(xj) = O(xj+1) then valj(xj) ≥ valj+1(xj+1), where xj+1 is the next element

in the sequence. If xj+1 was already in PQ, then valj(xj+1) ≤ valj(xj) (by queue

order). If valj+1(xj+1) = valj(xj+1) the property holds. The value of xj+1 may be

updated at line 13 to either the old value valj(xj+1), in which case it respects the

ordering, or to newVal(xj C xj+1).
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Assume C was <. If xj C xj+1 is not the new inequality a C b, O(xj) < O(xj+1)

(Claim 6) so the property holds. If xj = a, updateModel fails and the procedure

terminates.

Now assume C was ≤. The newVal procedure will then return Mj+1(x) which

is equal to Mj+1(xj) = valj(xj) (by line 9). Therefore valj+1(xj+1) = valj(xj).

Because v is transitive, the ordering holds for the sequence.

Assume there is some element x that gets updated more than once. Let i < j be the

first two positions it appears in the sequence at. Because the sequence is sorted w.r.t. v

it must be the case that all the O(xk) for i ≤ k ≤ j are equal, and vali(x) ≥ valj(x).

Consider time-step j− 1 when we are just about to add x to PQ for the second time. By

line 13 as the value of x is updated to the maximum between the old value vali(x) and

some other value, valj(x) ≥ vali(x). Before adding x to the queue we check whether

valj(x) 6= Mj(x). However, the last time we updated M(x) was at time step i (by

assumption), so Mj(x) = vali(x). Since by assumption we are adding x to the queue

again, valj(x) 6= vali(x). However, this leads to a contradiction because valj(x) ≥

vali(x), but due to the ordering vali(x) ≥ valj(x).

Because each node only gets updated once (Lemma 9), the while-loop can run at

most n times, where n is the number of nodes in the inequality graph. Let m be the

number of inequalities in I and n the number of bit-vector terms. If a Fibonacci Heap is

used to implement the priority queue PQ, each pop can be executed in O(log n), and the

push operations in amortized O(1). Since the for-loop at line 12 only visits each edge

once, the push and updates to val will only be executed m times during the while-loop.

Therefore the ProcessInequality procedure runs inO(n log n+m), which makes the full

inequality algorithm run in O(m(n log n+m)).
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Figure 4.6: Inequality graph for Example 15.

Example 15. Consider the following set of inequalities over bit-vector terms of bit-

width 8 where, for brevity, we use decimal numerals to denote bit-vector constants:

I = {2 < a, a ≤ c, b < c, c ≤ 3}. Figure 4.6a shows the least satisfying model for

I. The nodes are bit-vector terms; gray nodes are constants, and white ones, variables.

Each node has an associated constant, its M value. The continuous edges represent

inequalities. The dotted edges are reason edges: they point to the node that forced the

last update to the current node’s value.

To process the new inequality a ≤ b, we add the corresponding inequality edge,

and update the value of b to M(a). This in turn requires increasing the value of c to

M(b) + 1. We identify a conflict when updateModel(3, 4) fails: 3 is a constant and

M(c) ≤ 3 does not hold (Figure 4.6b). Because c has the lowest possible value, I

must be unsatisfiable. We build the following minimal conflict by traversing the reason

back-edges: {2 < a, a ≤ b, b < c, c ≤ 3}.

4.4 In-processing Solver

The lazy DPLL(T ) framework enables several techniques that are difficult or impossible

to use with eager solvers. In this section we discuss one of these techniques consisting

of applying word-level rewrites during solving (in-processing).

Before engaging in potentially expensive SAT reasoning, BVbb relies on the inpro-
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cessing module to check if the problem can be solved or significantly simplified by

word-level simplification techniques. The algorithm described in Algorithm 15 has the

flavor of Gaussian elimination. It works by iterating over a worklist of assertions W

while maintaining a substitution map σ. Initially, W is initialized to the set of assign-

ments Abv active in the current search context and σ is empty. The worklist assertions

first go through a preprocessing step that consists of slicing variables and introducing

fresh Skolem variables for the slices. We do this by collecting the cut-points of bit-

vector variables. A cut-point point at position i signifies a cut lying between indices

i − 1 and i. For each variable v and extract v[i : j] occurring in Abv the i and j + 1

positions are marked as cut-points. There are implicit cuts at position 0 and n. For any

two adjacent cuts i, j + 1 we introduce a fresh Skolem variable s for v[i : j] and add the

following to the substitution map:

v ← s1 ◦ . . . ◦ sk.

Slicing variables in this manner enables more substitution and simplifications. Given

v[i : j] = t, it is not sound to use t to replace v[i : j] as it may overlap with other extract

terms. If however v[i : j] is a disjoint slice the substitution is safe.

The algorithm then begins the solving loop by iterating through the work-list W

and applying substitutions. For each worklist assertion w ∈ W , we first apply the sub-

stitution map, and then rewrite it using word-level simplification techniques (simplify).

The solveEq procedure then attempts to solve the updated assertion w to obtain a new

substitution and learn new equalities entailed by w and add these to the working list.

In our implementation, we solve xor equations and we slice equations between concat

expressions to get new equalities. The working list W and the substitution map σ are
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updated with this new information, and the process is repeated to a fix-point.

If any of the assertions in W reduces to false, we have a conflict, and if they all

reduced to true the assertions are satisfiable. If there are no such obvious inconsistencies

we assert bitblast(W) to a SAT solver and run the Solve routine on the simplified set of

assertions W . We do this heuristically, if the problem has been reduced enough in terms

of the circuit size. We found checking the simplified assertions when they are less than

50% of the size of the original assertions to be a good heuristic.

All of the data-structures described in this section are enhanced with extra book-

keeping information that allows for retrieving the conflict in terms of the original asser-

tions. The substitution map labels each substitution with the original set of assertions

that enabled it.

The call to Solve on line 14 in Algorithm 15 calls to another instance of the SAT

solver. Each call resets the SAT solver, and starts from scratch. Bit-blasting the con-

junction of simplified assertions W to SATbb would not be sound: these assertions hold

only during the current part of the search space. Bit-blasting a ⇔
∧

bitblast(w) for

Tbv-literals w ∈ W using a fresh assumption literal a would be sound. However this has

several drawbacks. First, bit-blasting each set of simplified assertions W corresponding

to an assignment Abv can lead to a different set of clauses. These clauses would accumu-

late and have the potential of slowing down the SAT solver. More importantly perhaps,

the state of SATbb has to be carefully maintained between calls to Tbv-check to be able

to provide lazy explanations. The main benefit in reusing the same SAT solver between

queries is taking advantage of the learned clauses in the previous queries. However,

this is diminished by the introduction of fresh Skolem variables during slicing and the

fact that the bit-blasted formula changes significantly from query to query due to the

simplifications.
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Example 16. Assume the In-processing solver is called on the following set of bit-vector

assertions:

Abv =
[
x = 257[16], y = x[15 : 8]× x[7 : 0] + 7[16], y 6= 8

]
The call to slice slices the x variable by introducing fresh Skolem variables s[8] and s′[8].

The substitution map σ and the worklist assertions W are updated to:

〈W,σ〉 = 〈
[
s ◦ s′ = 257[16], y = s× s′ + 7[16], y 6= 8

]
, {x← s ◦ s′}〉.

The solveEq procedure uses the s ◦ s′ = 257[16] equality to learn two new equalities:

〈W,σ〉 = 〈
[
s = 1[8], s

′ = 1[8], s ◦ s′ = 257[16], y = s× s′ + 7[16], y 6= 8
]
, {x← s◦s′}〉.

This enables the following sequence of substitutions and simplifications (the assertions

that simplify to true are removed):

〈W,σ〉 = 〈
[
s′ = 1[8], 1[8] ◦ s′ = 257[16], y = 1[16] × s′ + 7[16], y 6= 8

]
,

{x← s ◦ s′, s← 1[8]}〉

= 〈[y = 8, y 6= 8] , {x← s ◦ s′, s← 1[8], s
′ ← 1[8]}〉

= 〈[⊥] , {x← s ◦ s′, s← 1[8], s
′ ← 1[8], y ← 8}〉

Experimental evaluation. We evaluated the impact of each algebraic technique on all

the SMT-LIB v2.0 benchmarks in the QF_BV family. Figure 4.7 shows the performance

benefit of using the equality solver BVeq, by comparing cvcLz with the equality solver

enabled (cvcLz) with cvcLz with equality reasoning disabled (cvcLz-Eq). Disabling the
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Algorithm 15: In-processing.
Input: Abv

1 〈W, σ〉 ← 〈Abv, []〉;
2 〈W, σ〉 ← slice(Abv, σ);
3 changed← true;
4 while changed do
5 changed← false;
6 for w ∈W do
7 w← simplify(σ(w)) ;
8 〈W’, σ′〉 ← solveEq(w);
9 if W’ 6= ∅ or σ 6= [] then

10 changed← true ;

11 〈W, σ〉 ← 〈W ∪W’, σ;σ′〉;

12 if false ∈W then
13 return conflict;

14 return Solve(bitblastW);

equality solver leads to fewer problems solved in more time. However, enabling the

core solver that relies on slicing to be complete hurts performance overall (Figure 4.8).

The only exception is the bruttomesso family of benchmarks crafted to stress test core

solvers.

Figure 4.9 shows the performance impact of disabling the inequality solver BVineq.

While in most cases the inequality solver helps performance, there is a clear line above

the diagonal consisting of the benchmarks where inequality reasoning did not help but

added an small overhead. As Figure 4.10 shows, overall the algebraic inprocessing

module helps performance. There are, however, several problems where performance

is worse. We attribute this to the overhead of the SAT reasoning on the simplified as-

sertions. While we try to account for this by disabling SAT solving in the in-processing

module dynamically if it has not been successful on previous assertions, there are still

instances where the overhead outweighs the benefit.
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Figure 4.7: Disabling equality sub-solver (cvcLz-Eq).

Figure 4.8: Enabling core solver (cvcLz+core).
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Figure 4.9: Disabling inequality sub-solver (cvcLz-Ineq).

Figure 4.10: Disabling algebraic in-processing (cvcLz-Alg).
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4.5 Lazy Techniques

Integrating a lazy Tbv solver in the CDCL(T ) framework allows for using certain tech-

niques that would not otherwise be easily integrated with an eager solver. This section

highlights some of these techniques.

Lemmas for Bit-vectors. Certain arithmetic proprieties are hard for SAT solvers to

reason about, especially when they involve multiplication or division. Some of these

properties can be axiomatized via lemmas instantiated to values specific to the problem

at hand. The splitting on demand infrastructure allows doing this on demand, only when

the lemma is relevant in the current search context. One such lemma our solver LBV

employs encodes a basic property of division: the remainder is always smaller than the

divisor:

∀x.∀r.∀d.∀x.(x%d = r ⇒ (d = 0[n] ∨ r < d)).

Not only is this lemma quantified, but it is bit-width independent. Therefore it must be

instantiated for specific problems. When an assertion of the form t1%t2 = t3 appears

in Abv, the lemma is instantiated with t1, t2 and t3 and the following clause is added to

SATmain:

¬(t1%t2 = t3) ∨ (t2 = 0[n]) ∨ (t3 < t2).

Conflict Minimization The conflicts computed by BVbb using SATbb with assump-

tions are non-minimal and so are the conflicts computed by BValg. We noticed that in

some instances they are far from minimal. The average number of literals in conflicts

returned for over 2500 QF_BV benchmarks could be reduced to 75% of the original size.

In several instances the the conflicts could be reduced to 10% of the original size. For

this reason we implemented a conflict minimization scheme based on the quickXplain
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conflict minimization algorithm [53].

Figure 16 shows the pseudo-code for the recursive minConflict procedure. The two

arguments to minConflict are confl, the conflict to be minimized and minC an argument

passed by reference in which the minimized conflict is stored. Initially minC = ∅. The

procedure employs an incremental SAT solver that maintains an assertion stack on which

assertions are pushed using push and popped using pop. Our implementation uses solve

with assumptions to simulate incrementality. The SAT solver state is maintained during

recursive calls: the un-popped assertions act as background assertions. The conflict

confl is minimized with respect to these background assertions.

The procedure employs a binary search strategy to find an unsatisfiable subset of

confl. If confl has only one element, the element is added to minC. Otherwise, the

routine checks if the top half of the conflict confl top(confl) is unsatisfiable. If this is the

case unsatCore attempts to further minimize this by identifying a subset of top(confl)

that is unsatisfiable (it relies on the assumptions conflict procedure in Algorithm 9). This

new subset is recursively minimized.

Next, the algorithm applies the same method if the bottom half bottom(confl) is

unsatisfiable. If neither the top or bottom halves of confl are unsatisfiable, it must be

that the minimal conflict contains literals in both sides. Before the recursive call at

line 19 the literals in bottom(confl) are still asserted. The minConflict call will add to

minC minimum subset of the literals in top(confl) that along with bottom(confl) are

unsatisfiable. The recursive call at line 23 will minimize the literals in bottom with

respect the literals in the minimized conflict computed so far, including those selected

from top.

Because the satSolve routine could be very expensive, our implementation runs the

SAT solver with a 10K bound on the number of conflicts. Therefore, satSolve could
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return unknown, in which case we conservatively act as if the result was sat.

Algorithm 16: Conflict minimization minConflict based on quickXplain.
Input: 〈confl,minC〉

1 if |confl| = 1 then
2 minC← minC ∪ confl;
3 return;

4 push();
5 assert(top(confl));
6 if Solve() = unsat then
7 confl’←unsatCore(top(confl));
8 pop();
9 minConflict(confl’, minC);

10 return;

11 pop();
12 push();
13 assert(bottom(confl));
14 if Solve() = unsat then
15 confl’←unsatCore(bottom(confl));
16 pop();
17 minConflict(confl’, minC);
18 return;

19 minConflict(top(confl), minC);
20 pop();
21 push();
22 assert(minC);
23 minConflict(bottom(confl), minC);
24 pop();

Justification heuristic Section 2.3 described the use of a non-clausal engine, SATJ to

reduce the size of the problem theory solvers have to reason about. This feature proves

very beneficial for the performance of the lazy bit-vector solver cvcLz.

Experimental evaluation. Figure 4.11 shows the performance impact of cvcLz with

and without SATJ (cvcLz-J). While there are some problems on which performance is
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Figure 4.11: Disabling justification heuristic (cvcLz-J).

worse since the justification heuristic changes the SAT search, overall the performance

is improved. Enabling SATJ solves 175 more problems in half the total time.

Figure 4.12 compares the average number of literals in the Tbv conflicts with and

without quickXplain enabled. Note that returning different conflicts affects the search, so

the values shown here are not equivalent to how much quickXplain reduced the conflict

size. They do illustrate that using quickXplain greatly reduces the conflict size.

The results in Figure 4.13 show the performance impact of this routine. Although

the conflicts are minimized by a factor of over 10 in some instances, the overhead

of minimizing the conflicts is far too large. The quickXplain algorithm requires only

O(n log(k + 1) + k2) [53] checks, where k is the size of the minimized conflict and n

of the initial conflict, but each one of these checks can be quite expensive. This area

requires further investigation, such as a more efficient conflict minimization procedure.
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Figure 4.12: Average conflict size using QuickXplain(cvcLz+QX).

Figure 4.13: QuickXplain conflict minimization (cvcLz+QX).
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4.6 Model Generation

An important feature of an SMT solver is being able to return a set of values that sat-

isfy the input formula, if such a set of values exists. These are often used as counter-

examples. An SMT model for a satisfiable T -formula ψ is a satisfying assignment from

the free variables in ψ to constants in their respective domains. Note that this is not the

same notion of model introduced in Section 1.2.2.9

In this section we give a brief overview of how models are generated in cvcLz. We

will assume the CVC4 T -independent preprocessing does the book-keeping necessary

to build a model from a model of the preprocessed formula.

The LBV solver must be able to return a model that satisfies the satisfiable Tbv as-

sertions Abv. Note that the value of variables not occuring in Abv is not relevant and can

be set to an arbitrary value such as 0[n]. LBV requests a model from the last sub-theory

that was complete. Recall that if the equality sub-solver BVeq is complete, it attempts

to build a model by assigning distinct values for each congruence class. If queried, it

returns this model. The inequality sub-solver BVineq always maintains a least satisfy-

ing valuation which can be used to build a model. The bit-blasting solver BVbb has to

query the SATbb for the value of the bits of the variables occuring in Abv. The inpro-

cessing module retrieves the value of a variable v by first applying the substitution map

σ to v and then collecting the values of all the variables in σ(v) from the SAT solver it

bit-blasted to.
9In SMT, free variables are regarded as uninterpreted constants so they are actually part of the model.
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4.7 Related Work

The way the bit-blasting SAT solver BVbb integrates two SAT solvers is similar to the

work on IC3 in [12]. They show a similar way of composing SAT solvers that allows unit

propagation between the SAT solvers, and show the performance benefits of integrating

such an approach in IC3.

Word-level approaches to solving bit-vector constraints avoid reduction to SAT and

attempt to employ word-level reasoning. The work in [30] and [11] is based on word-

level reasoning and it uses Shostak-style canonizers and solvers to compute a canonical

form for bit-vector expressions. While an elegant approach, its applicability is limited

to a restricted set of operators: concatenation, extraction and linear equations over bit-

vectors.

The framework for a lazy bit-vector solver was first introduced by Bruttomesso et

al. [23]. They describe an implementation of a DPLL(T )-style lazy layered solver for

Tbv in the SMT solver MathSAT [27]. Their approach lazily encodes the problem into

linear integer constraints and uses word-level inference rules during solving. Later work

by Franzen [42] moves from encoding the problem into linear integer arithmetic to bit-

blasting the formula to the same SAT solver used to reason about the Boolean abstraction

of the formula.

The lazy solver cvcLz described in this chapter extends the lazy CDCL-style ap-

proach to bit-vector solving in [27]. We explored the following new ideas within the

lazy framework: (i) a dedicated SAT solver for Tbv that supports bit-blasting-based

propagation with lazy explanations; (ii) specialized Tbv sub-solvers that reason about

fragments of Tbv; (iii) inprocessing techniques to reduce the size of the bit-blasted for-

mula when possible; and (iv) decision heuristics to minimize the number of literals sent
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to the bit-vector solver by the main SAT engine.

These new features greatly improve performance: our solver solves 450 more prob-

lems in roughly one third of the time compared to the only other lazy bit-vector solver.

This brings the lazy framework from a niche player to a serious contender.
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Chapter 5

Lazy vs Eager

So far we have presented two bit-vector solvers employing different approaches to solv-

ing bit-vector constraints: the eager solver cvcE (Chapter 3) and the lazy solver cvcLz

(Chapter 4). This chapter provides a comparative analysis of the two solvers. We try to

answer questions such as: are there types of problems for which one particular approach

is better suited for and if yes, why? We start by providing an extensive experimental

evaluation comparing the performance of the lazy and eager approaches in Section 5.1.

This section also compares the performance of the CVC4 bit-vector solvers with that of

other state-of-the-art bit-vector solvers. In Section 5.2, we look in more depth at the rea-

son for the performance difference between the two solvers, while focusing on specific

problem types. Finally, in Section 5.3 we conclude by discussing other approaches to

solving bit-vector constraints.
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5.1 Experimental evaluation

In this section, we present a comparative experimental evaluation of the eager (cvcE) and

lazy (cvcLz) approaches as implemented in the SMT solver CVC4. All the experiments

in this section were run on the StarExec [80] cluster infrastructure with a timeout of

900 seconds and a memory limit of 50GB.1 For the QF_BV experiments, we included

all the SMT-LIB 2014-06-03 benchmarks. The QF_AUFBV experiments contain all the

SMT-LIB 2014-06-03 benchmarks for the QF_ABV and QF_AUFBV logics.

Table 5.1 compares the performance of cvcE, cvcLz and that of the only other bit-

vector solver that supports lazy bit-blasting, mathsatLz2. The eager solver performs

better on families that involve bit-level manipulations, such as the brummayerebiere*

families, the asp family that does not contain any arithmetic operators, and the float

family.

The lazy solver cvcLz excels on families that benefit from algebraic reasoning, such

as calypto, tacas07, bruttomesso and uclid_contrib_smtcomp09. Overall, the lazy solver

cvcLz solves more problems than the eager solver cvcE in less time. Compared to the

only other lazy solver we are aware of, mathsatLz, cvcLz solves 434 more problems, in

one third of the time.

Complementary approaches. A closer examination of the results in Table 5.1, shows

that there are few families on which the two solvers cvcE and cvcLz perform similarly:

on most families one greatly outperforms the other. Figure 5.1 shows a scatter plot of the

run-time of cvcLz compared to that of cvcE (note that this plot is not on a log scale). It is

1Experiments were run on the queue all.q consisting of Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
machines with 268 GB of memory.

2We used the SMTCOMP2014 submission and altered the configuration script to enable the lazy
solver.
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hard to draw any conclusions from this image, as the results vary wildly by benchmark.

If we eliminate the 709 benchmarks in the asp and log-slicing families, an interesting

pattern emerges (Figure 5.2). The lack of problems lying on the diagonal suggests the

two approaches are complementary: the lazy solver efficiently solves problems that are

either impossible or very difficult for eager solvers. At the same time, it is not realistic

to expect the lazy solver to do well on problems that are easy for eager solvers (and

indeed it is often slower on these problems).

For this reason we propose a portfolio approach that runs an eager solver and a

lazy solver in parallel. To gauge the complementary nature of the two approaches we

used CVC4’s portfolio infrastructure which allows us to run the two solvers in different

parallel threads. In this setup, the solver waits for the first thread that finishes with

an answer and then kills the other, thus getting the best performance between the two

solvers each time (modulo memory usage). We use cvcPll to refer to the parallel solver

implementation in CVC4, and cvcVBS for the virtual best solver from combining cvcE

and cvcLz. Table 5.2 compares cvcPll with cvcVBS and the lazy and eager solvers. It

shows that cvcPll is very close to cvcVBS in terms of performance. Most of the problems

that are not solved by cvcPll but are solved by cvcVBS are in the asp and log-slicing

families that use a lot of memory for solving. Combining the two solvers dramatically

increases the number of problems solved in both cvcPll and cvcVBS.

111



Figure 5.1: Comparing cvcLz with cvcE on all of QF_BV.

Figure 5.2: Comparing cvcLz with cvcE on subset of QF_BV (excluding asp and log-
slicing.
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Table 5.1: Comparing cvcLz and cvcE on QF_BV.

cvcLz cvcE mathsatLz
set solved time (s) solved time (s) solved time (s)

RWS (20) 16 202.71 18 320.99 16 210.35
VS3 (11) 0 0.0 0 0.0 0 0.0
asp (501) 146 27661.7 303 45233.95 155 42202.8
bench_ab (285) 285 1.97 285 15.31 285 3.61
bmc-bv (135) 132 189.23 135 503.52 132 313.14
bmc-bv-svcomp14 (66) 63 1905.76 64 1388.82 66 5042.46
brummayerbiere (52) 37 708.96 38 1978.26 33 1877.61
brummayerbiere2 (65) 56 4110.15 62 1495.75 62 3683.16
brummayerbiere3 (79) 22 2255.94 45 3676.26 27 5128.77
brummayerbiere4 (10) 10 0.04 9 0.46 6 3709.88
bruttomesso (976) 976 2259.75 421 27987.48 859 67305.78
calypto (23) 17 1463.19 12 951.24 11 187.28
challenge (2) 0 0.0 0 0.0 0 0.0
check2 (6) 6 0.03 6 0.31 5 0.06
crafted (21) 21 0.14 21 1.11 21 0.27
dwp_formulas (332) 332 4.63 332 18.51 332 6.37
ecc (8) 8 4.35 8 11.96 8 1.48
fft (23) 2 760.96 7 182.07 2 17.1
float (213) 51 4654.23 163 14940.92 79 8831.68
galois (4) 1 0.33 1 0.26 1 1.53
gulwani-pldi08 (6) 6 26.4 6 23.55 6 29.14
log-slicing (208) 59 22441.22 69 22249.99 22 10548.76
mcm (186) 21 4245.53 82 7643.94 4 1302.3
pipe (1) 0 0.0 0 0.0 0 0.0
pspace (86) 86 0.4 86 378.89 10 5644.74
rubik (7) 4 546.87 6 617.93 7 540.87
sage (26607) 26607 13324.64 26607 14436.03 26607 4121.58
spear (1695) 1656 13874.81 1690 24835.27 1431 128710.43
stp (1) 1 84.63 0 0.0 1 567.98
stp_samples (426) 424 64.84 424 84.45 424 14.57
tacas07 (5) 5 148.38 5 945.13 5 86.45
uclid (416) 416 1250.4 416 2442.15 416 512.92
uclid_contrib (7) 7 1061.88 0 0.0 5 802.46
uum (8) 1 1.13 2 26.28 2 661.87
wienand-cav2008 (18) 14 18.4 14 15.71 14 21.57

31488 103273.59 31337 172406.5 31054 292088.97
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Table 5.2: Comparing cvcPll with cvcVBS, cvcLz and cvcE.

cvcPll cvcVBS cvcLz cvcE
set solved time (s) solved time (s) solved time (s) solved time (s)

RWS (20) 18 353.8 18 320.86 16 202.71 18 320.99
VS3 (11) 0 0.0 0 0.0 0 0.0 0 0.0
asp (501) 274 38527.8 312 43708.81 146 27661.7 303 45233.95
bench_ab (285) 285 4.37 285 1.97 285 1.97 285 15.31
bmc-bv (135) 135 156.85 135 226.11 132 189.23 135 503.52
bmc-bv-svcomp14 (66) 63 1343.17 65 1915.13 63 1905.76 64 1388.82
brummayerbiere (52) 39 634.81 39 585.92 37 708.96 38 1978.26
brummayerbiere2 (65) 62 1695.02 63 2266.06 56 4110.15 62 1495.75
brummayerbiere3 (79) 44 2367.93 46 3623.13 22 2255.94 45 3676.26
brummayerbiere4 (10) 10 0.12 10 0.04 10 0.04 9 0.46
bruttomesso (976) 976 2581.39 976 2259.74 976 2259.75 421 27987.48
calypto (23) 17 1181.85 17 970.31 17 1463.19 12 951.24
challenge (2) 0 0.0 0 0.0 0 0.0 0 0.0
check2 (6) 6 0.09 6 0.03 6 0.03 6 0.31
crafted (21) 21 0.32 21 0.14 21 0.14 21 1.11
dwp_formulas (332) 332 7.9 332 4.63 332 4.63 332 18.51
ecc (8) 8 5.63 8 4.35 8 4.35 8 11.96
fft (23) 7 206.12 7 182.07 2 760.96 7 182.07
float (213) 161 12807.95 164 13905.55 51 4654.23 163 14940.92
galois (4) 1 0.27 1 0.26 1 0.33 1 0.26
gulwani-pldi08 (6) 6 18.41 6 21.45 6 26.4 6 23.55
log-slicing (208) 67 22741.31 71 22772.67 59 22441.22 69 22249.99
mcm (186) 82 7424.03 82 7641.69 21 4245.53 82 7643.94
pipe (1) 0 0.0 0 0.0 0 0.0 0 0.0
pspace (86) 86 1.12 86 0.4 86 0.4 86 378.89
rubik (7) 6 730.22 6 617.93 4 546.87 6 617.93
sage (26607) 26606 14834.09 26607 12652.48 26607 13324.64 26607 14436.03
spear (1695) 1692 11618.22 1692 10481.83 1656 13874.81 1690 24835.27
stp (1) 1 113.49 1 84.63 1 84.63 0 0.0
stp_samples (426) 424 77.5 424 64.81 424 64.84 424 84.45
tacas07 (5) 5 153.67 5 127.65 5 148.38 5 945.13
uclid (416) 416 1457.69 416 1235.1 416 1250.4 416 2442.15
uclid_contrib_smtcomp09 (7) 7 1313.28 7 1061.88 7 1061.88 0 0.0
uum (8) 2 27.63 2 26.28 1 1.13 2 26.28
wienand-cav2008 (18) 14 16.81 14 15.09 14 18.4 14 15.71

31873 122402.88 31924 126778.97 31488 103273.59 31337 172406.5
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Table 5.3: Comparing cvcPll with other solvers on QF_BV.

cvcPll sonolar yices boolector stp2 z3 4simp mathsatE
set solved time (s) solved time (s) solved time (s) solved time (s) solved time (s) solved time (s) solved time (s) solved time (s)

RWS (20) 18 353.8 18 1534.19 16 126.34 19 1542.5 18 561.81 16 117.14 18 311.02 16 179.68
VS3 (11) 0 0.0 2 88.32 1 386.32 4 1500.33 3 661.29 5 1217.04 3 501.16 0 0.0
asp (501) 274 38527.8 377 51731.42 367 46627.97 385 36942.6 373 44788.27 402 32453.66 366 40628.41 282 44254.23
bench_ab (285) 285 4.37 285 0.66 285 0.43 285 0.77 285 4.61 285 1.87 285 1.87 285 3.6
bmc-bv (135) 135 156.85 135 28.7 135 45.97 135 891.04 135 57.95 135 84.8 135 47.43 135 219.85
bmc-bv-svcomp14 (66) 63 1343.17 64 865.84 64 685.67 64 476.44 64 301.34 64 556.6 64 312.6 66 1422.53
brummayerbiere (52) 39 634.81 41 487.25 41 778.48 41 1020.0 41 392.3 39 322.86 41 530.64 36 1879.49
brummayerbiere2 (65) 62 1695.02 57 4092.26 56 2679.68 62 2292.39 54 3709.58 41 4988.99 58 4173.07 61 2365.42
brummayerbiere3 (79) 44 2367.93 63 2944.4 34 3726.64 56 2019.54 64 3364.4 48 5336.69 61 4053.48 44 4859.04
brummayerbiere4 (10) 10 0.12 2 917.87 10 777.06 10 0.02 10 0.08 10 0.06 6 3215.25 0 0.0
bruttomesso (976) 976 2581.39 636 18255.05 648 33319.92 972 16869.39 971 76058.04 975 9854.81 717 18468.16 935 44553.62
calypto (23) 17 1181.85 13 335.7 9 1.26 12 406.27 13 578.7 13 876.06 11 358.38 13 516.53
challenge (2) 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 1 754.29 0 0.0
check2 (6) 6 0.09 6 0.01 6 0.01 5 0.01 6 0.06 6 0.03 6 0.02 5 0.06
crafted (21) 21 0.32 21 0.04 21 0.03 21 0.04 21 0.27 21 0.12 21 0.11 21 0.26
dwp_formulas (332) 332 7.9 332 0.98 332 0.62 332 1.17 332 4.29 332 2.3 332 2.63 332 5.2
ecc (8) 8 5.63 8 1.39 8 0.24 8 0.75 8 1.13 8 0.94 8 0.97 8 1.37
fft (23) 7 206.12 9 295.85 9 1001.6 9 553.97 9 477.79 9 741.81 10 1075.39 9 1642.44
float (213) 161 12807.95 185 12735.48 167 11040.74 169 20200.22 159 18433.63 146 16102.61 181 12596.02 165 13518.97
galois (4) 1 0.27 1 0.15 1 0.11 1 0.33 1 0.17 1 0.14 1 0.07 1 0.37
gulwani-pldi08 (6) 6 18.41 6 23.45 6 22.29 6 48.73 6 24.0 6 15.67 6 18.48 6 33.01
log-slicing (208) 67 22741.31 125 37046.76 13 6128.15 134 20096.46 101 23240.22 45 14738.41 122 30723.24 27 10533.6
mcm (186) 82 7424.03 113 17001.44 96 18961.5 61 10812.81 67 13448.24 84 14521.46 78 10168.71 68 11548.66
pipe (1) 0 0.0 0 0.0 0 0.0 1 47.77 1 70.03 0 0.0 1 29.13 0 0.0
pspace (86) 86 1.12 73 17121.45 21 2444.97 80 12115.3 42 60.66 9 4435.97 62 12832.25 55 19321.93
rubik (7) 6 730.22 7 222.01 7 333.27 7 730.67 6 131.24 6 73.74 7 153.49 7 259.9
sage (26607) 26606 14834.09 26607 3345.83 26607 1141.17 26607 4999.07 26607 3367.8 26607 3747.98 26607 2912.67 26607 4432.5
spear (1695) 1692 11618.22 1689 4479.0 1695 519.28 1691 32950.37 1695 2828.45 1686 7530.68 1695 6299.7 1688 132297.38
stp (1) 1 113.49 1 22.93 1 3.1 1 12.23 1 15.72 1 20.78 1 16.0 0 0.0
stp_samples (426) 424 77.5 424 10.48 424 2.34 424 8.04 424 16.24 424 10.69 424 12.78 424 14.35
tacas07 (5) 5 153.67 5 110.0 5 997.83 5 261.56 5 582.51 5 443.46 5 99.2 5 22.47
uclid (416) 416 1457.69 416 307.4 416 43.0 416 773.83 416 153.92 416 425.43 416 213.02 416 480.3
uclid_contrib (7) 7 1313.28 7 188.35 7 2580.49 7 1505.94 7 1342.59 7 1188.97 7 176.04 7 212.71
uum (8) 2 27.63 2 6.99 2 28.07 2 8.79 2 17.58 2 8.46 2 9.65 2 36.44
wienand-cav2008 (18) 14 16.81 9 31.11 14 34.38 14 19.8 14 32.18 14 25.4 4 20.67 14 30.77

31873 122402.88 31739 174232.78 31524 134438.95 32046 169109.18 31961 194727.1 31868 119845.65 31762 150716.02 31740 294646.69
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Table 5.4: Comparing cvcVBS with other solvers on QF_BV.

cvcVBS sonolar yices boolector stp2 z3 4simp mathsatE
set solved time (s) solved time (s) solved time (s) solved time (s) solved time (s) solved time (s) solved time (s) solved time (s)

RWS (20) 18 320.86 18 1534.19 16 126.34 19 1542.5 18 561.81 16 117.14 18 311.02 16 179.68
VS3 (11) 0 0.0 2 88.32 1 386.32 4 1500.33 3 661.29 5 1217.04 3 501.16 0 0.0
asp (501) 312 43708.81 377 51731.42 367 46627.97 385 36942.6 373 44788.27 402 32453.66 366 40628.41 282 44254.23
bench_ab (285) 285 1.97 285 0.66 285 0.43 285 0.77 285 4.61 285 1.87 285 1.87 285 3.6
bmc-bv (135) 135 226.11 135 28.7 135 45.97 135 891.04 135 57.95 135 84.8 135 47.43 135 219.85
bmc-bv-svcomp14 (66) 65 1915.13 64 865.84 64 685.67 64 476.44 64 301.34 64 556.6 64 312.6 66 1422.53
brummayerbiere (52) 39 585.92 41 487.25 41 778.48 41 1020.0 41 392.3 39 322.86 41 530.64 36 1879.49
brummayerbiere2 (65) 63 2266.06 57 4092.26 56 2679.68 62 2292.39 54 3709.58 41 4988.99 58 4173.07 61 2365.42
brummayerbiere3 (79) 46 3623.13 63 2944.4 34 3726.64 56 2019.54 64 3364.4 48 5336.69 61 4053.48 44 4859.04
brummayerbiere4 (10) 10 0.04 2 917.87 10 777.06 10 0.02 10 0.08 10 0.06 6 3215.25 0 0.0
bruttomesso (976) 976 2259.74 636 18255.05 648 33319.92 972 16869.39 971 76058.04 975 9854.81 717 18468.16 935 44553.62
calypto (23) 17 970.31 13 335.7 9 1.26 12 406.27 13 578.7 13 876.06 11 358.38 13 516.53
challenge (2) 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 1 754.29 0 0.0
check2 (6) 6 0.03 6 0.01 6 0.01 5 0.01 6 0.06 6 0.03 6 0.02 5 0.06
crafted (21) 21 0.14 21 0.04 21 0.03 21 0.04 21 0.27 21 0.12 21 0.11 21 0.26
dwp_formulas (332) 332 4.63 332 0.98 332 0.62 332 1.17 332 4.29 332 2.3 332 2.63 332 5.2
ecc (8) 8 4.35 8 1.39 8 0.24 8 0.75 8 1.13 8 0.94 8 0.97 8 1.37
fft (23) 7 182.07 9 295.85 9 1001.6 9 553.97 9 477.79 9 741.81 10 1075.39 9 1642.44
float (213) 164 13905.55 185 12735.48 167 11040.74 169 20200.22 159 18433.63 146 16102.61 181 12596.02 165 13518.97
galois (4) 1 0.26 1 0.15 1 0.11 1 0.33 1 0.17 1 0.14 1 0.07 1 0.37
gulwani-pldi08 (6) 6 21.45 6 23.45 6 22.29 6 48.73 6 24.0 6 15.67 6 18.48 6 33.01
log-slicing (208) 71 22772.67 125 37046.76 13 6128.15 134 20096.46 101 23240.22 45 14738.41 122 30723.24 27 10533.6
mcm (186) 82 7641.69 113 17001.44 96 18961.5 61 10812.81 67 13448.24 84 14521.46 78 10168.71 68 11548.66
pipe (1) 0 0.0 0 0.0 0 0.0 1 47.77 1 70.03 0 0.0 1 29.13 0 0.0
pspace (86) 86 0.4 73 17121.45 21 2444.97 80 12115.3 42 60.66 9 4435.97 62 12832.25 55 19321.93
rubik (7) 6 617.93 7 222.01 7 333.27 7 730.67 6 131.24 6 73.74 7 153.49 7 259.9
sage (26607) 26607 12652.48 26607 3345.83 26607 1141.17 26607 4999.07 26607 3367.8 26607 3747.98 26607 2912.67 26607 4432.5
spear (1695) 1692 10481.83 1689 4479.0 1695 519.28 1691 32950.37 1695 2828.45 1686 7530.68 1695 6299.7 1688 132297.38
stp (1) 1 84.63 1 22.93 1 3.1 1 12.23 1 15.72 1 20.78 1 16.0 0 0.0
stp_samples (426) 424 64.81 424 10.48 424 2.34 424 8.04 424 16.24 424 10.69 424 12.78 424 14.35
tacas07 (5) 5 127.65 5 110.0 5 997.83 5 261.56 5 582.51 5 443.46 5 99.2 5 22.47
uclid (416) 416 1235.1 416 307.4 416 43.0 416 773.83 416 153.92 416 425.43 416 213.02 416 480.3
uclid_contrib (7) 7 1061.88 7 188.35 7 2580.49 7 1505.94 7 1342.59 7 1188.97 7 176.04 7 212.71
uum (8) 2 26.28 2 6.99 2 28.07 2 8.79 2 17.58 2 8.46 2 9.65 2 36.44
wienand-cav2008 (18) 14 15.09 9 31.11 14 34.38 14 19.8 14 32.18 14 25.4 4 20.67 14 30.77

31924 126778.97 31739 174232.78 31524 134438.95 32046 169109.18 31961 194727.1 31868 119845.65 31762 150716.02 31740 294646.69
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Table 5.5: Comparing cvcLz with other solvers on QF_AUFBV.

cvcLz mathsat z3 yices boolector sonolar
set solved time (s) solved time (s) solved time (s) solved time (s) solved time (s) solved time (s)

bench_ab (119) 119 6.76 119 5.23 119 1.51 119 0.36 119 2.74 119 1.99
bmc-arrays (39) 33 857.93 36 586.24 36 871.78 39 272.05 39 126.51 39 224.62
brummayerbiere (293) 240 10229.2 246 17998.08 226 12262.47 255 10269.77 250 13421.96 227 16965.29
brummayerbiere2 (22) 13 3745.89 14 543.68 12 1700.94 19 596.23 21 583.73 17 1550.37
brummayerbiere3 (10) 10 1.08 2 97.58 10 36.82 10 486.62 10 1.63 5 174.83
btfnt (1) 1 654.33 1 12.4 0 0.0 1 99.58 1 138.03 1 59.44
calc2 (36) 18 3671.36 33 5835.7 35 6828.49 31 3926.37 36 824.59 36 4348.85
dwp_formulas (5765) 5750 29415.72 5760 4517.19 5635 9354.35 5764 1905.49 5765 3016.95 5764 2558.45
ecc (92) 91 123.06 88 66.92 88 401.57 86 68.73 83 953.93 55 63.58
egt (7719) 7719 149.37 7719 155.67 7719 80.49 7719 16.83 7719 384.71 7719 47.69
jager (2) 0 0.0 0 0.0 0 0.0 1 370.99 0 0.0 0 0.0
klee-selected-smt2 (622) 622 8464.85 620 12170.37 622 217.75 622 1297.69 620 15093.03 622 6330.8
pipe (1) 1 307.91 0 0.0 1 21.45 1 22.56 1 10.83 1 6.76
platania (275) 236 3204.06 234 5436.06 241 1545.87 262 5474.78 268 8653.39 262 8583.37
sharing-is-caring (40) 40 0.56 40 40.21 40 1.07 40 62.51 40 2149.38 40 66.08
stp (40) 31 2431.17 29 1543.61 33 4234.48 40 513.97 38 1254.73 39 478.93
stp_samples (52) 52 4.33 52 1.52 52 1.45 52 0.25 52 1.12 52 1.09

14976 63267.59 14993 49010.48 14869 37560.5 15061 25384.76 15062 46617.23 14998 41462.14
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Finally, in Table 5.3, we compare cvcPll with other state-of-the-art bit-vector solvers

(for a comparison of cvcVBS see Table 5.4). We chose the top performing solvers from

the SMT solving competition SMTCOMP2014: yices, stp2, z3, boolector, 4simp, math-

sat and sonolar. For all of the above solvers, we used the binaries and configurations

entered in the SMT competition. For the parallel solver cvcPll, we report wall clock

time.

The cvcPll solver solves significantly more problems than either cvcE or cvcLz and

is competitive with the other solvers. The cvcPll solver solves the largest number of

problems in the bruttomesso, calypto and pspace families due to the algebraic simpli-

fications used during solving by cvcLz. We solve as many problems as the top solver

on the brummayerbiere2 family due to the AIG simplifications in cvcE. Factoring out of

isomorphic circuits helped us solve the most problems in the mcm family, when we ini-

tially ran the problems with a smaller timeout of 300 seconds. However, increasing the

time limit allowed other solvers to catch up and even perform better. Although factoring

out the circuits decreased the size of the bit-blasted formula for the entire family, it did

not lead to a performance gain on harder problems. We speculate this may be related to

the performance of the SAT solver we are using which is not as competitive as some of

the SAT solvers used by the other SMT solvers.

We attribute the increased performance of cvcPll, compared to cvcE and cvcLz, to

the complementary nature of the two approaches. Our solver cvcPll ranks 3rd when

compared with the other bit-vector solvers on all of the QF_BV SMT-LIB v2.0 2014-

06-03 benchmarks. This is consistent with our standing on the QF_BV logic in the 2014

SMT-COMP after a minor bug-fix. A couple of comments on how the results reported

here compare to those reported in [48]: in the results in [48], our solver cvcPll solves

the most problems, while here we rank third. There are several reasons for this: (i)
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the paper experimental results were on a subset of QF_BV that did not include the asp

family and the new log-slicing family, on which cvcPll performs worse than boolector

and stp2; (ii) the different time and memory limits can affect which solver solves most

problems in a certain family (as was the case for the mcm family).

Table 5.5 shows the performance of cvcLz on the QF_AUFBV logic. The table shows

that cvcLz is competitive with other solvers. The performance on this family depends

on many factors including the performance of the array theory solver as well as its

interaction with the bit-vector solver. Next we will provide a more detailed analysis of

the tradeoffs between the two approaches, based on our experimental results.

5.2 Lazy vs eager

We now provide a more detailed analysis of the tradeoffs between the two approaches,

based on our experimental results.

The eager solver cvcE is particularly efficient on hardware equivalence checking

benchmarks that verify the equivalence of a bit-level implementation to its word-level

specification. In such cases, the correctness of the proof often depends on bit-level prop-

erties that benefit from efficient propositional analysis more than the kind of algebraic

reasoning done in the lazy solver. This is especially obvious in the difference in the

performance of cvcE and cvcLz on the brummayerbiere* families, as can be seen in

Table 5.1.

Maintaining the word-level structure during the computation in LBV requires estab-

lishing a common language between the SAT solver driving the main CDCL(T ) search

(SATmain), and SATbb. In our approach, this language consists of the Tbv-atoms and rep-

resents a frontier that partitions the problem between the two solvers. LBV conflicts can
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be seen as interpolants between the part of the problem describing the control flow (the

Boolean abstraction) and the data-path. Restricting the conflict language to Tbv-atoms

limits the granularity of the conflicts: we cannot express bit-level conflicts. In some

cases this can prove inefficient. Consider the following example.

Example 17. The following assertions are unsatisfiable. All paths through the disjunc-

tion force the last bit of the xi variables to be 0[1]. Therefore their disjunction must also

have the least significant bit equal to 0[i] which makes the equality false.

n∨
i=0

xi = y ◦ 1[1] ∧
n∧
i=0

(xi = ti ◦ 0[1] ∨ xi = si ◦ 0[1])

In Example 17, an eager solver may potentially learn that the last bit of each xi has

to be 0. The lazy solver on the other hand, will have to try all possible paths through the

disjunction and learn a conflict for each one of them. Furthermore, this makes the lazy

solver very sensitive to the encoding of the problem: the terms encoded as Booleans

are sent to one SAT solver while the ones encoded as bit-vectors of size one, are sent

to another. An unfortunate choice of which terms are Boolean can lead to poor perfor-

mance, as illustrated by the float family in Table 5.1. The eager solver, however, does

not distinguish between Boolean terms and bit-vectors of size one.

For problems with expensive arithmetic operators, the benefits of maintaining the

word-level structure outweigh this limitation. While eager solvers have sophisticated

rewrite techniques, such techniques are usually only applicable at the top level. Equiv-

alence checking problems between higher level designs can require proving the equiva-

lence of results obtained by taking different control-flow paths. These can be encoded as

large ite (if-then-else) term trees with a similar structure, as in the following example.
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Example 18. The formula below is unsatisfiable. The conditions on all paths through

the ite trees force the leaves to be equal.

ite(x0 = y0, x0 ∗ (ite(x1 = y1, 2 ∗ x1, 2)), 2) 6=

2∗ ite(x0 = y0, y0 ∗ (ite(x1 = y1, y1, 1)), 1)

Collecting the assertions down any ite path in the example, and applying simple

equality substitutions renders each such path trivially unsatisfiable. No multiplication

reasoning is required. However, bitblasting this expression results in a difficult SAT

problem as the large circuits required to model the products obscures the trivial inconsis-

tency. The calypto family, and the bruttomesso sub-families lfsr and simple_processors

(Table 5.1) exhibit this type of structure. On these families, our LBV in-processing

module can often simplify each call to T -check to false or a significantly simpler cir-

cuit. The lfsr family encodes the behavior of a linear feedback shift register: all full

check queries can be reduced to false by our inprocessing xor solver, without requiring

any SAT reasoning. The simple_processor family encodes a simple processor decoding

instructions. The in-processing slicing allows for substituting the instruction codes and

trivially reducing the problem to false without any SAT reasoning. Other verification

problems, such as checking the correctness of sorting algorithms, rely on the arithmetic

properties of a total order. Several sub-families of the platania family encode sorting

algorithms in such a way that all assertions sent to the Tbv solver consist only of equal-

ities and inequalities. The BVeq and BVineq sub-solvers are complete for these queries

and no SAT reasoning is required. The bottleneck for these problems is the array axiom

instantiations.
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5.3 Related work

In this section, we discuss other related approaches to bit-vector solving, that did not

fit in either the lazy or eager category. For related work on eager bit-vector solving see

Section 3.5, and for lazy bit-vector solving, see Section 4.7.

Reduction to arithmetic. The main disadvantage of approaches based on bit-blasting

is that they do not scale well with the width of the data-path particularly when arith-

metic operations are involved. Modern SAT solvers are notoriously “bad at math”: they

struggle to reason efficiently about large multipliers and division circuits.

To address this issue, some solvers encode the problem into a different domain such

as integer arithmetic. Work by Zeng et al. [85] encodes bit-vector constraints into mixed

integer linear programming (MILP) constraints. Arithmetic operations are modeled via

arithmetic over bounded integers. Bitwise operations are linearized by introducing an

integer variable 0 ≤ ti ≤ 1 for each bit of a term t[n], and asserting the following

constraint:

t =
n−1∑
i=0

ti · 2i.

The algorithm attempts to push as many of the constraints as possible in the arithmetic

part and to avoid adding the bit-wise variables. This approach only supports linear bit-

vector arithmetic. Work by Babic et al. [4] encodes bit-vector constraints using linear

and non-linear modular arithmetic. For the non-linear case, their algorithm uses New-

ton’s p’adic iteration algorithm. Their algorithm is integrated into the Nelson-Oppen

theory combination framework [69]. These solvers are efficient at dealing with large

data-paths and arithmetic operations. However, linearization of shifts by a variable

amount and bit-wise operations can lead to very large and challenging constraints.
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Abstraction. A third class of approaches relies on an abstraction refinement loop [25,

58] which can significantly reduce the complexity of the problem. The work of [25] im-

plemented in the UCLID [59] solver, alternates applying under and over-approximation

and using them to refine each other. It first under-approximates the formula by restrict-

ing the number of Boolean variables used to represent bit-vector terms to the k least

significant bits. The top bits are zero or sign-extended. If the under-approximation is

satisfiable, so is the input formula. If it is unsatisfiable, the unsatisfiable core of the

under-approximation is used to generate an over-approximation. The construction of

the over-approximation is such that, if it is not precise enough, it can be used to infer

how to refine the under-approximation. This technique assumes that the property to be

checked does not depend on the exact functionality of the data-path. If this is not the

case, it is unlikely that an appropriate abstraction will be found. The work of Gange et

al. [45] applies abstraction to reasoning about bit-vector difference logic constraints.

They adapt the Floyd-Warshall algorithm to give an incomplete decision procedure for

bit-vector difference logic constraints. The algorithm does not have an abstraction re-

finement stage.

Rewriting. Word-level rewriting plays an important role in the performance of bit-

vector solvers: most solvers implement hundreds of rewrite rules [42]. Due to the large

number of operators as well as the counter-intuitive results of combining bit-level ma-

nipulations with arithmetic, coming up with the right set of rewrite rules is something

of a black art. Recent work [67] attempts to tackle this challenge by automatically gen-

erating problem specific rewrite rules. It does so by adapting Stalmarck’s algorithm for

propositional logic. For each triplet of the form t1 op t2 = t3 occurring in the input

problem, a SAT solver is used to determine whether the triplet entails that any of the
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t1, t2 or t3 terms have a specific value. For example the triplet x[8] + (−x[8]) = y[8]

entails that y[8] = 0[8]. This approach only learns bit-width specific rules. A similar idea

was earlier explored in [50]. The author automatically generated bit-vector expressions

and used a SAT solver to check which ones are equivalent. The rules were manually

inspected to identify the width-independent ones, and implement them in STP2.
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Chapter 6

Bit-vector Proofs

SMT solvers often decide problems ranging in complexity from NP-complete to unde-

cidable. To achieve this, the solvers implement complex algorithms combining efficient

SAT solving with theory-specific reasoning, requiring many lines of highly optimized

code.1 Because the solvers’ code base changes frequently to keep up with the state of

the art, bugs are still found in mature tools: during the 2014 SMT competition, five

SMT solvers returned incorrect results. In a field where correctness is of paramount

importance, this is particularly problematic. While great progress has been made in ver-

ifying complex software systems [55, 60], the verification of SAT and SMT solvers still

remains a challenge [61].

One approach to addressing this concern is instrumenting the SMT solvers to emit

a certificate of correctness. If the input problem is satisfiable, a natural certificate is a

satisfying model (see Section 4.6). Correctness can be checked by evaluating the input

formula using the model. In the unsatisfiable case, the solver could emit an externally-

checkable proof of unsatisfiability. Proof checking algorithms and their implementa-

1For example the CVC4 code-base consists of over 250K lines of C++ code
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tions usually consist of a small trusted core that implements a set of simple rules. These

can be composed to prove complex goals, while maintaining trustworthiness.

Proof producing SMT solvers have been successfully used to improve the perfor-

mance of interactive theorem provers, as shown in several recent papers [2, 13, 15, 18,

19, 46]. The interactive prover can discharge complex sub-goals to the SMT solver. It

can then check or reconstruct the proof returned by the solver without having to trust the

result. In some applications, such as interpolant generation [75] and certified compila-

tion [26] the proof object itself is of interest, not just for establishing correctness.

This chapter presents a method of encoding and checking SMT-generated proofs

for the bit-vector theory. Proof generation and checking for the bit-vector theory poses

additional challenges compared to other theories. Algebraic reasoning is usually not

sufficient by itself to decide most bit-vector formulas of practical interest. Reduction to

SAT usually results in very large propositional proofs. In addition, the reduction itself

must be proven correct. LFSC is a meta-logic that was specifically designed to serve

as a unified proof format for SMT solvers. Encoding the Tbv proof rules in LFSC helps

address some of these challenges.

Section 6.1 provides a brief introduction to the LFSC proof language. It introduces

its main features and motivates choosing it for encoding bit-vector proofs. This section

also illustrates how to use LFSC to encode the kind of inferences routinely done by SMT

solvers. The architecture of the proof generating module in the SMT solver CVC4 is

presented in Section 6.2. Section 6.3 introduces the LFSC proof rules that are specific

to the bit-vector theory. We conclude with related work in Section 6.4. This chapter

assumes some familiarity with the basics of type theory.
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6.1 LFSC

This section provides an introduction to the LFSC proof language. Previous work [79]

shows how to use LFSC to encode and efficiently check the core constructs required by

SMT generated proofs, such as CNF conversion and theory lemmas. We will briefly

review these encodings in the rest of the section.

LFSC is an extension of the Edinburgh Logical Framework (LF) [51]. LF is a meta-

framework: it allows for encoding custom defined proof systems as a collection of proof

rules called a signature. This kind of flexibility is essential for SMT proofs, where each

theory has its own theory-specific rules, and the algorithms used to decide them vary

from solver to solver. However, while LF has been successfully used in a variety of

applications such as encoding logics and modeling programming language semantics,

pure LF is not well suited for encoding SMT generated proofs. LF-style declarative

proof rules cannot always efficiently model the kind of high-powered reasoning usually

employed by SMT solvers. To address this issue and efficiently check SMT-generated

proofs, LFSC extends LF with computational side-conditions. These side-conditions

consist of snippets of functional programming code that have to succeed, for the proof

rule to be successfully applied. The side-condition code, along with the proof rule decla-

rations become part of the trusted core and form the signature. The proof checker takes

as input a signature containing all the proof rules, as well as a proof of unsatisfiability

built using axioms in the signature. It then checks that the proof is correct w.r.t. the

given signature.

In LF, proof rules are encoded as typing declarations, where the type represents

the inference being made. For example, a declarative proof rule such as transitivity of

inequality:
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t1 ≤ t2 t2 ≤ t3
t1 ≤ t3

ineq_trans

can be encoded in LF as a term of the following type:

Πt1:term. t2:term. t3:term.Πu1:holds (t1 ≤ t2).Πu2:holds (t2 ≤ t3). holds (t1 ≤ t3) .

The rule takes as arguments terms t1, t2 and t3, as well as proofs of t1 ≤ t2 and of t2 ≤

t3, and it returns a proof of t1 ≤ t3. Intuitively, the dependent type Πϕ:formula.holds(ϕ)

represents a proof that the ϕ formula holds. Assuming previously declared type con-

structor term and the <= relation of type Πt1:term. t2:term. term, the corresponding

LFSC syntax is the following:

1 (declare ineq_trans (! t1 term
2 (! t2 term
3 (! t3 term
4 (! u1 (holds (<= t1 t2))
5 (! u2 (holds (<= t2 t3))
6 (holds (<= t1 t3)))))))

In LFSC syntax ! represents the LF Π binder for the dependent function space. From

now on, we will show most examples of proof rules in LFSC syntax and explain new

syntax as it is introduced. For the full LFSC syntax and semantics see [78].

A common kind of inference made by SMT solvers consists of normalizing an ex-

pression by flattening it and combining like terms. This helps identify redundant struc-

ture. For example, most SMT solvers would prove the validity of the following arith-

metic equality in one rewrite step:

(t1 + (t2 + (. . .+ tn)))− (ti1 + (ti2 + (. . .+ tin))) = 0
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where ti1 , . . . , tin are a permutation of t1, . . . , tn. However, encoding a proof of this

equality in pure LF would require repeated applications of the associativity and com-

mutativity rules, essentially amounting to sorting one of the two arguments of the −

until it is syntactically equal to the other.2 Using LFSC’s side condition code, the equal-

ity can be proven using a single rule application, as follows:

1 (declare eq_zero
2 (! t term
3 (^ (normalize t) 0)
4 (holds (= t 0))))

where normalize is a function in the side-condition language that normalizes a linear

equation. The (^sc t) syntax checks that the result returned by the side-condition sc

matches the term t. In the above example this amounts to checking that (normalize

t) is equal to 0. If this is not the case or if the side-condition code throws an exception,

the rule application will fail. The support for computational side-conditions will prove

to be an essential feature when encoding bit-vector proofs in LFSC.

6.1.1 SMT proofs

SMT solvers combine SAT reasoning on the Boolean abstraction of the input formula

with theory-specific solving. One can think of the T -solvers as refining the proposi-

tional abstraction with T -valid clauses until a contradiction can be derived purely on the

propositional level. Section 1.5 shows how this interaction plays out by describing the

CDCL(T ) framework employed by most SMT solvers.

Most SAT solvers implement variations of the CDCL algorithm (Section 1.4). The

resolution proof rule (see Section 1.4.2 for the definition) is refutationally complete for

propositional logic [76] and has been successfully used as the basis for a common proof
2Example taken from [79].
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format for SAT solvers [82]. SMT proofs, however, require several additional proof

steps that are not necessary for SAT proofs: (i) the input formula for SMT solvers is

rarely in CNF form, which means that a CNF conversion proof is necessary to establish

that the clauses in the resolution proof follow from the input formula; (ii) the variables

in the Boolean skeleton abstract T -atoms, which means that an abstraction mechanism

is required to make the connection between T -atoms and the variables used to represent

them in the SAT solver. Finally, each T -valid fact must have a proof within theory T

using T -specific inferences. Since these facts are T -valid, they can be proved without

using any facts in the input formula.3

In this section, we will focus on how to encode these aspects of an SMT proof

in the LFSC language. The SMT proof will have a two-tiered structure: a resolution

tree whose leaves are either input clauses or T -valid clauses; and the T -valid clauses

which are either generated as T -conflicts, T -lemmas or T -explanation clauses of T -

propagations. The root of the resolution tree is the empty clause ⊥.

6.1.2 Encoding Resolution

Before encoding the resolution proof rule, we first need a way to represent propositional

clauses in LFSC. Propositional variables are represented by a var type and literals by a

lit type. There are two type constructors for lit: pos and neg, both have type Πx:var.lit.

They build a literal in which the variable occurs positively (pos) or negatively (neg)

respectively. Clauses are modeled as lists of literals: the clause type also has two type

constructors: cln and clc. The cln constructor corresponds to the empty clause ⊥. The

clc constructor has type Πx:lit.c:clause.clause: intuitively it returns the clause obtained

3While SMT solvers can also reason about quantifiers and LFSC can express such proofs, we will
focus on quantifier-free proofs in this chapter.
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1 (declare var type)
2
3 (declare lit type)
4 (declare pos (! x var lit))
5 (declare neg (! x var lit))
6
7 (declare clause type)
8 (declare cln clause)
9 (declare clc (! x lit (! c clause clause)))

Figure 6.1: Encoding clauses in LFSC.

by appending literal x to clause c.

Figure 6.1 shows how to declare these types in LFSC syntax. For example, the

clause v1 ∨ ¬v2 ∨ v3 is encoded as the term:

1 (clc (pos v_1) (clc (neg v_2) (clc v_3 cln)))

The dependent type Πc:clause.holds(c) is used to denote proofs of clauses. Intu-

itively a term of the type holds(c) for some clause c, represents a proof that c holds.

Using these constructs, we can now encode the resolution rule R. The proof rule takes

as input clauses c1:clause, c2:clause and c3:clause, as well as proofs that the first two

clauses hold: u1:holds(c1) and u2:holds(c2). It also takes the variable v:var which will

be used as the resolution pivot. The resolve side condition function defined elsewhere,

computes the result of resolving clause c1 with c2. The side condition succeeds if resolv-

ing the two clauses on v was possible, and the resulting clause matches c3. If this was

the case the proof rule returns a proof of c3: holds(c3). Note that given c1, c2 and v the

value of c3 is fixed. For this reason, LFSC allows the use of holes _ when the value of

a proof rule argument can be deduced from the others. To highlight arguments that can

be left as a hole we will write them in the rule declaration in the following italicized
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1 (declare holds (! c clause type))
2
3 (declare R (! c1 clause
4 (! c2 clause
5 (! c3 clause
6 (! u1 (holds c1)
7 (! u2 (holds c2)
8 (! v var
9 (^ (resolve c1 c2 v) c3)

10 (holds c3))))))))

Figure 6.2: Encoding propositional resolution in LFSC.

font. Figure 6.2 shows the LFSC declaration of the resolution proof rule R.

Example 19. Consider proving the inconsistency of the following clauses:

v1 ∨ ¬v2

v1 ∨ v2

¬v1

The following sequence of resolution steps proves the inconsistency by deriving the

empty clause:
v1 ∨ ¬v2 v1 ∨ v2

v1 ¬v1

⊥

Figure 6.3 shows the corresponding proof in LFSC syntax. The (%x t) syntax rep-

resents λx:τ.t. The check command checks that the type annotation (: type term) is

correct: term term has type type. In our example, the check command ensures that the

clause computed by chaining the resolution rules has type holds(cln) (line 8).

For efficiency reasons, the actual LFSC signature we use lazily computes the re-

solved clause by marking the literals to be removed. This technique is called deferred
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1 (check
2 (% v1 var
3 (% v2 var
4 (% v3 var
5 (% p1 (holds (clc (pos v1) (clc (neg v2) cln)))
6 (% p2 (holds (clc (pos v1) (clc (pos v2) cln)))
7 (% p3 (holds (clc (neg v1) cln))
8 (: (holds cln)
9 (R _ _ _ (R _ _ _ p1 p2 v2) p3 v1)))))))))

Figure 6.3: Example resolution proof in LFSC.

resolution [72].

6.1.3 Encoding Theory Lemmas

Because the SAT solver in CDCL(T ) reasons on the Boolean abstraction _P of the in-

put formula, most SMT solvers must keep an internal mapping between the Boolean

variables and the T -atoms they abstract. In LFSC, this can be done using terms of type

Πv:var.f :formula.atom(v, f). One can think of atom(v, f) as a predicate capturing the

fact that variable v corresponds to formula f i.e. fP = v. The decl_atom proof rule

provides a mechanism to introduce the atom constructs. It takes as arguments a formula

f and a term u of type λv:var.λa : atom(v, f).dtoholdscln. Intuitively, this term repre-

sents a proof of the empty clause, assuming there is a variable v that abstracts f . The

decl_atom rule essentially says that if there is a way of deriving the empty clause by

abstracting formula f with Boolean variable v, then you can derive the empty clause.

We will show how decl_atom fits in the full LFSC proof in Example 22.

Given T -valid lemma l1 ∨ . . . ∨ ln, we want to build a proof of the corresponding

SATmain clause lP1 ∨ . . . ∨ lPn . We proceed by assuming the negation of the T -literals

and deriving a contradiction. Using the fact that
∧
¬li → ⊥ and the _P mapping (see

133



Section 1.5 for the definition of _P) we will prove the Boolean abstraction clause.

The assume_true and assume_false rules will be used to introduce the negation

of the T -literals. Recall that we introduced the dependent type Πc:clause.holds(c) to

represent a proof of the clause c. Similarly, we introduce the following dependent type

to denote proofs of formulas:

Πf :formula.th_holds(f)

The assume_true proof rule takes a T -formula f as well as the SAT variable v used

to abstract it (this is encoded by a term of type atom(v, f)). It additionally takes as an

argument u, a function that builds a propositional proof of clause c (holds(c)) assuming

a proof of formula f (th_holds(f )). Intuitively u states f ⇒ c. This is equivalent to

¬f ∨ c. Since v was the variable representing f , this is the same as the conclusion of the

assume_true rule: a proof of the clause ¬v ∨ c.

For example, say we want to prove the T -valid lemma x = x represented in the SAT

solver as the unit clause v0, i.e. v0 = (x = x)P. The term a0:atom(v0, x = x) encodes

this fact and will be one of our assumptions. We will use the assume_false rule. The

proof rule needs as an argument some term that derives the empty clause assuming the

literal: l0:th_holds(¬(x = x)). Let us assume l0 holds and show how to use this fact to

derive the empty clause. A term of type th_holds(x = x) can be built using the equality

symmetry rule (eq_sym x):

1 (declare eq_sym (! t term
2 (th_holds (= t t))))

Using the assumption l0, and the contradiction proof rule (contra (eq_sym x) l0) we can

build a term of the type th_holds(false), where contra is defined as follows:
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1 (declare th_holds (! formula type))
2 (declare atom (! v var (! f formula type)))
3
4 (declare decl_atom
5 (! f formula
6 (! u (! v var
7 (! a (atom v f)
8 (holds cln)))
9 (holds cln))))

10
11 (declare clausify_false
12 (! u (th_holds false)
13 (holds cln)))
14
15 (declare assume_true
16 (! v var
17 (! f formula
18 (! c clause
19 (! r (atom v f)
20 (! u (! o (th_holds f)
21 (holds c))
22 (holds (clc (neg v) c))))))))
23
24 (declare assume_false
25 (! v var
26 (! f formula
27 (! x clause
28 (! r (atom v f)
29 (! u (! o (th_holds (not f))
30 (holds c))
31 (holds (clc (pos v) c))))))))

Figure 6.4: Encoding the mapping between T -atoms and their Boolean abstraction in
LFSC.
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1 (declare contra
2 (! f formula
3 (! u1 (th_holds f)
4 (! u2 (th_holds (not f))
5 (th_holds false)))))

However, building a proof of false signifies an inconsistency and is equivalent to deriv-

ing the empty clause as shown by the clausify_false rule in Figure 6.4. Using this

rule, we can build the term: λo:th_holds(¬x = x).clausify_false(contra (eq_sym x) o)

with type Πo:th_holds(¬x = x).holds(cln). This is exactly the type of the final argument

required by assume_false. Putting it all together using LFSC syntax the following term

has type holds(clc v0 (clc cln)):

1 (assume_false _ _ _ a0 (\ l0
2 (clausify_false (contra _ (eq_sym x)))))

where the \ l0 syntax represents the λ binding λl0.t. Recall that a0 was a term of type

atom(v0, x = x).

The same kind of reasoning can be used to prove a more complex T -valid clause of

the form l1 ∨ . . .∨ ln. Chaining applications of assume_true and assume_false builds

the following implication:

¬l1 ⇒ ¬l2 . . .⇒ ¬ln ⇒ ⊥

Example 20. We will show how to prove the following Tuf-valid clause using LFSC

proof rules:

¬x = y ∨ ¬y = z ∨ x = z.

Figure 6.5 shows the LFSC proof that shows the validity of the lemma on the Boolean

abstraction. The comments indicate the type of the intermediate proof terms. The equal-
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ity atoms x = y, y = z, x = z correspond to the SAT variables v1, v2 and v3 of type var.

On line 6, the literal l1 is a proof of x = y and has type th_holds(x = y). Similarly for

l2 and l3. We build a proof of the fact that x = z by applying the equality transitivity

proof rule trans (line 13) defined as follows:

1 (declare trans
2 (! t1 term
3 (! t2 term
4 (! t3 term
5 (! u1 (th_holds (= t1 t2))
6 (! u2 (th_holds (= t2 t3))
7 (th_holds (= t1 t3))))))))

A contradiction is then derived contradiction using the contra proof rule.

The clausify_false rule turns a proof of the false formula (th_holds(false)) into a proof

of the empty clause (holds(cln)). Since we proved a contradiction from the negation of

the literals, the chained assume_true and assume_false proof rules build the final clause

on the Boolean abstraction of the T -literals. Therefore the check command succeeds

as the computed type of the chained assume_∗ rules represents a proof of the desired

clause.

6.1.4 CNF Conversion

Different CNF conversion algorithms require different proof rules. In this section we

will focus on Tseitin-style CNF encodings, as they are usually used by many SMT

solvers including CVC4. CNF conversion proofs can be built in a similar fashion as

T -lemmas. Instead of using T -specific proof rules to derive a contradition from the

negation of the clause, we can use propositional natural deduction proof rules to derive

a contradition.
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1 (check
2 (% a1 (atom v1 (= x y))
3 (% a2 (atom v2 (= y z))
4 (% a3 (atom v3 (= x z))
5 (: (holds (clc (neg v3) (clc (neg v2) (clc (pos v3) cln))))
6 (assume_true _ _ _ a1 (\ l1
7 ;; (holds (clc (neg v2) (clc (pos v3) cln)))
8 (assume_true _ _ _ a2 (\ l2
9 ;; (holds (clc (pos v3) cln))

10 (assume_false _ _ _ a3 (\ l3
11 (clausify_false ;; (holds cln)
12 (contra _ ;; (th_holds false)
13 (trans _ _ _ _ l1 l2) ;; (th_holds (= x z))
14 l3))))))))))))))))) ;; (th_holds (not (= x z)))

Figure 6.5: Theory lemma example proof.

1 (declare or_elim
2 (! f1 formula
3 (! f2 formula
4 (! u1 (th_holds (not f2))
5 (! u2 (th_holds (or f1 f2))
6 (th_holds f1))))))
7
8 (declare impl_elim
9 (! f1 formula

10 (! f2 formula
11 (! u1 (th_holds f1)
12 (! u2 (th_holds (impl f1 f2))
13 (th_holds f2))))))

ϕ1 ∨ ϕ2 ¬ϕ2

ϕ1
or_elim

ϕ1 ⇒ ϕ2 ϕ1

ϕ2
impl_elim

Figure 6.6: Example proof rules for CNF encoding proofs in LFSC.
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Example 21. Using the propositional logic natural deduction rules from Figure 6.6, we

can encode a proof of the CNF conversion of the following formula:4

(a⇒ b) ∨ c CNF
==⇒ ¬a ∨ b ∨ c

Figure 6.7 shows the CNF conversion proof in LFSC syntax. We will show that the

clause is entailed by the input formula, by assuming the entailment doesn’t hold and

deriving a contradiction:

((a⇒ b) ∨ c) ∧ (a ∧ ¬b ∧ ¬c).

As before we use the assume_true and assume_false rules to introduce the negation

of the literals in the clause as assumptions in the proof. The or_elim rule uses ¬c to

simplify (a ⇒ b) ∨ c to a ⇒ b. Since we assumed a, we can use the impl_elim rule to

simplify the implication to derive b. However, we also assumed ¬b, hence we can derive

a contradiction using contra followed by clausify_false. The cascading assume_∗ proof

rules complete the proof.

Tseitin-style CNF conversion can introduce fresh propositional variables for inter-

mediate formulas. The above approach can handle this case, since the atom dependent

type constructor can bind an arbitrary formula to a SAT variable, not just a T -atom.

For example if the CNF conversion introduces intermediate propositional variable v for

sub-formula a ∧ b, we can use atom(v, a ∧ b) to prove the clauses corresponding to

v ⇔ (a ∧ b).

4A traditional Tseitin encoding would have added an intermediate variable for the implication. For
brevity we do not do that in this example.
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1 (check
2 (% F (th_holds (or (impl a b) c))
3 (% a1 (atom v1 a)
4 (% a2 (atom v2 b)
5 (% a3 (atom v3 c)
6 ( : (holds (clc (pos v1) (clc (neg v2) (clc (neg v3) cln))))
7 (assume_true _ _ _ a1 (\ l1
8 (assume_false _ _ _ a2 (\ l2
9 (assume_false _ _ _ a3 (\ l3

10 (clausify_false
11 (contra _ ;; (th_holds false)
12 (impl_elim _ _ l1 ;; (th_holds b)
13 (or_elim _ _ l3 F)) ;; (th_holds (impl a b))
14 l2)))))))))

Figure 6.7: LFSC CNF conversion proof example.

6.2 Proofs in CVC4

This section first presents the architecture of the proof-generating module in the SMT

solver CVC4 and then introduces the Tbv LFSC proof signature. Proof generation can

add significant overhead to solving. In such cases, we wanted CVC4’s proof module to

be as unintrusive as possible and add zero overhead when proof production is disabled.

Several design decisions were made to achieve this goal:

• Proof generation is restricted to a ProofManager object. Other parts of the system

log just enough proof hints to the ProofManager so that it can reconstruct the final

proof.

• For most theories T -conflicts are replayed in proof-producing T -solvers. This

means that most T -solvers do not need to log any proofs during the initial run.

• Proof logging code is compiled out if proofs are not required.
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The ProofManager has several modules, as shown in Figure 6.8. During CNF con-

version, the CNF mapping between T -formulas and their corresponding SAT variables

as well as the steps taken during CNF conversion are stored in the CNF proof. The

CDCL solver SATmain is instrumented to store resolution steps of the inferences it makes

such as learning new clauses during conflict resolution (see Section 1.4). For each clause

learned by SATmain, the SatProof module stores a resolution chain which starts from the

falsified conflict clause and derives the learned clause. Note that although some of these

clauses are deleted when the SAT solver clause database is cleared, their resolution

chains must be kept. Clauses learned from the deleted clauses may still exist in the

clause database.

The TheoryProof must keep track of the learned T -lemmas and which T -solver gen-

erated them (we use the term T -lemmas to refer generically to T -conflicts, T -lemmas

and T -explanation clauses). The proof module corresponding to the theory that gener-

ated the lemma will be responsible for providing a proof of the lemma. We assume all

T -lemmas are in clausal form.

The SatProof builds the full unsatisfiability proof by working backwards from the

final conflict, and stitching together the already stored resolution chains. The leaves of

the resolution tree are either input clauses (which have a CNF conversion proof from

the input formula), or T -lemmas. Because not all the T -lemmas will appear in the

resolution tree, for most theories we generate the T -lemma proofs lazily. Since every

T -lemma is valid, a new instance of the T -solver with proof production enabled is

in principle able to return a T -proof. This general approach works well for Tuf and Tarr

proofs. For the bit-vector theory, however, we record the proofs for the conflicts eagerly.

Re-proving Tbv conflicts will likely require calls to a SAT solver which are potentially

very expensive.
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Finally, the ProofManager uses the proofs built by the individual modules to con-

struct a proof that derives the empty clause, starting from the input formula. The

CnfProof establishes that all the input clauses are entailed from the input formula, the

TheoryProof module creates a proof for each T -lemma and the SatProof builds the final

resolution tree from these proven clauses.

Example 22. We will now show a full example of an LFSC SMT generated proof for

the following unsatisfiable set of assertions:

x = 0 ∨ y = 0

x ∗ y 6= 0

where x and y are integer variables. An SMT solver could prove the unsatisfiability of

the formula by first learning the following two theory lemmas:

x 6= 0 ∨ x ∗ y = 0

y 6= 0 ∨ x ∗ y = 0

and then letting the SAT solver derive a contradiction by using purely propositional

reasoning. In LFSC the proof can be encoded as follows:

1 (check
2 (% x (term Int)
3 (% y (term Int)
4 (% A1 (th_holds (or (= Int x (toInt 0)) (= Int y (toInt 0))))
5 (% A2 (th_holds (not (= Int (mult x y) (toInt 0))))
6 (: (holds cln)
7 (decl_atom (= Int x (toInt 0)) (\ v1 (\ a1
8 (decl_atom (= Int y (toInt 0)) (\ v2 (\ a2
9 (decl_atom (= Int (mult x y) (toInt 0)) (\ v3 (\ a3

10 ;; CNF conversion proof of clause [v1,v2]
11 (@c1 (assume_false _ _ _ a1 (\ l1
12 (assume_false _ _ _ a2 (\ l2
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13 (clausify_false (contra _ (or_elim _ _ l2 A1)
14 l1))))))
15 ;; CNF conversion proof of clause [~v3]
16 (@c2 (assume_true _ _ _ a3 (\ l3
17 (clausify_false (contra _ l3 A2))))
18 ;; Proof of lemma x != 0 or x * y = 0
19 ;; represented by clause [~v1, v3]
20 (@lem1 (assume_true _ _ _ a1 (\ l1
21 (assume_false _ _ _ a3 (\ l3
22 (clausify_false (contra _ (mult_zero1 x y l1) l3))))))
23 ;; Proof of lemma y != 0 or x * y = 0
24 ;; represented by clause [~v1, v3]
25 (@lem2 (assume_true _ _ _ a2 (\ l2
26 (assume_false _ _ _ a3 (\ l3
27 (clausify_false (contra _ (mult_zero2 x y l2) l3))))))
28 ;; Resolution proof
29 (R _ _ (R _ _ c1 (R _ _ lem1 c2 v3) v1)
30 (R _ _ lem2 c2 v3) v2)
31 )))))))))))))))))))

In the above the A1 and A2 formulas represent the input assertions from which the proof

of unsatisfiability will be derived. The Int type is a simple type used to denote integers,

and toInt builds a constant integer. The overall computed type of the final proof term

will be:

λx:term(Int).λy:term(Int).

λA1:th_holds(x = 0 ∨ y = 0).

λA2:th_holds(x ∗ y 6= 0).holds(cln)

The decl_atom proof rule defined in Figure 6.4 introduces the propositional variables

v1, v2 and v3 abstracting T -atoms x = 0, y = 0 and x ∗ y = 0 respectively. It also

introduces the terms a1, a2 and a3 of type atom(v, f) that establish the connection be-

tween the propositional variables and the atoms. The (@l t f) syntax stands for the

let-binding “let l be t in f [l]”. The mult_zero1 proof rule in the lemma proofs is used

to show that if the first multiplicand is zero the entire product is also zero. It has the

following declaration:
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Figure 6.8: CVC4 proof module architecture.

1 (declare mult_zero1
2 (! x (term Int)
3 (! y (term Int)
4 (! u (th_holds (= Int x 0))
5 (th_holds (= Int (mult x y) 0))))))

The mult_zero2 rule is identical, except it takes a proof of the second multiplicand by

zero.

6.3 Bit-vector Proofs

This section introduces an LFSC proof signature for encoding Tbv proofs generated by

the SMT solver CVC4. Proof generation for the bit-vector theory in CVC4 targets the

lazy bit-vector solver cvcLz described in Chapter 4. Eager bit-vector solvers eagerly
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reduce the problem to SAT so most of the reasoning is done in a SAT solver. A proof

generated by such a solver would be dominated by a (potentially very large) proposi-

tional resolution proof and lose any structure present in the input problem. The lazy

approach allows for a modular proof: the resolution proof in SATmain is separated from

the proofs of the individual Tbv-conflicts. The Tbv-conflicts proved by the algebraic sub-

solvers can have word-level algebraic proofs. Note that the BVeq and BVineq proofs can

be expressed using simple natural deduction rules such as congruence and transitivity

of equality and inequality. Most of these rules are bit-width independent, and do not

require reasoning about the bit-blasted terms. The BVbb conflicts, still require their own

resolution based proof and a proof that the bit-blasting is correct.

Bit-blasting is one of the most challenging aspects of representing Tbv proofs using

declarative rules. The features of LFSC, particularly the side-condition language, help

facilitate this encoding. For the rest of this section, we will focus on the LFSC signature

required to encode and check BVbb conflicts.

Figure 6.9 shows the overall structure of a Tbv proof. The resolution proof gener-

ated by SATmain proves unsatisfiability by deriving the empty clause. The leaves of the

resolution tree are either input clauses, obtained by converting to CNF the input prob-

lem, or Tbv-lemmas. Each Tbv-lemma has a corresponding resolution proof in SATbb.

Note however that the SAT variable aBB abstracting Tbv-atom a in the resolution proof

in SATbb is not necessarily the same as the aP variable used to abstract the same atom

in SATmain. Therefore, we need to maintain this mapping explicitly. The leaves of the

SATbb resolution tree must all be definitional bit-blasting clauses CBB, obtained from

CNF conversion of the atom definitions. The bit-blasting proof introduces the atom def-

inition by constructing a proof of the fact that each atom a is equivalent to its bit-blasted

formula: a ⇔ bbAtom(a). This proof requires no assumptions as a ⇔ bbAtom(a) is

145



Tbv-valid.5

6.3.1 Bit-vector theory LFSC signature

Our encoding of SMT formulas in LFSC distinguishes between formulas and terms. The

formula type is a simple type, while the term type is a dependent type parametrized by

the sort of the term: Πs:sort.term(s). The sort type is also a simple type and it is used to

distinguish between terms of different types. The sort [n] of all bit-vectors of length n,

is represented in LFSC as the dependent type: Πn:Int.BitVec(n). Figure 6.10 shows the

concrete LFSC declarations of these constructs. The mpz type is LFSC’s own built-in

infinite precision integer type.

Bit-vector constants are represented as a sequence of bits using the const_bv type

with the two type constructors bvn and bvc. The const_bv bit-vector constants are con-

verted to bit-vector terms using the toBV rule in Figure 6.10. The side condition code

calls the bv_len procedure define elsewhere, that returns the length of a term of type

const_bv. This ensures that the bit-width of the constant bit-vector is the same as that of

the term to be returned.

Using these constructs, most bit-vector operators can be declared in a very straight-

forward way. For example the & bit-wise and operator can be encoded in LFSC as

follows:

1 (declare bvand
2 (! n mpz
3 (! x (term (BitVec n))
4 (! y (term (BitVec n))
5 (term (BitVec n))))))

5Technically, to express this in the Tbv signature we would need to use a 1-bit extract v[i : i] for the
ith bits of a bit-vector variable v.

146



CNF Proof

CNF
bb

 Proof

Bit-blasting Proof

bv-lemma

input clause

...

...
SAT

bb

SAT
main

bb-clause

R

R ... ...

... ...

R

┴

R R

... ...R

...

a    ↔  bbAtom(a)

aBB   ↔  bbAtom(a)

Figure 6.9: Bit-vector resolution proof diagram.
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1 (declare formula type)
2 (declare sort type)
3 (declare term (! t sort type))
4
5 (declare BitVec (!n mpz sort))
6
7 (declare b0 bit)
8 (declare b1 bit)
9

10 (declare const_bv type)
11 (declare bvn const_bv)
12 (declare bvc (! b bit (! v const_bv const_bv)))
13
14 (declare toBV
15 (! n mpz
16 (! v const_bv
17 (^ (bv_len v) n)
18 (term (BitVec n)))))

Figure 6.10: Bit-vector theory LFSC signature.

The argument and result types ensure that it is applied to arguments of the right bit-

width. Because the value of the bit-width n can be inferred from the x and y arguments,

it can be left as an LFSC hole: (bvand _ x y).

Operators that return bit-vectors of bit-widths different than that of the arguments

can be encoded using side-condition code as follows:

1 (declare concat
2 (! n mpz
3 (! m mpz
4 (! m’ mpz
5 (! t1 (term (BitVec n))
6 (! t2 (term (BitVec m))
7 (^ (mp_add n m) m')
8 (term (BitVec m')))))))))

The value of m’ does not need to be specified: the side-condition code uses the built-in
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addition function mp_add to ensure that the length of the returned bit-vector is the sum

of the lengths of the two arguments.

Example 23. The Tbv formula (t1 ◦ t1 = t2 + t3) ∨ (t1 < 0[3]) can be encoded in LFSC

concrete syntax as:

1 (or (= (BitVec 6) (concat _ _ _ t1 t1) (bvadd _ t2 t3))
2 (bvult _ t1 (toBV 3 (bvc b0 (bvc b0 (bvc b0 bvn))))))

6.3.2 Resolution in SATbb

The bit-blasting sub-solver BVbb relies on the solve-with-assumptions infrastructure de-

scribed in Section 1.4.3 to check the satisfiability of the conjunction of Tbv-literals Abv.

Recall that all the learned clauses in CDCL-style SAT solvers are entailed by the initial

problem clauses. Algorithm 3 in Section 1.4 shows how the learned clause is derived

by several resolution steps from the already existing clauses. For each learned clause

learned = [l1, . . . , ln] we store a resolution chain of the form:

Res(. . .Res(Res(conflict, reason(li1)), reason(li2)), reason(lik))

where the sequence of literals li1 . . . lik corresponds to the order in which literals are

processed in the loop in Algorithm 3 and conflict is the falsified conflict clause. The

structure of the resolution proof follows directly from the way the learned clause is

computed. Recall that assumption conflicts in BVbb are also derived by resolving out

existing clauses (Algorithm 9 in Section 4.2) and are entailed by the problem clauses.

The SatProof module in SATbb stores these individual resolution chains during solving.

This allows us to be able to reconstruct the resolution proof of all Tbv-conflicts returned

by BVbb, starting from the bit-blasting clauses CBB.
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As the clauses learned by SATbb are kept between Tbv-check calls and could be

involved in future conflicts, it is important to be able to reuse the resolution proofs of

learned clauses for multiple Tbv conflicts, without having to reprove them each time.

6.3.3 Bit-blasting

At the bottom of the proof in Figure 6.9 is the bit-blasting proof. The bit-blasting proof

makes the connection between the bit-vector formula and its propositional logic encod-

ing by proving for each bit-blasted atom a in the input formula, the following T -valid

formula:

a⇔ bbAtom(a).

We represent a bit-blasted bit-vector term of width n as a sequence of n formulas with

the ith formula corresponding to the ith bit. The bblt type encodes bit-blasted terms and

has two type constructors bbltn and bbltc as shown in Figure 6.11. We introduce the

dependent type constructor bblast_term to encode the fact that a bit-blasted term y:bblt

corresponds to the bit-vector term x:BitVec(n). This is conceptually similar to the atom

construct introduced earlier. For example, the following term represents a proof that

bbTerm(15[4]) = [true, true, true, true]:

1 (bblast_term _

2 (toBV 4 (bvc b1 (bvc b1 (bvc b1 (bvc b1 bvn)))))
3 (bbltc true (bbltc true (bbltc true (bbltc true bbltn))←↩

)))

Using the bit-blasting terms bblt we can define proof rules that build up more com-

plicated bit-blasted terms. For example, the proof rule that establishes how to bit-blast

the bit-vector and operator is the following:

1 (declare bv_bbl_bvand
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1 (declare bblt type)
2 (declare bbltn bblt)
3 (declare bbltc (! f formula (! v bblt bblt)))
4
5 (declare bblast_term
6 (! n mpz
7 (! x (term (BitVec n))
8 (! y bblt
9 type))))

Figure 6.11: Bit-blasting proof signature in LFSC.

2 (! n mpz
3 (! x (term (BitVec n))
4 (! y (term (BitVec n))
5 (! xb bblt
6 (! yb bblt
7 (! rb bblt
8 (! xbb (bblast_term n x xb)
9 (! ybb (bblast_term n y yb)

10 (^ (bblast_bvand xb yb ) rb)
11 (bblast_term n (bvand n x y) rb)))))))))))

The rule takes a proof that xb is the bit-blasted term corresponding to x, and yb

corresponding to y, and it returns a proof that x&y is bit-blasted to rb. The rb bit-

blasting term is constructed by the side-condition code bblast_bvand (see Appendix for

the side-condition code of bblast_bvand and other more involved operators).

Bit-blasting Tbv-atoms follows a similar pattern:

1 (declare bv_bbl_eq
2 (! n mpz
3 (! x (term (BitVec n))
4 (! y (term (BitVec n))
5 (! bx bblt
6 (! by bblt
7 (! f formula
8 (! bbx (bblast_term n x bx)
9 (! bby (bblast_term n y by)

151



10 (^ (bblast_eq bx by) f)
11 (th_holds (iff (= (BitVec n) x y) f))))))))))))

Note that the bit-blasting proof rule does not take any Tbv-assertions as assumptions.

Its conclusion is Tbv-valid.

Example 24. Encoding in LFSC the bit-blasting proof for the following formula a[8] =

x[8]&y[8] requires the following proof rule applications:

1 (bv_bbl_eq _ _ _ _ _ _ _ _

2 (bv_bbl_var _ a)
3 (bv_bbl_and _ _ _ _ _ (bv_bbl_var _ x) (bv_bbl_var _ y)))

The type of the above term is holds(ϕ) for ϕ:

(a[8] = x[8]&y[8])⇔

( ∧
0≤i<8

ai ⇔ xi ∧ yi

)
.

where ai is the ith bit of bit-vector variable a.

The bit-blasting definition formulas can now be converted to CNF using the method

described in Section 6.1.4. This allows us to prove all the learned clauses in SATbb and

that all the assumption conflicts are entailed by the bit-blasted clauses CBB.

Recall from the proof diagram in Figure 6.9 that there is a disconnect between the

SAT variables in SATbb and those in SATmain. We will now show how to bridge this gap.

Say SATbb identifies a conflict in the current set of Tbv-assertions Abv. It computes the

inconsistent assumption literals by resolving backwards from the assumption conflict

(Algorithm 10 in Section 4.2). We can build a resolution chain from SATbb using the

bit-blasted clauses CBB and prove the clause:

cBB : [lBB1 , . . . , lBBn ]
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1 (declare intro_assump_true
2 (! f formula
3 (! v var
4 (! C clause
5 (! h (th_holds f)
6 (! a (atom v f)
7 (! u (! unit (holds (clc (pos v) cln))
8 (holds C))
9 (holds C))))))))

Figure 6.12: Encoding BVbb conflicts in LFSC.

However, the clause used in the resolution in SATmain is:

cP : [lP1 , . . . , l
P
n ]

Recall that the assume_true and assume_false proof rules allowed us to transform a

proof of
∧n
i=0 ¬li ⇒ ⊥ to a proof of the clause [lP1 , . . . , l

P
n ]. We will use similar rules

intro_assump_true and intro_assump_false (Figure 6.12) to prove the SATbb clause cBB

along with the negation of the Tbv-literals
∧n
i=0 ¬li entail ⊥. The intro_assump_∗ rules

introduce the negation of the Tbv literal as a unit clause, that can be resolved with cBB to

derive the empty clause.

Example 25. We show how to put these rules together to lift a proof of a clause in

SATbb to a proof of the corresponding clause in SATmain. In the LFSC expression below,

assume c is a proof of the SATbb clause [¬aBB1 , aBB2 ], that at1, at2, b1 and b2 are atoms de-

clared elsewhere and have types at1:atom(aP
1 , a1), at2:atom(aP

2 , a2), b1:atom(aBB1 , a1)

and b2:atom(aBB2 , a2) respectively. Due to the declaration of the assume_∗ rules, the l1

and l2 arguments to intro_assump_∗ must have types th_holds(f1) and th_holds(¬f1)

respectively. The two resolution steps between the assumption unit clauses unit1 and
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unit2 derive the empty clause from c, which allows the assume_∗ proof rules to prove

the T -lemma [¬a1, a2].

1 (assume_true _ _ _ at1 (\ l1
2 (assume_false _ _ _ at2 (\ l2
3 (intro_assump_true _ _ _ l1 b1 (\unit1
4 (intro_assump_false _ _ _ l2 b2 (\unit2
5 (R _ _ (R _ _ c unit1 v1) unit2 v2)))))))))

6.3.4 Rewriting

Most SMT solver rewriting systems, CVC4 included, combine several simpler rewrite

rules that are applied to a fix-point. To allow for easily generating rewrite proofs in

this manner, we introduce the LFSC dependent type constructors: rw_term(t1, t2) and

rw_formula(f1, f2) that encode the fact that term t1 rewrites to term t2, and formula f1

rewrites to formula f2 respectively. The rw_term and rw_formula types are meant to

record intermediate rewrites steps. They do not have the idempotence property men-

tioned in Section 2.1.

Using these types, we can chain intermediate rewrite steps together to prove more

complex rewrite rules. If a subterm s of term t rewrites to s′, so does the term t[s← s′].

To capture this kind of substitution reasoning we define proof rules for term constructors

that “build” up the rewritten term. This kind of procedure closely mimics what SMT

solvers usually do: expressions are often represented using an immutable data-structure,

so changing a sub-expression would require rebuilding the entire expression.

Example 26. We will now show how to combine simpler rewrite rules to prove the

following rewrite:

¬((∼∼ x[32]) = x[32])
Rewriter
====⇒ ⊥.
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1 ;; (th_holds false)
2 (apply_rw _ _ phi
3 ;; (rw_formula (not (= (bvnot (bvnot x)) x)) false)
4 (rw_trans _ _ _

5 ;; (rw_formula (not true) false)
6 not_true
7 ;; (rw_formula (not (= (bvnot (bvnot x)) x)) (not true))
8 (rw_not _ _

9 ;; (rw_formula (= (bvnot (bvnot x)) x) true)
10 (eq_rw _ _ _

11 (rw_bvnot _ _ _ ;; (rw_term (bvnot (bvnot x)) x)
12 (rw_id _ x)))) ;; (rw_term x x)

The commented lines show the types of the intermediate expressions. We begin by using

the identity rewrite to prove that x rewrites to itself rw_term(x, x), in order to be able

to establish the assumption for the rw_bvnot proof rule. The eq_rw proof asserts that

if a term t1 rewrites to another term t2, the t1 = t2 equality must hold. The rw_not

rule says that if a term t rewrites to t′ then ¬t also rewrites to ¬t′. Rules like this one

allow for simulating substitution, by rebuilding terms that have a rewritten sub-term.

The not_true rule rewrites ¬> to ⊥, and the rw_trans rule takes advantage of a fact that

if t1 rewrites to t2 and t2 to t3, then t1 rewrites to t3. Finally, the apply_rw rule asserts

that if formula φ holds, and we have proven that φ rewrites to φ′, then φ′ must also hold.

6.4 Related Work

The work in [65] shows how to use an external checker to efficiently check proofs

generated by the Fx7 solver for the AUFLIA SMT-LIB v2.0 logic. Several other ap-

proaches have relied on using interactive theorem provers to certify proofs produced by

SMT solvers. The work in [46] shows how to use HOL Light to certify proofs gener-

ated by the SMT solver CVC3 for the AUFLIA SMT-LIB v2.0 logic. In [41], proofs

for quantifier-free problems in the logic of equality with uninterpreted symbols are gen-
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1
2 (declare rw_term
3 (! s sort
4 (! t (term s)
5 (! t' (term s)
6 type))))
7
8 (declare rw_formula
9 (! f formula

10 (! f' formula
11 type)))
12
13 (declare rw_not
14 (! a formula
15 (! a’ formula
16 (! rw (rw_formula _ a a')
17 (rw_term _ (not _ a) (not _ a'))))))
18
19 (declare bvnot_idemp
20 (! n mpz
21 (! a (term (BitVec n))
22 (! a’ (term (BitVec n))
23 (! rwa (rw_term _ a a')
24 (rw_term _ (bvnot _ (bvnot _ a)) a'))))))
25
26 (declare eq_rw
27 (! n mpz
28 (! a (term (BitVec n))
29 (! a’ (term (BitVec n))
30 (! rwa (rw_term _ a a')
31 (rw_formula (= (BitVec n) a a') true))))))
32
33 (declare apply_rw_formula
34 (! f formula
35 (! f’ formula
36 (! rw (rw_formula f f')
37 (! fh (th_holds f)
38 (th_holds f'))))))

Figure 6.13: Rewrite proofs in LFSC.
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erated by the haRVey SMT solver and translated into Isabelle/HOL to provide more

automation. While using an interactive theorem prover to check the proofs generated

by SMT solvers has the advantage of ensuring a high level of trust, long proof-checking

times make this approach difficult to scale. The work in [18] seeks to bridge this perfor-

mance gap by optimizing the proof reconstruction step to reduce proof-checking time.

However this work does not apply to bit-vector theory proofs.

The work in [47] also targets SMT generated proofs for the theory of bit-vectors for

interpolant generation. This work also builds on a lazy bit-vector solver integrated in

the DPLL(T ) framework, to exploit the word-level structure for producing word-level

interpolants. If the algebraic solvers fail, the fallback is the resolution proof generated

by the SAT solver. Because this work specifically targets generating interpolants, it does

not cover proving the correctness of bit-blasting or of rewrite rules.

The work in [17] shows how to do proof reconstruction in Isabelle/HOL for the

theory of bit-vectors based Z3’s proofs. However, as the authors remark, the coarse

granularity of Z3’s bit-vector proofs made proof reconstruction particularly challenging.

By contrast, our approach is very fine-grained as it provides a full resolution proof for

each bit-vector conflict.

The LFSC meta-framework has been successfully used for encoding proofs gener-

ated by SMT solvers in [72,74]. The work in [75] shows how to use LFSC to compute

interpolants from unsatisfiability proofs in the theory of equality and uninterpreted func-

tion symbols. We believe that using the approach in [75], it is possible to extend our

proof system to generate bit-vector interpolants from LFSC bit-vector proofs.
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Chapter 7

Conclusion

The performance of formal verification tools is tightly coupled with that of their back-

end theorem proving engines. Verifying many safety critical systems require reason-

ing about fixed-width bit-vectors. This thesis investigated new techniques of solving

bit-vector constraints, and evaluated their performance. The eager bit-vector solver pre-

sented in Chapter 3 leverages AIG simplification techniques and SAT reasoning to effi-

ciently solve bit-vector constraints that require low level of bit reasoning. The technique

for factoring out isomorphic circuits explores redundancy in the input formula and al-

lows for reducing the size of the bit-blasted problem.

The lazy bit-vector solver presented in Chapter 4, maintains the word-level struc-

ture during solving and leverages this information to solve problems that are usually

challenging for an eager solver. This solver also explores how to efficiently combine a

bit-blasting sub-solver and integrate it in the CDCL(T ) framework by providing a tight

coupling with the main SAT engine. These techniques proved complementary to the

eager approach. Combining the lazy and eager approaches in a parallel solver results in

a dramatic improvement in performance, as shown in Chapter 5.
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Finally, in Chapter 6 we showed how to increase the trustworthiness of the SMT

solver by instrumenting it with proof generating capabilities. We also presented a proof

system for machine checkable SMT generated proofs for the bit-vector theory. These

proofs can exploit the word-level structure maintained by the lazy solver to reduce the

proof size.
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Appendix A

LFSC bit-blasting signature code

1 ;; A predicate to represent the n^th bit of a bitvector term
2 (declare bitof
3 (! x var_bv
4 (! n mpz formula)))
5
6 ;; A bit-vector variable
7 (declare var_bv type)
8
9 ;; A bv variable term

10 (declare a_var_bv
11 (! n mpz
12 (! v var_bv
13 (term (BitVec n)))))
14
15 ;; Calculate the length of a bit-blasted term
16 (program bblt_len ((v bblt)) mpz
17 (match v
18 (bbltn 0)
19 ((bbltc b v') (mp_add (bblt_len v') 1))))
20
21 ;;Introduce the declaration of a bit-blasted term
22 (declare decl_bblast
23 (! n mpz
24 (! b bblt
25 (! t (term (BitVec n))
26 (! bb (bblast_term n t b)
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27 (! s (^ (bblt_len b) n)
28 (! u (! v (bblast_term n t b) (holds cln))
29 (holds cln))))))))
30
31 ;; Bit-blast a variable
32 (program bblast_var ((x var_bv) (n mpz)) bblt
33 (mp_ifneg n bbltn
34 (bbltc (bitof x n) (bblast_var x (mp_add n (~ 1))))←↩

))
35
36 (declare bv_bbl_var (! n mpz
37 (! x var_bv
38 (! f bblt
39 (! c (^ (bblast_var x (mp_add n (~ 1))) f)
40 (bblast_term n (a_var_bv n x) f))))))
41
42 ;; Bit-blast bvand
43 (program bblast_bvand ((x bblt) (y bblt)) bblt
44 (match x
45 (bbltn (match y (bbltn bbltn) (default (fail bblt))))
46 ((bbltc bx x') (match y
47 (bbltn (fail bblt))
48 ((bbltc by y') (bbltc (and bx by)
49 (bblast_bvand x' y'))
50 )))))
51
52
53 (declare bv_bbl_bvand
54 (! n mpz
55 (! x (term (BitVec n))
56 (! y (term (BitVec n))
57 (! xb bblt
58 (! yb bblt
59 (! rb bblt
60 (! xbb (bblast_term n x xb)
61 (! ybb (bblast_term n y yb)
62 (! c (^ (bblast_bvand xb yb ) rb)
63 (bblast_term n (bvand n x y) rb)))))))))))
64
65 ;; Bit-blast bvadd
66 (program bblt_bvadd_carry
67 ((a bblt) (b bblt) (c formula)) formula
68 (match a
69 ( bbltn (match b (bbltn c) (default (fail formula))))
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70 ((bbltc ai a') (match b
71 (bbltn (fail formula))
72 ((bbltc bi b') (or (and ai bi)
73 (and (xor ai bi)
74 (bblt_bvadd_carry a' b'←↩

c)
75 )))))))
76
77 ;; Ripple carry adder where carry is the initial carry bit
78 (program bblast_bvadd ((a bblt) (b bblt) (carry formula)) bblt
79 (match a
80 ( bbltn (match b (bbltn bbltn) (default (fail bblt))))
81 ((bbltc ai a') (match b
82 (bbltn (fail bblt))
83 ((bbltc bi b') (bbltc (xor ai (xor bi (←↩

bblt_bvadd_carry a' b' carry)))
84 (bblast_bvadd a' b' carry)))))))
85
86 (declare bv_bbl_bvadd
87 (! n mpz
88 (! x (term (BitVec n))
89 (! y (term (BitVec n))
90 (! xb bblt
91 (! yb bblt
92 (! rb bblt
93 (! xbb (bblast_term n x xb)
94 (! ybb (bblast_term n y yb)
95 (! c (^ (bblast_bvadd xb yb false) rb)
96 (bblast_term n (bvadd n x y) rb)))))))))))
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