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Abstract

In this thesis, I will present the results of three projects addressing some of the major

chanllenges of applying computational design for 3D printing.

Printability test has long been the bottleneck that prevents 3D printing from scaling up.

Oftentimes, designers of 3D models lack the expertise or tools to ensure 3D printability.

3D printing service providers typically rely human inspections to filter out unprintable

designs. This process is manual and error-prone. As designs become ever more complex,

manual printability check becomes increasingly difficult. To tackle this problem, my

colleagues and I proposed an algorithm to automatically determine structurally weak

regions and the worst-case usage scenario to break a given model. We validate the

algorithm by physically break a number of real 3D printed designs.

The second project focuses on designing, analyzing and fabricating complex shapes. A

key distinctive feature of 3D printing technologies is that the cost and time of fabrication

is uncorrelated with geometric complexity. This opens up many exciting new possibilities.

In particular, by pushing geometric complexity to the extreme, 3D printing has the

potential of fabricating soft, deformable shapes with microscopic structures using a single

raw material. In our recent SIGGRAPH publication, my colleagues and I have not only

demonstrated fabricating microscopic frame structures is possible but also proposed an

entire pipeline for designing spatially varying microstructures to satisfy target material

properties or deformation goals.

An essential component of computational design for 3D printing is elasticity simulation,

which requires meshes satisfying a number of criteria. With the boost of 3D printing

technologies, 3D models have become more abundant and easily accessible than ever

before. However, a significant portion of these models violate such criteria. This poses

a serious challenge in robustly analyzing 3D designs. Many state-of-the-art geometry

processing algorithms/libraries are ill-prepared for dealing with models that are non-

manifold, self-intersecting, locally degenerate and/or containing multiple and possibly

iv



nested components. In our most recent SIGGRAPH publication, we proposed an algo-

rithm based on mesh arrangements for conducting a family of exact constructive solid

geometry operations. We exhaustively tested our algorithm on 10,000 models crawled

from Thingiverse, a popular online shape repository. Both the code and the dataset are

freely available to the public.
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Chapter 1

Introduction

During the past 5 years, 3D printing technologies have gained tremendous momentum

both in industry and academic research.

On the industry side, costs of 3D printers have dropped considerably. The expiration of

Fused Deposition Modeling (FDM) patent has led to renewed interests in 3D printing

from open source and maker communities. In addition, the emergence of 3D print-

ing service providers has democratised 3D printing by making multi-million dollar 3D

printers affordable and accessible by everyone. New generation of companies such as

FormLabs and Carbon3D are constantly challenging the status quo on frontiers ranging

from aesthetics, user experience to print quality and speed.

On the academic side, computational design and analysis for fabrication purposes have

attracted the attention of researchers from different fields, ranging from mechanical en-

gineering to mathematics. Not only do 3D printing technologies bring new challenges

(Chapter 2) and possibilities (Chapter 3), they also serve as touch stones on state-of-the-

art geometry processing algorithms (Chapter 4) and highlight the gaps between academic

research and industrial requirements (Chapter 5).

I am lucky enough to have conduct my research during this time, and I hope my work
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presented in this thesis will make an impact to the development of 3D printing technolo-

gies.

1.1 Background

1.1.1 Technologies

3D printing (a.k.a. additive manufacturing) is a broad term referring to a number of

distinct technologies with the common trait that they build up a given solid shape in a

layer-wise manner. A survey of all 3D printing technologies is beyond the scope of this

thesis. I refer interested readers to [69] and [138] for complete reviews of state-of-the-art

methods. In this work, I focus on three printing techniques that I have worked with:

filament extrusion, powder binding/sintering and photopolymer solidification.

Filament extrusion

There are many names for filament extrusion based 3D printing technologies: Fused

Deposition Modeling (FDM), Fused Filament Fabrication (FFF), Plastic Jet Printing

(PJP), etc. Among them, FDM is most commonly used.

FDM uses different types of thermoplastics filaments as raw material, a material that

becomes soft and viscous at high enough temperature. To creates a layer of a target

3D shape, FDM printer extrudes melted material and uses it as paint to both trace the

boundary and draw a 2D pattern (called infill) to fill its cross section. A sparse infill

allows FDM printers to fabricate a given shape with very little raw material.

FDM printers are relatively easy to operate at very low cost. This makes them ideal for

individual designers, hobbyists and educators. Some FDM printers support printing with

multiple filaments in one print, giving designer more freedom in terms of mixing color

and softness in their design. An important implication of multi-material FDM printers
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is that support structures, if needed, can be printed in a different material than the

main pieces. If the support is printed with a soluble material, it is possible to fabricate

complex design without worrying about ways of removing support structures.

FDM techniques also have a number of constraints. The printed objects often have very

visible layer lines [99]. Even with solid infill, the printed materials are very anisotropic [2].

Typically, users choose a sparse infill pattern, which causes the material properties to be

more complex to analyze. FDM is also geometrically less accurate than other techniques

[80], making it unsuitable for fabricating parts with high accuracy requirement.

Powder binding/sintering

Powder-based 3D printing technologies are one of the most popular ways of fabricating

customized designs at large scale. It is a broad term that encompasses a range of differ-

ent techniques including Selective Laser Sintering (SLS), Direct Metal Laser Sintering

(DMLS), Electron Beam Melting (EBM), Selective Laser Melting (SLM), and binder

jetting (confusingly abbreviated as 3DP).

All these different technologies share the same work flow: (1) A thin layer of material

powder is distributed on a flat surface; (2) A technique is used to merge the powders

in certain regions; (3) The built platform is lowered and a new layer of powders is

distributed. What distinguish these technologies is how powders are merged in step

2. DMSL and SLS use laser to sinter powders so each grain merge with neighboring

grains. EBM and SLM use electron beam and laser respectively to completely melt

the grains. Lastly, 3DP deposits special binder to glue the grains together. With the

exception of EBM and SLM, the printed shapes are porous and have a rough surface

finish. Post-processing is often necessary to fill in the pores and re-enforce the structural

strength.

The major advantage of powder-based printing technologies is that no support structure

is necessary because the loose powders from previous layers serve as supports for the
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current layer. This advantage allows powder-based printing to scale up and print multiple

shapes simultaneously. Each run of the printer could fabricate tens or hundreds of shapes.

In addition, due to the usage of binder, 3DP technology could be apply to a variety of

materials, but post processing may be needed.

The powder form of the raw material also has its own drawbacks. The porous nature

of the prints making material properties hard to predict. Two prints of the same shape

may exhibit different structural strength. Similar to filament-based printing methods,

the material properties of the output tend to be anisotropic. Another drawback is that

the printed shapes need to be dug out from a block of powders. This process has to be

conducted manually, thus error-prone. For binder jetting technologies, the raw prints

(also known as “green parts”), are brittle and could break easily during digging and

cleaning.

Photopolymer Solidification

Unlike filament extrusion and powder binding/sintering technologies, photopolymer so-

lidification works with raw material in liquid form. The raw material, photopolymer

resin, undergoes cross-linking when exposed to light, which causes it to transform from

liquid state to solid state.

Two of the most popular photopolymer solidification technologies are Stereolithography

(SLA) and Digital Light Processing (DLP). SLA uses high powder laser beams to solidify

a layer by tracing the interior of a cross section of the target shape. In contrast, DLP

rely on a conventional projector as light source to cure the entire cross section all at the

same time.

Photopolymer solidification technologies are more accurate than most filament extrusion

and powder binding/sintering technologies ([80]). [6, 143] demonstrate that hair-like

features can be fabricated. SLA and DLP are widely used in jewelry and dental industries

due to their high accuracy.
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Because the raw material is in liquid form, it is often messy to work with. Once a part

is printed, the user needs to remove any uncured resin by rinsing with special chemicals.

If a part failed to be printed, little fragments of cured layers would be scattered all over

the place in the resin tray, which requires a thorough cleaning. Lastly, some printers rely

a thin layer of Polydimethylsiloxane (PDMS) to allow both light and oxygen to come

into contact with resin. This layer of PDMS usually gets cloudy over repeated usages

and causes the print quality to deteriorate.

Another drawback of SLA and DLP is that the material properties changes over time.

Sometimes, resin do not solidify fully during curing. Printed shapes may gradually

become less flexible and brittle over time. Post curing the prints in UV box alleviates

but does not eliminate this issue.

1.2 Challenges and Research Opportunities

During my PhD studies, I have the pleasure of meeting, talking to and working with

many people working in different sectors of the 3D printing ecosystem. Their insights and

experiences are invaluable for me in my current and future research. Here I summarize

some of the most mentioned challenges that I have learned from them.

1.2.1 Repeatability

Repeatability is the number one issue users complain about 3D printing. It is especially

frustrating if a previously printed design failed to be printed or rejected by 3D printing

service providers. In addition to human errors, subtle changes such as an aging PDMS,

over-recycled raw material, inaccurate calibration or even different room temperature

or humidity could cause a previously printed design fail to print again. 3D printer

manufacturers are aware of these issues and are actively making progress in improving

printer reliability.
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1.2.2 Failure rate

Like any early stage technologies, 3D printing fails a lot. Even experienced 3D designers

report failure rates ranging from 30% to 90% before getting a design successfully printed.

Some of these failures are catastrophic, with nothing coming out of the printer. Other

failures include artifacts, missing details or unfunctional parts. Designers have to either

adjust their design or adjust the printer setting and try again.

1.2.3 Scaling up

Unlike traditional manufacturing, 3D printing excels at creating customized, one-off

models. While it is possible for individual users to print one model at a time, it is

infeasible for 3D printing service providers to do so. In order to scale up and increase

throughput, industrial 3D printing often group multiple models into a batch and print

them together. One problem arise from this practice is that a single bad input may ruin

the entire batch. Very few printers has a mature fault detecting and recovering system

in place. Thus it is especially crucial for 3D printing service providers to analyze each

model for printability before actually printing it.

1.3 Contributions

While the causes of these challenges may be diverse and complex, it is conceivable that

all of them can be improved by incorporating appropriate computational design and

analysis in the 3D printing work flow. This thesis summarizes my efforts to improve 3D

printing technologies in three distinct aspects:

• Printability. In Chapter 2, we present an algorithm to determine structural weak-

ness as well as worst-case usage scenarios. We extensively validated our algorithm

both numerically and experimentally.
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• Microstructure design. In Chapter 3, we explores the possibility of fabricating

microscopic frame structures. We describe an entire pipeline for designing spatially

varying microstructures that match target material properties or deformation goals.

• Robust mesh processing. In Chapter 4, we proposed an algorithm to perform robust

solid geometry operations using mesh arrangements. We validate our algorithm by

processing 10,000 “wild” models crawled from Thingiverse, a popular online shape

repository. A detailed analysis of our dataset is presented in Chapter 5.
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Chapter 2

Worst-case Structrual Analysis

This chapter is based on the publication ([145]) in collaboration with Julian Panetta

and Denis Zorin. For this project, I have worked on the developement of all steps of the

algorithm (linear elasticity system, modal anlaysis, weak region extraction, worst-cast

load optimization, fabrication, extensive material testing, design and execution of the

validation experiments) except accelerating pricipal stress computation.

Input Modal Analysis Weak Region Extraction Stress Optimization Weakness Map

Figure 2.1: Algorithm overview

2.1 Introduction

We present an algorithm approximating the solution of the following problem: From the

shape of an object and its material properties, determine the easiest (in terms of minimal

applied force) ways to break it or severely deform it.
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Our work is largely motivated by applications in 3D printing. The cost of 3D printing

has decreased significantly over the past few years, and the industry is undergoing a

rapid expansion, making customized manufacturing in an increasingly broad variety of

materials available to a broad user base. While many of the users are experienced creators

of digital 3D shapes, engineering design expertise is far less common, and widely used 3D

modeling tools lack accessible ways to predict the mechanical behavior of a 3D model.

There are a number of reasons why a 3D model cannot be manufactured or is likely to

fail:

(1) the dimensions of thin features (walls, cylinder-like features, etc.) are too small for

the printing process, resulting in shape fragmentation at the printing stage;

(2) the strength of the shape is not high enough to withstand gravity at one of the stages

of the printing process;

(3) the printed shape is likely to be damaged during routine handling during the printing

process or shipment;

(4) the shape breaks during routine use.

In most cases, the first problem is addressed by simple geometric rules ([123]), and the

second is a straightforward direct simulation problem. Our focus is on the other two

problems. On the one hand, many 3D printed objects are manufactured with a specific

mechanical role in mind, and full evaluation is possible only if sufficient information on

expected loads is available. On the other hand, jewelry, toys, art pieces, various types of

clothing, and gadget accessories account for a large fraction of products shipped by 3D

printing service providers. These objects are often expected to withstand a variety of

poorly defined loads (picking up, accidental bending or dropping, forces during shipping,

etc.).

To predict structural soundness of a printed object, we look for worst-case loads, within

a suitably constrained family, that are most likely to result in damage or undesirable
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deformations. A direct formulation results in difficult nonlinear and nonconvex opti-

mization problems with PDE constraints. We have developed an approximate method

for this search, reducing it to an eigenproblem and a sequence of linear programming

problems.

We demonstrate experimentally that our approach predicts the breaking locations and

extreme deformations quite well. While primarily designed for 3D printing applications,

our method can be applied in any context where loads are unpredictable and structural

weaknesses need to be identified.

2.2 Related work

Computational analysis of structural soundness of mechanical parts and buildings is

broadly used, but almost always in the context of known sets of loads. While engineers

routinely need to evaluate soundness of structures and mechanisms under worst-case sce-

narios, in most cases, worst-case loads are designed empirically for specific problems (e.g.,

construction of buildings to withstand loads from flooding or earthquakes). Automatic

methods are less common: an important set of methods in the context of modeling under

uncertainty is based on the idea of anti-optimization (e.g., [48]). Our work is partially

inspired by these concepts.

In aerospace engineering, filter-based methods were developed to predict worst-case gusts

and turbulence encountered by an airplane. E.g., [141, 50] model the aircraft’s response

to turbulence as a linear filter’s response to Gaussian white noise. From this model, a

worst-case noise sample and resulting strain are obtained.

In the context of analysis tailored to 3D printing applications of the type considered in

this paper, the closest work to ours is [120]. The paper proposes to evaluate 3D shapes in

two main scenarios to discover structure weakness: applying gravity loads and gripping

the shape using 2 fingers at locations predicted by a heuristic method. This set of
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fixed usage scenarios is often insufficient to expose the true structure weakness for many

printed shapes, as discussed in greater detail in Section 2.5. The paper also describes

methods for automatic improvement of objects. [123] focuses on purely geometric ways

to evaluate whether a structure is suitable for 3D printing based on empirical rules

formulated by the 3D printing industry ([140], [112]).

Structural stability for simple furniture constructed from rigid planks connected by nails

is analyzed at interactive rates in [131]. Their system also suggests corrections when

shapes with poor stability are detected.

A number of recent works address various aspects of computational design for 3D print-

ing. [22] provide a pipeline to print objects in a composite material that reproduces

desired deformation behavior. To achieve this goal, the authors accurately model the

nonlinear stress-strain relationship of their printing materials and how printed models

will respond to imposed loads. The space of deformations is a user-supplied input, and

structural soundness of the design with respect to other loads is not considered. While

some specialized work on CAD for 3D printing exists, (e.g., the system for heterogeneous

material design [68]), overwhelmingly, standard tools with little or no analysis support

are used.

[79] proposes a framework to decompose 3D shapes into smaller parts that can be as-

sembled without compromising the physical functionality of the shape so that larger

objects can be printed using printers with a small working volume. They use a standard

finite element simulation to estimate stress of the input shape under gravity in a user

specified upright orientation. Other works aim to print articulated models that maintain

poses under gravity but do not require manual assembly. [29] designs and fits a generic,

parametrized printable joint template based on a ball and socket joint. Their joint pro-

vides enough internal friction and strength to hold poses and survive manipulation, but

they tune its parameters experimentally instead of using a physically-based optimization.

[11] designs a similar ball and socket joint and a hinge joint. An approximate geometric
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optimization of stresses is performed by maximizing certain cross-sectional areas of the

joint.

3D printing has also been used to reproduce appearance: [59] and [44] optimize the

layering of base materials in a 3D multi-material printer to print objects whose subsurface

scattering best matches an input BSSRDF.

Our method relies on using eigenmodes of the shape. Modal analysis has proven useful

in many contexts. The use of Laplacian eigenmodes of simple shapes for computation

predates computers [125] and has a long history in model order reduction for a variety of

applications including nonlinear elasticity (e.g., [98]). In graphics literature, [102] first

introduced eigenmodes as a basis suitable for simulation applications, and more recently,

a number of deformation-related algorithms based on eigenmode bases were proposed,

e.g., [58, 14, 15].

At the same time, experimental modal analysis (applying periodic forces with different

frequencies and measuring displacements at various points) is broadly used to detect

structural damage [49].

Finally, [104] presents an overview of several simulations and experiments exploring how

printing parameters (build orientation, layer thickness, scan path and speed, tempera-

ture, etc.) affect the accuracy and strength of simple shapes. The goal of these works

is to evaluate and improve printing technology itself rather than detecting or fixing

deficiencies in the input shape.

2.2.1 3D printing processes

To motivate the design of our structural analysis process, we briefly review the most

commonly used 3D printing processes and the types of structural problems one can

expect. The most relevant aspects of 3D printing processes for structural analysis are

the mechanical characteristics of materials produced at different stages and typical loads
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on the object during and after the production process.

Common single-stage 3D printing processes either deposit the liquid material only in

needed places (e.g., FDM) or deposit material in powder form layer-by-layer and then

fuse or harden it at points inside the object (e.g., stereolithography uses photosensistive

polymers, and laser sintering fuses regular polymers by heat).

These processes typically use flexible polymers with large elastic and plastic zones in their

stress-strain curves. These polymers rarely break if geometric criteria for printability are

satisfied, but they can undergo large plastic deformations.

Printing metal, ceramics, and composite materials often involves multiple stages. For

example, the object may be printed layer-by-layer in metal powder with polymer binder.

At the next stage, the binder is cured in a furnace, resulting in a green state part,

and at the last stage, the metal is fused in a furnace and extra metal is added. Green

state is brittle and has low strength, so parts in this state are easily damaged. A

simpler multistage process is used for relatively brittle composite materials, e.g., gypsum-

based multicolor materials: a second curing stage is used to give the material additional

strength. Both the green state and the final material are relatively brittle. Whenever

binding polymer is mixed layer-by-layer with a different material, the resulting material

is likely to be highly anisotropic.

To summarize, both brittle and ductile materials are of importance. The former requires

predicting where the material is likely to break, and the latter requires predicting extreme

deformations likely to become plastic. Due to the layer-by-layer nature of the printing

process, anisotropy is common and needs to be taken into account. Some of the loads

even during production stages are hard to predict and quantify.

Goals. These considerations lead to several possible structural analysis goals, unified

by a common theme of identifying worst-case loads in a family of loads satisfying some

constraints (bounds on total force, pressure, direction etc.). The worst-case load is
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understood to be the one that leads to maximal damage, which can be measured by a

norm of stress, maximal displacements, and various functions of these quantities.

2.3 Worst-case structural analysis

Next, we present a formal description of the problem. This formulation is computation-

ally intractable, but it is needed as a foundation for a practical approximate version

described in Section 2.4.

Linear elasticity. We use an anisotropic linear material model and the linear elasticity

equations to model object behavior for the purposes of determining weak spots and

worst-case force distributions. This model is adequate for some materials used in 3D

printing, but nonlinear models may be necessary for others, as discussed in greater detail

in Section 2.6. We emphasize that a distinction should be made between simulation

with given loads used to determine precise stress distributions and computation used to

determine approximate worst-case loads: lower accuracy is acceptable for the latter. We

briefly review the standard elasticity equations to introduce notation. The stress-strain

relationship is linear, and stress is related linearly to displacement:

σ = C : ε ε =
1

2

(
∇u+∇uT

)
, (2.1)

where ε is the strain tensor, σ is the stress tensor, and u is the displacement. C is the

rank-4 elasticity tensor, Cijlm, and the notation C : ε denotes application of this tensor

to the strain tensor ε,
∑

l,mCijlmεlm. We discuss the choice and effects of elasticity tensor

C in greater detail in Section 2.6. We assume an orthotropic material, for which the

tensor Cijlm has up to 9 independent parameters. In a coordinate system aligned with

the material axes, if we represent C as a 6 × 6 matrix acting on vectors of components
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of the symmetric strain tensors [ε11, ε11, ε33, 2ε23, 2ε31, 2ε12], its inverse is given by



1
Y1

− ν21
Y2

− ν31
Y3

0 0 0

− ν12
Y1

1
Y2

− ν32
Y3

0 0 0

− ν13
Y1

− ν23
Y2

1
Y3

0 0 0

0 0 0 1/G23 0 0

0 0 0 0 1/G31 0

0 0 0 0 0 1/G12


where Yi are directional Young’s moduli, Gij are shear moduli, and νij are Poisson ratios

for different pairs of directions, satisfying νij/Yi = νji/Yj .

For dynamic linear problems with volume force density F , the equation of motion is

∇ · σ = F + ρü, (2.2)

where ρ is the density, and the dot signifies the time derivative. We are primarily

interested in static problems, but as we use modal analysis at an intermediate stage, we

retain the term ρü.

Equation 2.2 is subject to boundary conditions: we primarily use a surface force density

FS , which is captured by the condition σn = −FS on the boundary of the object. If the

object is attached to a rigid support, Dirichlet conditions u = 0 can be imposed on a

part of the boundary.

If the equation of motion (2.2) is written directly in terms of displacement u, we get

∇ ·
(
C :

1

2
(∇u+∇uT )

)
:= Lu = F + ρü. (2.3)

Rigid motion, torque and translation constraints for static problems. If the

object is not fixed at least at 3 non-collinear points, an arbitrary force distribution will

result in motion of the whole object. As we are interested in considering unknown forces

with no assumptions on attachment, we need to be able to eliminate global motion. We

15



achieve this by imposing zero total force and zero total torque constraints, which can be

written as

∫
Ω
FdV +

∫
∂Ω
FSdA = 0,∫

Ω
F × (x− xc)dV +

∫
∂Ω
FS × (x− xc)dA = 0.

(2.4)

Displacements enter into this system only in the form Lu, and the operator L has in-

finitesimal rigid motions in its nullspace. To have a unique solution in u, we impose a

zero rigid motion constraint, similar to total torque and force constraints:

∫
Ω
udV = 0,

∫
Ω
u× (x− xc)dV = 0. (2.5)

Surface force model. In cases of interest, the only volume force is gravity. In all but

most extreme cases, gravity does not have a major effect, so we concentrate on surface

forces. We restrict the forces in three ways.

• Only positive normal forces allowed: FS = −pn, where n is the surface normal, and

p is pressure, thus ignoring friction. This is an important assumption, as for most

situations described in Section 2.2.1, friction forces are likely to be significantly

lower than normal forces. At the same time, it is hard to model the bounds on

ratios between normal and tangential components accurately in the absence of

detailed knowledge of loads and surfaces. Without such bounds, any optimization

is likely to produce unrealistic tangential results. Similarly, negative surface forces

(e.g., electrostatic attraction), are not likely to play a major role and are excluded.

• Pointwise pressure is bounded: p < pmax. If a pressure may be unbounded, an

arbitrarily high stress may be produced at a point on the surface. While highly

concentrated forces are possible, these are rare, and we assume that a realistic

bound on surface pressure is available.
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• The total force is fixed. Again, by increasing the total force, arbitrarily high stresses

can be obtained.

For example, if our primary target is simulating manual handling situations, one can

bound the force by a typical force a human can apply by squeezing, and the maximal

pressure is derived from the size of the finger tips.

Problem formulation. It remains to specify the objective function. One commonly

used measure of interest is maximal principal stress, maxΩ maxi=1,2,3 |σi|, where σi are

the eigenvalues of the stress tensor. The complete problem of finding the worst-case

force distribution satisfying the constraints of our model and optimizing this objective

function, has the form

max
Ω

max
i=1,2,3

|σi| → max;

Lu = 0 on Ω, C : (∇u+∇uT )n = pn on ∂Ω,∫
∂Ω
pndA = 0,

∫
∂Ω
pn× (x− xc)dA = 0,∫

Ω
udV = 0,

∫
Ω
u× (x− xc)dV = 0,

0 ≤ p ≤ pmax on ∂Ω,

∫
∂Ω
pdA = Ftot.

(2.6)

Maximal principle stress is a suitable measure if we are interested in failure of materials,

which occurs when the stress in a direction exceeds a bound. For plastic transition, the

norm or some other function of the deviatoric stress, σ − 1
3trσI, may be of interest.

We make an interesting observation when the material is isotropic and C can be written

as Y Ĉ, where Y is the Young’s modulus, and Ĉ is nondimensional, depending only on

the Poisson ratio. Then maximal stress does not depend on Y but only on the Poisson

ratio.

Solving this problem yields the worst-case principal stress and, importantly, the pressure
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distribution on the surface resulting in this stress. The maximal stress makes it possible

to evaluate the likelihood of damage during the production process, shipping or use.

Examining the pressure distribution makes it possible to evaluate how likely such loads

would be and determine how the structure of the object can be strengthened.

We observe that all constraints in this problem are linear equality and inequality con-

straints, i.e., the constraints are convex. At the same time, the functional is highly

non-linear (in fact, not smooth) and non-convex. Replacing maximal principal stress

with another point measure maximized over the surface does not change the nature of

the problem.

A brute-force solution can be obtained by solving a sequence of problems in which the

objective functional max |σi|2 is maximized for every point and then taking the maximum

of all results. Because we are interested in maximizing the norm, even these simpler per-

point problems remain nonconvex and nonlinear.

We conclude that solving the optimization problem in general form is impractical, and

due to non-linearities and non-convexity, any optimization is likely to get stuck in local

minima.

Extension to displacements. An obvious extension of the algorithm is optimizing

for maximal displacements. The main change is replacing σ with u in the functional:

maxΩ |u| → max. This formulation is more relevant for flexible materials.

2.4 Efficient approximate algorithm

Overview. Figure 1 shows the main components of the efficient approximate algorithm

for solving (2.6).

There are two problems we need to address to make the solution of (2.6) practical: (1)

the need to solve an optimization problem for each point of the object to determine
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which one results in minimal stress; and (2) the nonlinearity and nonconvexity of each

subproblem.

To address the first problem, we use a modal-analysis based heuristic that we found

to work remarkably well. The second problem is solved by using trσ as the linear

objective functional. The reasons this substitution is possible for a broad range of cases

are discussed in detail below.

Modal analysis and weak regions. A crucial ingredient of our method is modal

analysis, which we use to restrict the part of the object where we need to maximize the

stress or another functional.

Computational modal analysis refers to computing eigenvectors (eigenmodes) ui and

eigenvalues λi of L:

Lui = λiui, i = 1, 2 . . . (2.7)

It is widely used in engineering and graphics for a variety of purposes. In the context of

structural analysis, the most common application of modal analysis is to predict possible

damage or deformations in presence of vibrations.

Our idea is similar in spirit, however there is a significant difference. We do not consider

vibrations, i.e., periodically changing loads; rather, we consider static or quasi-static

loads. We make the following

Assumption 1: Examining a small number of eigenmodes allows us to find all regions

of an object where the stress may be high under arbitrary deformation. While this obser-

vation is difficult to prove mathematically, physical intuition suggests that vibrations of

an object at different frequencies will result in high stress in all structurally weak regions

of the object. Weak regions are those where high maximal stress can be obtained with

low energy density relative to other parts of the object.
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To validate this assumption, we have performed a brute-force optimization on a number

of models (Figure 2.7) and compared with the results obtained using weak regions only.

We obtain a remarkably good agreement in all cases.

We search for locations of potentially high stress by computing a number, Mm, of eigen-

modes and considering a fraction 1 − ε of points with highest stress under these defor-

mations.

We define weak regions to be the connected components of this set. Each mode has

multiple weak regions, typically associated with local stress maxima. For each mode we

select Mr weak regions.

Approximate convex problem. The second important change to the problem is to

replace the functional in (2.6) with a functional that can be optimized efficiently and

that is minimized by a similar pressure distribution, p, to the original. We focus on

the maximal stress, although a similar approach can be used for other functionals. We

observe that almost invariably for any deformation and any compressible material with

Poisson ratio ν sufficiently different from 1/2:

For points where a principal stress is maximal, other principal stresses are small relative

to the principal stress.

We have performed a validation of this observation by running simulations with a variety

of loads and computing the ratio of the maximal principal stress to |trσ|. Over 36 models

tested, the average ratio is 0.96 with standard deviation 0.25. Figure 2.2 illustrate that

the distributions of trace and maximal principle stress are visually similar.

We observe that when this is true, the difference between |σmax| = maxi=1,2,3|σi| and

|∑3
i=1 σi|, i.e., |trσ| is small, and we can approximate the maximal principal stress with

the absolute value of the trace.

As weak regions correspond to the highest stress area, and estimated stress tends to
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Figure 2.2: The top 10% volume of largest principal stress (left) and largest trace (right)
are visually similar

have a significantly lower accuracy vs. displacement, we use a weighted average of the

stress over each weak region. The choice of weighting, as long as it falls off towards

the boundary of the region, has relatively small effect on the result. We choose the L2

norm of the stress computed from the eigenmode as the weight w for averaging the stress

trace over each weak region. We also predict whether each point will stretch or compress

under the worst-case load by computing trσ under the modal displacement. We choose

w’s sign to match this quantity.

We finally arrive at the following approximate problem formulation:

For each eigenmode i, i = 1 . . .Mm and each of its weak regions, Dij, j = 1 . . .Mr, we

solve the following linear programming problem:

∫
wtrσdV → max w.r.t. u and p;

Lu = 0 on Ω, C : (∇u+∇uT )n = pn on ∂Ω,∫
∂Ω
pndA = 0,

∫
∂Ω
pn× (x− xc)dA = 0,

0 ≤ p ≤ pmax on ∂Ω,

∫
∂Ω
pdA = Ftot.

(2.8)

Unlike the original problem, this problem has a unique solution that can be computed

efficiently using a convex solver.
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Discretization and additional optimizations. We discretize the problem in the

simplest conventional way, using piecewise-linear finite elements. The downside of this

approach is that a suitable tetrahedral mesh needs to be generated for each input. For

3D printed models, the task is somewhat simplified: as the cost of printing is dominated

by the amount of material used, almost all objects printed in practice are effectively thick

shells to the extent this is allowed by the structural requirements. For this reason, tet

meshing does not increase the number of vertices used to represent the object as much

as one would expect.

Let n be the number of vertices, nb ≤ n be the number of boundary vertices, and m be

the number of elements. The discretized quantities are: p the vector of pressures defined

at boundary vertices of dimension nb; and u, the vector of displacements of dimension

3n.

In discrete formulation, we optimize the functional

wTV DBu. (2.9)

In this formula, V is a 6m× 6m matrix, with the volume of element j repeated 6 times

on the diagonal for the 6 components of the stress tensor. D is a 6m×6m block-diagonal

matrix. For each element, the corresponding 6×6 block is the rank-4 tensor C in matrix

form. B is a 6m × 3n applying the FEM discretization of ∇ + ∇T . Finally, wT is a

vector that computes and weights the stress tensor traces, so that wTV x discretizes∫
ΩwtrxdV .

The discretized static elasticity equation combined with boundary conditions takes the

form

−Ku +NAp = 0, (2.10)

where K is the standard FEM 3n× 3n stiffness matrix, K = BTV DB. The matrix N is

a 3n× nb matrix of components of surface normals, returning per-vertex components of
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external forces (0 for internal vertices, pn for the boundary), and matrix A is the nb×nb
diagonal vertex area matrix.

The discretized formulation of the total force and torque constraints are:

ΣNAp = 0, ΣTNAp = 0, (2.11)

where Σ is the 3× 3n matrix, summing n 3D vectors concatenated into a 3n vector, and

T is 3n× 3n block-diagonal matrix computing the torques of the surface force vectors.

Putting all these together, the discretized optimization problem is:

w · (V DBu)→ max w.r.t. u and p;

−Ku +NAp = 0,

ΣNAp = 0,ΣTNAp = 0,

Σvu = 0,ΣvTvu = 0,

0 ≤ pi ≤ pmax for all i,

ΣsAp = Ftot,

(2.12)

where Σs sums scalars on the surface, Σv sums vectors in the volume Ω, and Tv computes

torsion for each point. The total dimension of the problem is nb + 3n.

Eliminating displacements. As most of the degrees of freedom in the system are

displacements, but the quantities of interest are pressures p, eliminating u results in sig-

nificant speedups (u can be eliminated even for the displacement maximization problem).

The elasticity equation −Ku + NAp = 0 is not sufficient for this; it has a nullspace of

dimension 6 corresponding to the rigid motion degrees of freedom, so we need to consider

the constraints for zero total rigid motion, Ru = 0, where R =

 Σv

ΣvT

. Rewriting
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this system in the standard constrained system form,

K RT

R 0


︸ ︷︷ ︸

C∗

 u

λ

 =

 NAp

0

 , (2.13)

where λ is the Lagrange multiplier for the constraint Ru = 0. It is clear from physical

considerations that this system is invertible. Let S be the selection matrix

 I3n×3n

0

.

Then, we can express u as u = STC∗−1SNAp. In this form, the objective of (2.12)

becomes

w · V DBu = wTV DBSTC∗−1SNA︸ ︷︷ ︸
fT

p = fTp.

The displacement-free optimization problem is

fTp→ max w.r.t. p,

ΣNAp = 0, ΣTNAp = 0,

0 ≤ pi ≤ pmax for all i,

ΣsAp = Ftot.

(2.14)

While the final system has only sparse constraint matrices, it may appear that com-

puting fT for the objective functional requires inverting C∗; we observe however that

wTV DBSTC∗−1SNA = fT can be rewritten as f = (SNA)Tq, where q is the solution

of the equation

C∗Tq = SBTDTV Tw. (2.15)

In other words, it is sufficient to be able to solve a linear system with matrix C∗, and

the cost of transforming (2.12) to (2.15) is the cost of a single linear solve.

Finally, for modal analysis, we have observed that the results for isotropic models in
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particular are well-approximated by simpler eigenanalysis of the Laplacian, which yields

a considerable speedup (compare the bottom two rows of Figure 2.7).
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Figure 2.3: Histogram of the mode number (horizontal axis) in which the weakest region
appears for the first time.
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Figure 2.4: Histogram of the rank of the weakest region in the weak region list sorted
by decreasing energy.

Algorithm summary and parameters. The main steps of our approach are

1. Compute a tetrahedral mesh Ω for an input triangle mesh.

2. Compute Mm modes using an eigensolver.

3. For each mode, find Mr weak regions with highest total energy.

4. For each weak region, solve the problem (2.14) to obtain worst-case pressure can-

didate pi.
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5. Solve Lu = 0, with boundary pressures specified by pi, to obtain displacements ui,

and compute actual maximal principal stress σmaxi for each weak region.

6. Maximal stress is determined as maximum of σmaxi .

Tetrahedral meshes are generated using tetgen ([115]).

We use MOSEK ([89]) to solve the linear programming problem, UMFPACK ([43]) for

linear solves, and ARPACK ([70]) for computing eigenvectors and eigenvalues.

The parameters of the algorithm include Mm, Mr, the choice of threshold 1− ε for weak

regions, and a user-defined maximal pressure pmax (the latter can be regarded as a part

of the definition of the force model).

To determine reasonable choices of Mm and Mr, we have run modal analysis for a large

number of modes (150) and a large number of weak regions per mode for a collection of

objects. For each object and each mode, we found the weakest region and checked in

which mode it first appears. We also computed its rank in the list of that mode’s weak

regions sorted by decreasing energy. The results (Figure 2.3 and Figure 2.4) indicate

that 15 modes and 5 weak regions per mode are sufficient in over 80% of cases.

We use ε = 0.025 in all cases; the dependence of the size of weak regions for one mode

on ε is shown in Figure 2.5.

Figure 2.6 shows two final results of the algorithm. Red arrows are total forces obtained

by summing nearby per-vertex force values (pressures are typically concentrated in small

areas). Colormaps on the deformed surfaces show weakness maps.

2.5 Validation

We performed validation of our algorithm in several computational and experimental

ways.
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Figure 2.5: Weak regions extracted from three modes with weakness level cutoff, ε =
.10, .05, .03, .01.

Figure 2.6: Optimal force vectors and weakest regions on the left, resulting deformations
and stresses on the right. The gray images in the background show the undeformed
state.

Comparison with direct search for the weakest region. Instead of using the

modal analysis stage to identify weak regions and using averaged stress or displacement

over weak regions as the target quantity to optimize, we can run the same optimization

process directly, treating each tetrahedron as a potential weak region.

We define the weakness map as a scalar field on the surface mapping each point to the

maximal principal stress at this point obtained by approximate optimization. Using our

method yields a partial weakness map on the union of all weakness regions we consider.

Figure 2.7 shows a comparison of a complete weakness map, computed using the brute-

force approach, with the weakness map obtained by our method. We observe a close

agreement between these for all examples in areas where the partial map is defined and

never observe high stress values elsewhere.

Dependence on tetrahedral mesh resolution. To keep the cost of computation

low, especially in the context of interactive applications or processing large number of
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# Tets Brute Force (s) Weak Region (s) Speedup

2723 681.367 1.089 625.939 x
2869 793.362 1.087 729.907 x
2904 894.610 0.641 1396.071 x
5332 2120.361 1.171 1810.199 x
11020 11029.721 2.729 4042.403 x
12853 11334.362 1.694 6692.546 x
14163 27775.900 3.373 8234.925 x
16008 19917.838 1.892 10527.388x

Table 2.1: Stress analysis timings for brute force optimization vs. weak region opti-
mization. While speedups are already dramatic for extremely small element counts,
the higher asymptotic complexity of brute force causes a rapidly increasing speedup for
larger models.

Brute force

Laplacian

Sti�ness

Analysis Type Star Star Pendant “Test 2”

Brute Force 18.300 MPa 36.767 MPa 73.298 MPa
Laplacian 15.593 MPa 34.151 MPa 71.689 MPa
Stiffness 16.208 MPa 35.939 MPa 70.588 MPa

Figure 2.7: Comparison of the similar optimum stresses found by brute force, Laplacian-
based weak region analysis, and stiffness-based weak region analysis. The table reports
99.75 percentile (by volume) element stresses. An isotropic metal material was used for
this comparison.

objects at a printing facility, using coarse tetrahedral meshes is desirable. As Figure 2.8

shows, weakness maps for different resolutions are similar, so higher resolution may be

used only at the last stage, after the weakest spots are identified.
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Figure 2.8: For 5 different mesh resolutions (from left to right, the vertex counts are 5K,
13K, 24K, 36K, 50K), the algorithm generates consistent weakness maps.

Drop test. To verify our method for brittle materials, we performed a randomized

deformation test by dropping printed models onto horizontal pegs. We dropped the

models from 1m high, ensuring a nearly random impact orientation and force application.

The test setup is pictured in Figure 2.9. All models were printed with material zp150.

Specific breakages may have two origins: high point forces, which can break even rel-

atively strong spots near the impact point and will vary across drops, and smooth de-

formations, which are likely to break weak regions consistently. The former does not

correspond to typical usage scenarios, which feature distributed bounded forces. Thus,

we consider only fractures occurring frequently across drops.

The test results, displayed in Figure 2.10, confirm that the weak regions determined by

our method generally agree with the areas with highest occurrence of fracture. Notice

in particular the legs of the cow (3rd row, left), the notches of the gear (5th row, left),

the arms of the dancer (1st row, right), and the inner piece of the powercog pendant (6th

row, left). These are all regions of high weakness map value that break consistently.
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Figure 2.9: We used models printed in green state “sandstone” for the drop tests. The
testing models often are covered with a loose layer of powder that shakes off upon impact
(see the dust in the right image).

Displacement test. For the objects printed in ductile materials, we performed a

different test. We placed the shapes into a cardboard box filled with packaging material

and applied pressure to the box’s exterior. This pressure permanently deformed the

models inside. We took photographs of the deformed models in a registered position

and compared them to the 3D model from which they were printed. We observe good

agreement with the computed map of maximal displacements, i.e., the map similar to

the weakness map, but for the displacement maximization problem (see Figure 2.11).

Comparison with [120]. We compare to the approach described in [120], as they also

aim to predict the loads that a printed model is likely to experience. The authors use

a more specific force model: pinch grips. They present an empirical model to predict

how the object will be gripped with two fingers. There are many designs for which such

a grip does not capture typical use cases or mishaps. Figure 2.12 demonstrates shapes

whose worst-case loads cannot be applied or approximated using only a pinch grip.

Figure 2.13 shows three examples for which the authors of [120] have provided us their

force application points. Their “cup” example (left) is an excellent candidate for the

pinch grip; the highest stress achieved with a fixed total force agrees with ours and even

exceeds it. However, the other two objects do not fit their model as well. The “UFO”

pinch grip is clearly suboptimal, and the forces applied to the bracelet would have much

more leverage if they were moved to the open endpoints. In all three cases, our method
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Figure 2.10: Results for a drop test. Model volume is shaded with its weakness map
percentile: 90% 99%
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Reference

Deformed

Figure 2.11: Simulation results (left) are compared to the deformed 3D printed model
(green) overlaid on an undeformed one (blue). Our algorithm predicts likely regions (red)
of large deformation under normal handling. For the blade earring, we confirm that the
largest blade deforms little relative to the hook and shaft: after aligning the shafts to be
parallel, the largest blades are also roughly parallel (see the yellow parallelograms). The
second largest blade is displaced more. Note that the upper right pin of the deformed
spinnoloid (middle row, green) was broken during printing.

generates efficient force vectors.

An interesting observation about the “cup” model is that our method produces a triangle

of forces (perhaps at the expense of higher stress) rather than a pair of opposite forces.

One possible reason for this is the pressure bound requiring the force to be distributed

over a larger area.

Timings. Though our pipeline has not yet reached interactive speeds, it is already fast

enough to be included in a 3D printing pipeline. For the sizes of models most commonly

sent to 3D printing services (see distribution in Figure 2.15: sizes on the order of 100K
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Figure 2.12: Models where pinch grips cannot generate worst-case loads. Our method
finds highly intuitive force vectors, regardless. The additional arrows on the top of the
Skyrim dragon arise to bring the total force and torque to zero.

Figure 2.13: Comparison against [120]. Our algorithm’s force distribution (top) better
identifies structural weakness, especially for the ufo (middle) and bracelet (right).

vertices are most common), our full algorithm takes only a few minutes:

# Tets Structural Analysis (mins)

2723 0.028

42900 0.308

70356 0.382

155383 2.566

322398 9.601

414894 4.490
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Analyzing the algorithm’s scaling behavior is complicated by its dependence on structural

properties—a separate linear program is run for each weak region that is extracted. To

make sense of the timings, they have been separated by stage. Modal analysis and

weak region extraction are run only once per model, and Figure 2.14 shows how their

execution times depend on element count. The time spent setting up and solving the

linear programs (“weakness analysis”) is averaged over all weak regions so that it can

be plotted against the same x axis. Note that there is one further cost not shown:

the single sparse UMFPACK factorization. This timing depends strongly on matrix

structure (despite using fill-in reducing permutations), and adds noise to curves when

included. Factorization time is included in the timing table above.
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Figure 2.14: The top plots shows how modal analysis and weak region extraction scale
with the number of tetrahedra. The dominant cost is the eigensolve. The bottom plots
shows the average cost of setting up and running the linear program for each weak region.
It excludes the UMFPACK factorization of C∗ that only must be run once.
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Figure 2.15: Model vertex counts tabulated from 2781 models ordered from Shapeways.

2.6 Material properties

Material parameters defining the elasticity tensor C must be measured for each of the

3D printers’ materials. We have observed that the computed maximal stress does not

depend on the magnitude of the Young’s modulus in the isotropic case. However, in the

anisotropic case, it does depend on the ratios of directional elasticity moduli, which can

be significant (Figure 2.16). To predict breakage or plastic deformations under loads,

the additional material parameters tensile strength and yield strength are needed.

In this section, we present the Youngs modulus ratio measurements for three different

3D printing materials that we used to compute our simulation’s elasticity parameters.

In addition, we discuss the extent to which various materials match our assumptions on

stress-strain linearity and what accuracy one can expect from predictions of the maximal

stress to tensile strength ratio. In all cases, we assume a Poisson ratio of 0.3.

We have tested three materials used in 3D printing: nylon (PA 2200 by EOS Electro

Optical Systems), “sandstone” (zp150 used in the ZPrinter series by 3D Systems), and

green state stainless steel (420SS powder bound with proprietary binder used by Ex-

One). They also represent different classes of materials (brittle vs. ductile, isotropic vs

anisotropic).

To determine their properties, we conducted a three point bending test consistent with
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Figure 2.16: Different ratios of directional Young’s moduli can lead to different weakest
regions. We show the weakest region found for a truss with a Young’s modulus that is
five times higher in the X (left), Y (middle), and Z (right) directions.

ASTM standard D5032 ([7]), using the Instron 5960 universal testing machine with a

±100N load cell and a support span of 40mm. Figure 2.17 illustrates the testing setup.

The testing samples are rectangular bars with length 60mm and thickness between 1mm

and 5mm. A relatively thin test bar was chosen because structurally weak models are

likely to contain thin features.

Figure 2.17: Three-point bending test on green state stainless steel.

Among the three materials tested, green state stainless steel fits the definition of brittle

material the best. Stress grows linearly with strain for all samples tested (Figure 2.18

left). Bending tests in perpendicular directions show that elastic moduli in these di-

rections are close, with the average Young’s modulus 3.59GPa and standard deviation

0.27GPa. Figure 2.19 shows critical stress extracted from measurements, which is mostly

consistent for all samples, with the average 6.88MPa and 0.62MPa standard deviation.
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Figure 2.18: Left: Stress vs strain curve measured on samples in green state stainless
steel. The colors indicate different sample thickness (1.5mm red, 2mm green, 3mm blue).
Right: Stress vs strain plots for nylon testing samples of thickness 1.5mm and 2mm. The
samples printed in different orientation are marked with different colors (red: X, green:
Y, blue: Z).

Overall, this material is consistent with our model for stress optimization.
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Figure 2.19: The critical stress distribution of green state metal for samples with
thickness 1.5mm up to 5mm.

Models printed in nylon are known to withstand a large range of deformations. Figure

2.18 (right) shows the stress vs strain curve for 18 nylon samples. Half of them are

1.5mm thick, and the other half are 2mm. For each thickness group, sets of 3 samples

were printed along each of X,Y and Z directions. From the results, we observed that nylon

samples typically have a very large elastic deformation range before entering the plastic

stage. We also note a moderate but obviously present degree of anisotropy (the Young’s

modulus for X is 0.80GPa with 0.13GPa deviation, for Y is 1.02GPa with 0.18GPa

deviation, and for Z is 0.98GPa with 0.12GPa deviation). See Figure 2.18, right.

The most complex material we tested is the “sandstone.” Though, like green state metal,
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it has a relatively low tensile strength, it exhibits a significant plastic region (Figure 2.20)

and very high degree of anisotropy: we measured X, Y, and Z Young’s moduli of 1.22GPa

(standard deviation 0.13GPa), 0.68GPa (standard deviation 0.07GPa), and 0.234GPa

(standard deviation 0.02GPa) respectively, with more than 5 times difference between

the largest and smallest values. Thus, we model it as an orthotropic material with

a distinct Young’s modulus per printing axis. We obtain our shear moduli using a

standard formula from [119]: Gxy =
ExEy

Ex+Ey+2Eyνxy
. Note that “sandstone” exhibits a

large variability of tensile strength, even for a single direction. This means only very

conservative predictions are possible. Nevertheless, we observe that our weak region

detection works well (Figure 2.10).
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Figure 2.20: Stress vs. strain measurements on rectangular bars printed with green
state “sandstone” along the printer X (red),Y (green) and Z (blue) direction. Different
printing directions influence the material properties significantly.

2.7 Conclusions

We have presented an efficient approximate method for determining worst-case loads for

a geometric object based on its geometry and material properties only. The method

is quite reliable (it relies on a linear solver, an eigensolver, and a convex solver, which
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all can provide convergence guarantees), efficient, and approximates well the worst-case

stress and displacement distributions.

At the same time, there is clearly a number of limitations. Most importantly, only linear

elasticity is considered, and the optimized solution at the second stage may not match

reality for large plastic deformations. We note, however, that the robustly obtained

approximate solution can serve as a starting point for a nonlinear solver. More generally,

3D printed materials exhibit a broad range of complex behaviors, some of which may

exhibit considerable variation even for the same printing process. Using computational

models reflecting material complexity and uncertainty is an important future direction.

From the point of view of robustness of the method, tetrahedral mesh generation is the

bottleneck. Meshless techniques may yield a fully robust pipeline using only surface

geometry as input.
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Chapter 3

Elastic Textures for Additive

Fabrication

This chapter is based on our publication [100] in collaboration with Julian Panetta,

Luigi Malomo, Nico Pietroni, Paolo Cignoni, Denis Zorin. My contributions include

the development of 3D wire inflation system based on [57] and extend it to support

periodic inflation, grid-based and mesh-based tiling of mixed single-cell patterns; research

and testing of 3D printers’ capability of fabricating microstructures; formulation of self-

supporting and tilable constraints; initial implementation of linear elasticity system with

heterogeneous material support; initial implementation of parameter sweep; proposal and

initial implementation of local-global material optimization algorithm; implementation

of material properties to single cell pattern lookup algorithm using norm of compliance

tensor difference; testing of the raw material properties; fabrication and testing of all

examples used in the paper.
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(E1,F0)(E4,F0) (E0,E1)(E1,E4)(E0,F2)(E2,F2)(E4,F2) (E0,F0)(E1,F0)(E4,F0)(E1,E2)(E1,E4)(E2,E4) (V0,E0)(E0,E4)(E2,E4)

Figure 3.1: Six basic elastic textures are used to obtain a large range of homogenized
isotropic material properties. A 3 × 3 × 1 tiling of each pattern is shown, along with
rendered (left) and fabricated (right) cell geometry below. The naming convention is
explained in Section 3.4.

3.1 Introduction

Rapid advances in the accessibility of additive fabrication has a significant impact on how

manufacturable geometric models are constructed. A key distinctive feature of common

additive fabrication technologies is that the cost and time of production is practically

uncorrelated with structural complexity: in fact, a complex structure using less material

may be both cheaper and faster to produce.

Complex structures, aside from potentially reducing costs, open up many new possi-

bilities, in particular for manufacturing deformable objects. By varying a small-scale

structure, one can adjust a variety of material properties, from elasticity to permeabil-

ity. Importantly, these properties can be varied nearly continuously over the object,

something that is not commonly done in traditional processes. As it was observed in

prior work, this opens up many new possibilities for object behavior.

Small-scale structures present a set of new design challenges: in all but the simplest cases,

these are hard or impossible to design by hand to meet specific goals. At the same time,

computational optimization of fine-scale variable structure over a whole object, even of

moderate size, can easily result in numerically difficult topology and shape optimization

problems with millions of variables.

In this paper, we describe elastic volumetric textures, a library of tileable parameterized
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3D small-scale structures that can be used to control the elastic material properties of an

object. Applying such textures to a hex mesh with target material properties specified

per element is similar to using dithering to achieve a continuous variation of brightness

or color.

In a sense, almost all material properties owe themselves to small-scale structures at

the molecular or crystal level, and a large body of work in nanoscience aims to control

material properties precisely by structure design. These works must accommodate con-

straints imposed by the specific properties of the elements and molecules used, the need

for self-assembly, and other considerations.

Our focus is on larger-scale structures, which can be manufactured using existing 3D

printing technology. With feature sizes at the scale of 10µm-100µm, these are well

described by conventional elasticity theory. While this type of structure was also exten-

sively studied, typically this was in the context of a specific problem, such as optimizing

strength for a given material volume fraction. Our goal is to maximize the range of

effective material properties that can be obtained using a single material by varying the

structure.

We consider variable-thickness truss-like structures—i.e. structures composed of con-

nected bars—as these cover a considerable range of properties on the one hand, and on

the other hand, allow us to work with a relatively small number of parameters. We

present a method for building a dictionary of structures that cover a large space of ma-

terial properties. These structures are tileable, which makes it possible to vary material

properties across an object, and printable.

We demonstrate that elastic volumetric textures allow one to control the deformation

behavior of objects, either by painting material properties directly or by a two-stage

shape optimization procedure, involving solving for variable continuous properties then

approximating them using our texture dictionary. We validate our results by measuring

samples for different choices of parameters and topologies and by demonstrating the
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deformation behavior of objects fabricated with spatially varying structures.

3.2 Related Work

Microstructure design and optimization. There is a huge literature on theoret-

ical studies of effective moduli of composites (our periodic structures are an extreme

example of a composite combining a material with void). Recent monographs include

[42, 85, 126]. Much of the literature focuses on identifying microstructures with extremal

effective behavior, i.e., with effective elasticity properties at the boundary of the achiev-

able zone for a given class of composites [4, 38, 85]. Many classes of extremal structures

were described (see, e.g., [28]), however most of these classes—e.g. sequentially lami-

nated microstructures [10] and microstructures based on inclusions [53, 78]—are either

difficult or impossible to manufacture at this time. Interchangeable composites and other

structures were found that maximize simultaneously, e.g., the bulk modulus and perme-

ability [56] or electrical conductance [128, 129, 127], but these designs are of limited use

for tailoring elastic behavior.

The closest work to ours is [117], which constructs truss microstructures with prescribed

elasticity tensors. It starts with a full “ground structure” containing about 2000 candi-

date members, then optimizes the members’ thicknesses but not offsets to obtain a mi-

crostructure period cell whose homogenized properties (computed using a truss model)

match the desired properties. Neither tileability of structures for different parameters

nor printability can be guaranteed. We discuss the differences in greater detail at the

end of Section 3.4. Further exploration of periodic structures of this type was done more

recently in [40], comparing different methods for optimizing these structures.

A number of microstructures were obtained using various types of topology optimization,

which was originally designed for global structure optimization. In the case of microstruc-

ture design, these methods look for a periodic structure minimizing, e.g., compliance for

a fixed total volume fraction. The result is normally a single-scale structure, with scale
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controlled by the resolution of the simulation grid or other types of regularization. Im-

portant methods proposed for solving these problems include solid isotropic material

with penalization (SIMP) and rational approximation of material properties (RAMP)

[17, 18, 95]. [106] demonstrated design of isotropic materials maximizing bulk modulus.

Topology optimization offers more flexibility in the choice of structure, but it requires a

relatively expensive optimization for each specific problem. The ability to undergo topo-

logical transitions under continuous parameter changes is both a strength, as it allows

exploration of a broader space of structures, and a weakness, as it considerably com-

plicates design of parametric families satisfying printability and tileability constraints,

which motivates our approach.

Microstructure fabrication. Several groups focusing on additive fabrication have

recently obtained encouraging results. In particular, materials previously thought to

be unmanufacturable were produced and behave as expected. Notably, the work of

Hollister and collaborators [77, 76, 62, 66] in the context of bone scaffold design and

fusion cage design demonstrated the use of optimized microstructures. The possibility

of manufacturing auxetic (negative Poisson’s ratio) materials was demonstrated in [55],

and in [111, 26, 5].

The idea of fabricating tileable structures with varying properties also appears in [61] in

which the authors discuss “digital materials,” as composed of a set of discrete voxels with

predefined shapes that can be connected. Similarly, a building-block based approach was

also used in the context of bio-printing [86], where the authors use spheroids of living

materials with evolving and controllable composition, varying material and biological

properties in time.

Compliant mechanisms. The material optimization method that we present solves

a similar problem to that of compliant mechanism design. [18] reviews several existing

approaches to designing mechanisms that maximize mechanical advantage/output de-
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flection or tune an output displacement to a particular path. These approaches have

little control over the resulting structure’s macroscopic shape, whereas tuning deforma-

tion behavior using our microstructure approach creates a “mechanism” that still looks

like the input shape.

Fabrication and computer graphics. A broad variety of fabrication-related work

has been done in the computer graphics community. Several techniques have been pro-

posed to design paper craft objects [87], plush objects [88], and objects made of inter-

locking planar slices [41, 109, 60]. Other techniques use geometric techniques to change

surface appearance by synthesizing surface microgeometry [137] or changing the shape

to generate custom target caustics [110].

Another close work to ours, [22], introduces an optimization process to find the best

combination of stacked layers to satisfy an input deformation, enabling fabrication of

objects with complex heterogeneous materials using multi-material 3D printers. Our

work can be viewed as complementary, focusing on the design of structures that can be,

e.g., used as a part of deformation behavior design; our material optimization method

provides an alternative to the method in that paper. In [118], multi-material printing

and discrete material optimization is used in a similar way on complex characters to

achieve desired deformations with actuation. Our elastic textures can be viewed as a

tool for solving this type of problem. Our structures also can be employed in systems

like [36] and [135].

Homogenization. A central tool in our work, homogenization was used in graphics

for reducing complexity of physical models in [67], finding the constitutive parameters of

a low resolution discretization that best approximates the behavior of the original higher

complexity material. The periodic homogenization method that we use is based on the

one described in [4].
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3.3 Overview and Main Results

In this section, we describe our overall approach, visualized in Figure 3.2, and a specific

set of patterns that we have obtained.
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Figure 3.2: Overview of elastic texture generation and use.
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Problem. The general problem we solve can be formulated as follows: for each tensor

C from a given range of elasticity tensors, and a base isotropic material with Young’s

modulus Eb and Poisson’s ratio νb, find a structure made out of the base material in a

unit cubic cell, such that if the cell is infinitely tiled in space, the resulting homogeneous

material has elasticity tensor C.

As discussed in the introduction, we aim to construct a family of patterns that are

printable and tileable to enable creation of variable material properties.

Printability is heavily dependent on the choice of technology. We focus on printability

criteria related to stereolithography, the most accurate 3D printing method available at

this time, but our approach can be easily modified to handle other technologies.

As the printing process proceeds layer-by-layer, we assume that the structure is defined

with respect to a fixed coordinate system X,Y, and Z aligned with the printer, with Z

being vertical. The (idealized) printability criteria that we use are:

1. There are no enclosed voids.

2. For any point of the structure, the extent covered by the structure in the X,Y, and

Z directions from the point are above a printability threshold dmin.

3. Every point of the pattern is supported: for every XY slice, all connected compo-

nents of the slice have at least one point connected to lower points in the structure

by a segment contained in the structure. While this condition does not prevent

long horizontal bars supported at single points, which can be difficult to print,

we have found it sufficient in practice for pattern sizes up to 10mm and a dmin of

0.3mm.

We also make our primary goal to generate periodic structures with isotropic homoge-

nized properties. Such patterns have the elasticity tensor C defined by two parameters,

Young’s modulus E and Poisson’s ratio ν, and its inverse, compliance tensor S, has the
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(Voigt notation) form

S =
1

E



1 −ν −ν 0 0 0

−ν 1 −ν 0 0 0

−ν −ν 1 0 0 0

0 0 0 2(1 + ν) 0 0

0 0 0 0 2(1 + ν) 0

0 0 0 0 0 2(1 + ν)


. (3.1)

Expressing in terms of the shear modulus, G = E/(2(1 + ν)), the last three diagonal

terms of S are simply 1/G.

While for many tasks anisotropic materials are either sufficient or preferable, periodic

structures with isotropic homogenized properties are easiest to use, as cell orientation

is decoupled from material properties. In addition, once an isotropic starting point is

obtained, it is easy to obtain a controlled anisotropic behavior.

Searching the space of all possible structures in a cell, even at a finite resolution, is an

impossible task. Instead, we choose a space of structures with a limited but sufficiently

large set of parameters, that can be optimized to achieve specific material properties.

Truss-like structures. We focus on truss-like structures (patterns) as shown in Fig-

ure 3.1, consisting of bars of different thicknesses connecting a set of nodes in the cell.

Unlike real truss structures, the connections between bars are not pin joints, and flexural

rigidity at the nodes plays a major role.

This particular space of structures is motivated by several considerations. First, the

space is known to contain both very stiff and very weak patterns, providing a broad range

of behaviors. Second, tileability and printability requirements yield specific geometric

conditions, expressed mostly as constraints on the structure’s geometry. For example, the

requirement of no enclosed voids is automatically satisfied if the frame structure has no
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self-intersections; the bound on extents can be obtained by bounding the thickness from

below; and the support condition is easily formulated as a constraint on node positions.

These conditions are detailed in Section 3.4.

Symmetry considerations, as well as restrictions on the number and placement of nodes,

yield a space of patterns parametrized by their set of edges connecting some subset of

the 15 candidate nodes we define on a tetrahedron (their topology), thicknesses of these

edges, and offsets of the nodes from their default positions. This space is still very large,

and we explore it using both topology and geometry searches, described in Section 3.4.

These rely fundamentally on the homogenization and shape optimization procedures

described in Sections 3.5 and 3.6.

Resulting family. The search procedure’s final result is shown in Figure 3.3; the six

pattern topologies themselves are illustrated in Figure 3.1. The complex boundaries

of the (E, ν) regions arise from the multiple types of geometric constraints enforcing

printability. Figure 3.4 shows some patterns with topology “(E1,E2)(E1,E4)(E2,E4).”

The family of topologies covers a large range of Young’s moduli, with a largest-to-smallest

Young’s modulus ratio of 1800, and a sizable range of Poisson’s ratios, −0.16 to 0.48.

We note that the range of negative Poisson’s ratios is somewhat limited, while on the high

end, we are able to achieve ratios close to the theoretical maximum. This observation is

consistent with [117]: while it is relatively easy to obtain more extreme negative Poisson’s

ratios for patterns with cubic symmetry but with shear modulus too low for isotropy,

the isotropy requirements restrict the range. Printability constraints restrict it further.

Quite remarkably, four out of the six topologies can be transformed into each other

by simple operations (single vertex splits, addition of cross-shaped supports connecting

some nodes). The other two are also related to each other by a simple transform, but

are not related to the first sequence.

We do not claim that the proposed family is in any sense optimal. It is most likely
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possible to extend the coverage or to cover the same domain with fewer topologies.

However, the presented set is already quite useful for controlling material properties, as

the examples of Section 3.7 show.
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Figure 3.3: Region of the (E, ν) space covered by the selected set of patterns. Each
topology’s coverage is shown in a different color.

 0.01

 0.1

 1

 10

 100

-0.2  0  0.2  0.4

Yo
un

g'
s 

M
od

ul
us

Poisson’s Ratio

Figure 3.4: Samples of the (E, ν) space reached by patterns with topology “(E1,E2)
(E1,E4) (E2,E4).”

Accuracy. We fabricated eight patterns with different homogenized Young’s moduli

using the B9Creator SLA printer and tested their stiffness using the BOSE ElectroForce

3200 measurement system. The machine gradually compressed our samples in the Z
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direction between two compression plates and measured the displacement resulting from

the applied force at each step. We used 6× 6× 2 tilings of 5mm cells for this test.

We note that our measured force/displacement slopes are roughly proportional to the

homogenized Young’s moduli (Figure 3.5a), implying that the measurements are con-

sistent with some (unmeasured) base Young’s modulus. The curvature seen could be

explained partly by friction in the compression testing setup (Figure 3.5b). Another

significant source of error is the inaccuracy of our B9Creator, which tends to thicken

thin geometries.

We used a lower-accuracy setup to measure Poisson’s ratio but still obtained reasonable

agreement with homogenization (Figure 3.6). We compressed the microstructures in the

Z direction between two lubricated metal blocks and manually measured the expan-

sion/contraction in the X and Y directions. From these displacement measurements, we

computed the X, Y , and Z strains and their ratios.
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(a) (b)

Figure 3.5: Compression test results for eight patterns with varying homogenized Young’s
moduli (6× 6× 2 tiling of 5mm cells). (a) Slopes extracted from the measured force vs.
displacement curves along with a best-fit line through the origin. (b) Moduli extracted
from simulated compression tests, with and without modeling compression plate friction.
Without friction, the simulated test agrees with homogenization perfectly, but friction
introduces error.

We also validated the patterns’ isotropy by printing a block filled with a tiled pattern that
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Figure 3.6: Poisson’s ratios measured from 3 × 3 × 1 printed tilings of 10mm cells vs.
homogenized properties. The ν = −0.67 sample, outside our family’s range, violates
isotropy and printability constraints (we added support structure manually for this ex-
periment).

was rotated by 45◦ around the Z axis and clipped (Figure 3.7). The measured effective

Young’s moduli in the rotated orientations were in good agreement with the unrotated

orientation: a compression test in the X, Y , and Z directions extracted effective Young’s

moduli of 0.635MPa, 0.6293MPa, and 0.628MPa for the example shown.

Figure 3.7: We extracted a 45◦ rotated rectangular block from a regularly tiled 10mm
cell microstructure to test Young’s modulus in non-axis aligned directions.

Base Material. We used estimated base material properties of Eb = 200MPa and

νb = 0.35 for all results. We estimated Eb using a three point bending test on rectangular

bar samples, but the base Young’s modulus can also be estimated from the microstructure
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compression test.

Using a different base Young’s material would not qualitatively change our results, apart

from making the patterns uniformly softer or stiffer. The homogenized Young’s moduli

depend linearly on Eb, and the Poisson’s ratios are independent of Eb, so scaling the

base modulus simply softens/stiffens every pattern by the same factor. In particular,

for the displacement-based material optimization of Section 3.7, fabricating the solution

with a different base Young’s modulus maintains the same target deformation behavior

(although the required force will change).

We note that our patterns are not very sensitive to moderate changes in the base Poisson’s

ratio. Changing from νb = 0.35 to νb = 0.35 ± 0.05 results in a median relative change

in Young’s modulus of 0.683% (max: 1.88%) and a median absolute change in Poisson’s

ratio of 0.00229 (max: 0.0129) over all patterns. Since most additive fabrication materials

fall within this range, we expect similar results for other printers and materials.

3.4 Search for Efficient Patterns

In this section, we describe the class of patterns that we consider and the main steps of

the search method.

Ground class of patterns. The topology of patterns is defined by a set of edges

connecting nodes in the cube cell. We generate the geometric variations by adding

offsets to the node positions and by changing edge thicknesses.

Motivated by the isotropy requirement, we constrain our search to patterns with cube

symmetries, which are guaranteed to have the same Young’s moduli and Poisson’s ratios

in every axis-aligned direction. That is, the compliance tensor has the form (3.1) except

the last three diagonal entries 1/G may not equal 2(1+ν)/E. This yields an easy-to-check
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isotropy measure:

A = 2(1 + ν)G/E, (3.2)

which we use to identify isotropic patterns in our search. The symmetry will also dra-

matically reduce the space of pattern topologies to a tractable size after a few additional

constraints are introduced. Note, however, that cube symmetry is not necessary for

isotropy; other isotropic structures exist with, e.g., tet symmetry.

Consider the group of symmetries of a cube Oh, which includes reflections about three

symmetry planes orthogonal to the X,Y, Z axes and the six planes orthogonal to the

bisector of each pair of axes. By partitioning the cube according to these symmetry

planes, we obtain 48 equal tetrahedra as in Figure 3.8a. Oh maps a single one of these

tetrahedra to any other, so it is sufficient to define the nodes and edges of the pattern

graph—as well as their offsets and thicknesses—on a single tetrahedron.

V0, ..., V3 E0, ..., E5

F0, ..., F3 T0

(a) (b)

Figure 3.8: (a) The tetrahedral cube decomposition used to generate 3D patterns; (b)
The 15 nodes defined on a tetrahedron together with their degrees of freedom.

We generate the different topological configurations by changing the connectivity be-

tween 15 nodes on a tetrahedron (see Figure 3.8a): vertex nodes {V0, V1, V2, V3}, edge

nodes {E0, E1, E2, E3, E4, E5}, faces nodes {F0, F1, F2, F3}, and a single internal node,

T0. Configurations are named by their graphs’ edge sets (see labels in Figure 3.1). Each

node is constrained to stay on its respective simplex to preserve the topology, so vertex

nodes are fixed, edge nodes have a single offset, and so on (Figure 3.8b).

Figure 3.9 shows an example topology colored by its node and edge orbits with respect
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Figure 3.9: Symmetry orbits are colored with yellow, red and green. Left: vertex sym-
metry orbits. Right: edge symmetry orbits.

to symmetry group Oh, and Figure 3.10 demonstrates the effects of the node offset and

edge thickness parameters.

Figure 3.10: The results of varying the thickness (top) and offset (bottom) parameters
of a particular pattern topology.

The space of possible connectivities, even after accounting for symmetries, is far too large

to explore completely (on the order of 1032 configurations). We enforce the following

constraints to reduce the space of patterns:

• Connected: the tiled pattern is a single connected component.

• No coinciding edges: no edge is contained within another. E.g., if graph edge

(V0, V1) is chosen and E0 is the midpoint node of the corresponding tet edge, graph

edge (V0, E0) is forbidden since it overlaps the first for any offset.

• No dangling edges: every node has valence greater than 1.

• Number of edges: at most 3 graph edges per tetrahedron.
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• Max node valence: node valences do not exceed 7.

Valences are computed on the graph after periodic tiling of the cube cell. The first two

criteria reduce the space to 16221 topologies, and the remaining three to 1205 topologies.

Figure 3.11: Two pattern topologies from each of three different families, shown with
the families’ interfaces (nodes on the cube cell faces).

Printability. For truss-like patterns, printability is affected by two main factors: the

pattern graph structure and the edge thicknesses.

The first printability criterion can be defined on the nodes by considering their offset

positions. We say that a node n1 has supporting node n2, if these are connected by an

edge and n1 is strictly above n2. We say that n1 and n2 are at the same level if they

have equal Z coordinates. A pattern is printable only if every connected set of nodes at

one level has at least one supporting node.

Printability can be tested by a simple algorithm: we first mark as supported all nodes

with a supporting node (considering periodicity). Then we propagate the front of sup-

ported nodes to neighbors at the same level. When this breadth first search terminates,

the pattern is printable if and only if all nodes are marked as supported. The procedure

is illustrated in Figure 3.12. We also note that this constraint can be expressed alge-

braically as a set of inequality constraints on the offset variables, which can be enforced

by an optimization solver.

Tileability. The tileability requirement means that all pattern topologies should be-

long to the same family, meaning topologies with the same set of nodes and edges

appearing on the faces of the cube cell (Figure 3.11).

56



Figure 3.12: 2D examples of the printability detection algorithm. Vertices with support-
ing nodes are marked (green), then a breadth-first search extends the supported vertex
front to horizontal neighbors. The remaining unmarked nodes are unsupported (red).
Two cases are shown: unprintable (top) and printable (bottom).

Searching the space of topologies. The goal of our search is to identify a family

of pattern topologies that covers as much as possible of the (E, ν) space while satisfying

the printability and tileability requirements.

The initial space consists of all pattern topologies satisfying the constraints on graph

connectivity mentioned previously. We proceed in the following steps:

1. Coarse geometry sweep. Geometric variations are generated for each pattern topol-

ogy by trying thicknesses of 0.3mm and 0.7mm and node offsets corresponding to

barycentric coordinates of 0.2, 0.35, 0.5, 0.65, and 0.8 on the associated tetrahedron

simplex. The resulting printable patterns are meshed, self-intersecting meshes are

discarded, and the remaining patterns’ effective elasticity parameters are computed

using periodic homogenization (Section 3.5).

2. Isotropy filtering. We select a subset of the patterns closest to isotropic (we use

a heuristic bound of 0.8 < A < 1.2), which we consider promising candidates as

starting points for optimizing pattern parameters to precisely match a range of

isotropic elasticity tensors.

3. Topological family selection. At this point, we have a rough map of the area in
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(E, ν) space covered by our set of patterns. We obtain a rough estimate of each

topology’s coverage by taking the convex hull associated with its nearly isotropic

geometric configurations. We manually pick the single family whose pattern topolo-

gies cover the largest region of (E, ν) based on these estimates.

4. Selection of a minimal covering set of topologies. For the selected family, we run

a finer sweep of offsets and thicknesses, again filtering for printability, to compute

a more precise estimate of the boundary of the (E, ν) domain that each pattern

topology can cover. Among all topologies in the family, we selected 6 such that the

union of their coverage areas contains most of the domain covered by the family.

5. Lookup map construction. Finally, using the shape optimization machinery of

Section 3.6 and the initial nearly-isotropic points for each of the 6 topologies chosen,

we optimize each patterns’ parameters to reach a grid of isotropic elasticity tensors

evenly spaced in (log(E), ν).

Our procedure is similar to [117], but with several key differences. First, [117] uses

a simplified truss model, whereas our method directly homogenizes and optimizes the

printable geometry. Second, by using a full topology (including all possible edges be-

tween nodes in a ground structure) and permitting zero edge thickness in optimization,

the work avoids the topology enumeration stage. As a side-effect, it cannot accommo-

date the lower thickness bounds or support criteria needed for printability. While a

mixed-integer formulation like [83] could allow enforcement of dmin by introducing sep-

arate binary variables to disable members, this would involve a difficult mixed-integer

nonlinear programming problem in our tensor-fitting setting. Finally, by introducing

offset variables, our novel shape optimization approach enables much finer control of the

elasticity tensors as the design is not limited to the discrete node positions of a ground

structure.
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3.5 From Patterns to Material Properties

Our goal is to find the homogenized elasticity tensor CH , describing the effective proper-

ties of the microstructure when it is fabricated at a small enough scale and periodically

repeated to fill the space. This elasticity tensor is almost never the spatial average of

elasticity tensors (for example, if a cell is almost completely filled with material but

is disconnected from other cells, it has zero Young’s modulus). We first define more

precisely what a homogenized elasticity tensor is and then explain how to compute it.

Defining the homogenized tensor. Consider heterogeneous object Ωε filled with a

periodic microstructure, as shown schematically in 3.13. Parameter ε determines the size

of cell Y relative to the object Ωε and permits asymptotic analysis as ε→ 0.

ε

Ωε

Yω

Figure 3.13: (Schematic) Periodic tiling of a domain Ω with base cell Y having geometry
ω and length scale ε.

The elastic response of an object under macroscopic external load ~f is governed by the

linear elastostatic equation

−∇ · [C : ε(~uε)] = ~f in Ωε, (3.3)

complemented by appropriate boundary conditions. Here, C is the periodically varying

elasticity tensor, and C : ε denotes its double contraction with strain (Cijklεkl) to com-

pute stress. Considering a sequence of problems indexed by ε and letting ~u denote the

limit of ~uε as ε→ 0, the homogenized elasticity tensor CH is defined as the tensor that
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satisfies

−∇ · [CH : ε(~u)] = ~f in Ω, (3.4)

with same boundary conditions. Vectors ~u and ~uε denote the displacement, and ε(~u) :=

1
2(∇~u+ (∇~u)T ) is the Cauchy strain tensor.

Expressions for the homogenized tensor. The standard derivation of the homog-

enized elasticity tensor based on a two-scale asymptotic expansion is provided in the

additional material. Here we give an intuitive motivation for the periodic homogeniza-

tion equations.

~uε has a high frequency periodic component that is averaged out to obtain ~u as period

ε→ 0. So ~u(~x) can be thought of as the average displacement over the infinitesimal base

cell Y at point ~x. Likewise, ε(~u) is the average strain in the cell. For the object to be in

equilibrium, (3.4) should represent an average force balance over the cell, meaning CH :

ε(~u) should be the average stress tensor. That gives the following intuitive interpretation

of CH : it maps the average strain applied at a point to the average stress resulting within

the microstructure geometry.

Thus, applying CH to ε(~u) is equivalent to simulating the microstructure’s deformation

under that average strain and averaging its stress. We formulate this simulation inside

a single base cell Y by assuming that the displacement consists of a linear term (with

constant strain ε(~u)) plus a Y -periodic “microscopic fluctuation” term, ~w (with zero

average strain by periodicity). This assumption of periodicity is reasonable because, by

the translational symmetry of an infinite tiling, every cell deforms identically. Now we

simply solve for fluctuation ~w putting the microstructure in equilibrium:

−∇ · (C(~y) : [ε(~w(~y)) + ε(~u)]) = 0 in Y,

where ~y is the microscopic variable (the coordinate in Y ). Then the average stress is

CH : ε(~u) = 1
|Y |
∫
Y C : [ε(~w) + ε(~u)] d~y.
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We can extract the components of CH by applying it to the 6 canonical symmetric rank

2 basis tensors, ekl := 1
2 (~ek ⊗ ~el + ~el ⊗ ~ek). Each application amounts to solving the cell

problem:

−∇ · (Cbase : [ε(wkl) + ekl])) = 0 in ω, (3.5a)

[Cbase : ε(wkl)]~̂n = −[Cbase : ekl]~̂n on ∂ω\∂Y, (3.5b)

wkl(~y) Y -periodic, (3.5c)∫
ω
wkl(~y) d~y = 0, (3.5d)

where we rephrased the microscopic force balance as a PDE over ω, since for a structure

printed with base material properties Cbase,

C(~y) =


Cbase if ~y ∈ ω,

0 otherwise.

(3.6)

The last constraint in (3.5) eliminates the rigid translation degrees of freedom that still

remain after enforcing Y -periodicity.

The homogenized elasticity tensor components are finally just the average over Y of the

stress components corresponding to ekl:

CHijkl =
1

|Y |

∫
ω
Cbase
ijpq [ε(~wkl) + ekl]pq d~y. (3.7)

It is worth noting that CH does not depend at all on the macroscopic details (shape Ω,

force term ~f , or boundary conditions).

FEM implementation. The cell problems (3.5) are solved numerically by a quadratic

tetrahedral FEM discretization of ω. The piecewise linear integrand in (3.7) is integrated

with exact quadrature.
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Given the wire network of the microstructure, defining its topology (Section 3.4), a

volume mesh is generated following the STRUT algorithm given in [57]: (i) A polygon

is created around both ends of each segment. (ii) For each vertex, the convex hull of the

nearby polygons and the vertex is constructed and the polygons themselves are removed

from the hull. (iii) For each edge, the convex hull of its two polygons is constructed, and

again the two polygons are removed from the hull. A tetrahedral volume mesh is finally

created from the resulting closed surface.

The linear elasticity solver must support periodic boundary conditions, which requires

the tetrahedral mesh to have an identical tessellation on the opposite periodic cell faces.

Convergence rate. Remarkably, we have observed that the homogenized coefficients

remain accurate when the microstructure varies across cells (with few or no repeti-

tions). In our experiments, the deformation behavior of even very coarse tilings closely

matches the homogenized behavior (3.14), and we expect similar agreement in general

for smoothly varying loads.

Figure 3.14: Deformation of an object with varying material properties per voxel, and
the same object with the material in each voxel replaced with the corresponding pattern.
The deformed objects are colored by max stress.
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3.6 Optimizing Pattern Parameters

An essential step for creating a map of elastic textures is optimizing a pattern with

fixed topology to match particular elasticity parameters. This is achieved using shape

optimization with respect to the pattern parameters.

The optimization problem. Our goal is to minimize a functional, J(ω), measuring

the difference between the homogenized elastic properties of the pattern and a target

elasticity tensor C∗. We choose an objective that is suitable for designing material

distributions with large deformations under moderate forces. The distance of compliance

tensors, SH−S∗, as opposed to elasticity tensors, is the better choice, since the strain for a

constant stress is directly proportional to SH , not CH . In fact, minimizing the Frobenius

norm of SH − S∗ can be interpreted as a multi-objective least squares optimization to

fit the displacements of two cubes—one filled with CH and the other with C∗—under a

set of axis-aligned stretching and shearing loads.

We choose this Frobenius norm as our functional:

J(ω) =
1

2
‖SH(ω)− S∗‖2F , (3.8)

which we optimize by varying the microstructure shape, ω.

In our case, the microstructure boundary ∂ω is determined by a small number of pa-

rameters ~p, consisting of wire mesh node offsets and thicknesses. While the number of

parameters is small, we still expect multiple solutions for minimizing J(ω) with respect

to these parameters. A simple regularization term (staying close to the initial point of

optimization) picks a unique solution. We note that instead some quantity of impor-

tance (e.g., weight) can be optimized as it is typically done (cf., [117]), adding another

nonlinear term to the functional.

The derivative of the boundary ∂ω with respect to a parameter pα is a vector field ~vpα(~y)
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defined at points ~y of ∂ω, with ~vpα(~y) being the velocity of ~y if parameter pα changes at

unit speed.

Using parameters ~p as variables, the minimization problem can be written as

argmin
admissible ~p

J(~p) where J(~p) =
1

2
‖SH(~p)− S∗‖2F . (3.9)

The admissibility of parameters is determined by geometric intersection constraints and

printability constraints.

The derivative of the objective function with respect to pα can be obtained from ~vpα

using the chain rule:

∂J

∂pα
= [SH − S∗] :

∂SH

∂pα
= [SH − S∗] : dSH [~vpα ], (3.10)

where dSH [~vpα ] is the shape derivative of SH applied to ~vpα .

Shape derivative of elasticity tensor The derivative of the microstructure’s ho-

mogenized elasticity tensor in the direction of shape perturbation ~v is defined as the

Gâteaux derivative,

dCH [~v] := lim
t→0

CH(ω(t, ~v))− CH(ω)

t
, (3.11)

where ω(t, ~v) := {~x+ t~v : ~x ∈ ω}. As shown in the additional material, the homogenized

elasticity tensor, 3.7, can be rewritten in an energy-like form,

CHijkl =
1

|Y |

∫
ω
(eij + ε(~wij)) : Cbase : (ekl + ε(~wkl)) d~y, (3.12)

which is shown to have shape derivative:

64



dCHijkl[~v] =
1

|Y |

∫
∂ω

[(eij + ε(~wij)) : Cbase (3.13)

: (ekl + ε(~wkl))](~v · ~̂n) dA(~y).

Shape derivative of compliance tensor. The compliance tensor is the symmetric

rank 4 inverse of elasticity tensor, i.e. SijklCklmn = 1
2(δimδjn + δinδjm). Differentiating

and solving for dSH :

dSH [~v] = −SH : dCH [~v] : SH . (3.14)

Combining the results from 3.10, 3.13, and 3.14, one can compute ∂J
∂pα

; the shape deriva-

tive and an example velocity field ~vpα are shown in Figure 3.15.

Figure 3.15: Left: a shape derivative, visualized as a steepest ascent normal velocity field
for objective 3.8. Right: the shape velocity induced by one of the pattern’s thickness
parameters.

Numerical computation. The integrand in 3.13 is cubic over each boundary element

(ε(~wij) and ~v·~̂n are both linear), and we use quadrature that evaluates the surface integral

exactly. To evaluate the gradient for a given shape we need (a) to mesh the shape (we

use the TetGen package [116]); (b) solve 6 periodic elasticity problems to obtain ~wij , as

for homogenization. The cost of a single gradient evaluation (roughly 4.75s on a single

core of an Intel Xeon E-2690 v2) is dominated by the cost of periodic meshing and the
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elasticity solves, which take roughly equal time. We use the Ceres solver [1]’s Levenberg-

Marquardt implementation to minimize the objective; the convergence of the solver is

quite fast (Figure 3.16). Typical effects of optimization are shown in Figure 3.17.
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Figure 3.16: Convergence of a shape optimization on pattern “(E1,E2) (E1,E4) (E2,E4).”
Left: optimization starting point. Right: optimized shape.
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Figure 3.17: The path in (E, ν) space traversed by the optimization of pattern “(E1,E2)
(E1,E4) (E2,E4)” shown in Figure 3.16. The brown points are intermediate anisotropic
microstructures.
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3.7 Applications

While our primary focus is on the design of our pattern family and the exploration of its

coverage, we demonstrate the application of our elastic textures in two settings: painted

material properties and specified deformation behavior. All printing was done using a

B9Creator printer at 50 micron resolution with Cherry resin.

Overall workflow. The result of the preceding sections is a lookup map that, for a

given (E, ν), produces an isotropic microstructure with nearby parameters. We assume

that we are given a coarse volume mesh filled with identical cube cells.

First, we assign a pair (Ei, νi) to each cell i, either directly or via material optimization

as described below. For each cell, we retrieve a corresponding pattern (topology id,

thicknesses, and offsets) from the lookup table. The microstructures in adjacent cells

are stitched together by averaging the offsets of each pair of shared face nodes so that

they coincide. This might raise the lower node of the pair above some node it supports,

ns, violating printability, but printability can be restored by lowering the pair to ns’s

height.

After this step, the resulting connected wire mesh is inflated with retrieved bar thick-

nesses, using the process described at the end of Section 3.5. This results in a fine mesh

that can be printed.

Material painting. The simplest approach to specifying the material properties (E, ν)

is to paint them on a voxel grid. We have created an editor enabling us to paint these

layer by layer. The results of fabricating several structures of this type are shown in

Figure 3.18.

Material optimization. Manually defining material properties to achieve desired be-

havior may be difficult, and a more systematic approach is to solve for them. For exam-
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EE E

Figure 3.18: Examples of objects with painted material properties. All are fabricated
with 5mm cells.

ple, consider the following problem: for given applied displacement conditions on some

part of the object’s boundary, we would like to get some target deformation—e.g., if a

bar is compressed along the Z axis, it twists in the X-Y plane—by varying material prop-

erties. In other words, we want to find a spatially varying tensor Cp(~x), parametrized by

a vector of per-cell isotropic parameters p, such that the following system has a solution:

−∇ · (Cp : ε(~u)) = 0 in Ω

~u = ~uin on Γin

~u = ~utrg on Γtrg

σ(~u)~̂n = 0 on Γtrg

(3.15)

where uin are the applied displacements on compressed area Γin, and ~utrg are the target

displacements of the surface Γtrg on which no forces are applied, as indicated by the last

equation. In our implementation, these target/applied conditions can be specified on a

per-component basis to set up, e.g., the twisting bar example.

In general, such problems are solved using PDE constrained optimization, requiring

solving an adjoint problem at each iteration. However, we found that the following

local-global iteration, inspired by related “as-rigid-as-possible” (ARAP) optimization

techniques in geometry, works remarkably well. For a fixed Cp(~x), we call ~uD the solution

of the “Dirichlet problem,” with the condition of zero tractions on Γtrg removed. ~uN

is the solution of the “Neumann problem,” in which the traction condition on Γtrg is

retained, but the Dirichlet condition ~u = ~utrg is removed.
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We initialize the elastic tensor Cp(~x) to a constant. The iteration consists of two steps:

1. Solve the Dirichlet and Neumann problems with the current elasticity tensor, to

obtain ~uD and ~uN .

2. Update Cp, minimizing the following energy:

min
p

∫
Ω
‖ε(uD)− C−1

p : σ(uN )‖2F dV (3.16)

This energy can be minimized per-cell for a truly local-global method; however, in prac-

tice we find it desirable to regularize p with a Laplacian term, which requires that the

“local” step be replaced by a global, but still quadratic optimization. The convergence

of this method is shown in Figure 3.19.
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Figure 3.19: Convergence of material optimization.

We have used a number of simple voxelized shapes and created a variety of deformation

behaviors shown in Figure 3.20. Finally, we have also generated a set of anisotropic

samples, with controlled anisotropy ratio, one of which is shown in Figure 3.21.
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3.8 Conclusions

We have presented a family of tileable and printable patterns that can be used to approx-

imate varying isotropic material properties. The family has proved useful on a number

of simple shape optimization examples: remarkably, all examples in Section 3.7 worked

as predicted by simulation without requiring much tuning.

Limitations. There are several limitations of our pattern family. First, some parts of

the (E, ν) space are poorly covered. While it is difficult to predict which part of space is

theoretically reachable, we conjecture that the space may be significantly broadened. All

our simulations and constructions work in the linear regime, not taking into account, e.g.,

the potential for pattern buckling or other damage. Fortunately, isotropy is correlated

with sufficiently high shear modulus, which makes the patterns less prone to buckling.

Nevertheless, including this and other nonlinear effects in pattern design is important.

For practical use, it is difficult to restrict the tessellations of objects to equal sized cubes

(though one can construct cut cells covered with relatively soft skin). A desirable solution

would be to allow patterns to distort to fill arbitrary reasonably well-shaped hex cells.
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Figure 3.20: Examples of objects with optimized material properties. All are fabricated
with 5mm cells.

Figure 3.21: Compression of an anisotropic sample along the X, Y, and Z directions.
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Chapter 4

Mesh Arrangement for Solid

Geometry

This chapter is based on our publication [144] in collaboration with Eitan Grinspun,

Denis Zorin, Alec Jacobson. My contributions include development of mesh arrangement

system jointly with Alec; extensive testing of our algorithm on 10,000 testing models;

comparison with all mesh boolean and mesh repair softwares available to us.

Figure 4.1: Our method takes as input any number of meshes (three shown in this
2D illustration). We resolve intersections and assign a winding number vector to every
delineated cell. Different boolean operations are achieved as extractions according to
these winding number vectors.

4.1 Introduction

Geometric modeling tools are more accessible than ever, scanning technologies are avail-

able at the commodity level, additive fabrication technologies rapidly grow in popularity,

and platforms have emerged for sharing 3D models online. Unfortunately, the resulting
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wealth of 3D models comes with a catch. The diversity of these models coincides with

unpredictable mesh quality and structure. For example, manually sculpted models are

created using a broad range of software by designers with varying skill or intention.

Meanwhile, geometry processing operations increase in sophistication: from remesh-

ing to physical simulation. Yet, many, if not most, available algorithms impose strict

requirements on their inputs. As the complexity and amount of 3D data grow, man-

ual one-by-one preprocessing is no longer acceptable. For example, cumbersome mesh

cleanup of solid mesh may take more time than a subsequent physical simulation of it.

An important class of mesh repair and solid operations aims to preserve input geometry

as much as possible when recombine it in new ways or converting to suitable form for a

downstream application. These operations are elegantly viewed as operations on space

partitions defined by mesh arrangements. A mesh arrangement is a collection of (possibly

non-manifold, open-boundary, self-intersecting, with degenerate triangles, etc.) meshes,

partitioning the space into a number of cells. This view seamlessly unifies tasks often

viewed as distinct, such as mesh repair and boolean operations.

We introduce mesh arrangements constructed from a restricted class of meshes: those

with piecewise-constant winding number, or PWN. By surveying 10,000 popular meshes,

we demonstrate that PWN meshes cover a large fraction of practically relevant situa-

tions. We define arrangements of PWN meshes, a lightweight yet powerful representa-

tion. Casually, a PWN mesh arrangement is composed from possibly (self-)overlapping

components bounding a number of solids. These arrangements enable a set of highly

robust and conservative algorithms. By robust, we mean that algorithms successfully

produce output for all PWN meshes. By conservative, we mean that arrangements

preserve original mesh geometry exactly.

Our general approach can be separated into two stages: adding meshes to an arrangement—

independent of the desired operation—and extracting the boundary of the result accord-

ing to an extraction function describing the desired boundary in terms of the winding
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numbers of the region it bounds (see Figure 4.1).

The first stage, in turn, consists of resolving intersections, partitioning space into cells,

and labeling each cell with winding numbers with respect to each input mesh.

In the second stage, all classic boolean operations (e.g., union, intersection, difference)

have trivial extraction function definitions. Beyond those, we explore other interesting

functions, such as extracting the “self-union” of a single, overlapping input mesh or

extracting all regions of space inside at least two of many input meshes.

Our method guarantees as output a solid mesh. Informally, a solid mesh is the non-

degenerate boundary of a solid subregion of R3. Our method also guarantees that the

output is exact, i.e., interpreting the input positions as exact rationals, all intersections

result from exact construction. The output coordinates may optionally be converted to

floating point in a post-process.

We validate our method on the 10,000 triangle meshes from the online 3D printing

repository Thingiverse, as well as benchmarks of previous work. We present extensive

comparisons with state-of-the art methods, all of which fail with significant frequency,

either rejecting the input, failing to produce any output, or producing an output that is

not a solid mesh. We also evaluate the conversion of our exact results to floating-point

positions; in this case, we outperform existing floating point methods along the same

criteria.

4.2 Related work

Most previous work can be separated into two broad groups: boolean operations on dif-

ferent classes of objects and “mesh repair”, in particular, elimination of self-intersections,

computing outer hulls and similar operations. While both require intersecting meshes or

surfaces, in most cases the problems have been treated disjointly.
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Figure 4.2: Self-intersections are not just “artifacts.” They also occur intentionally
during modeling. A coffee mug handle is extruded then curled inward on itself (blue).
The self-intersections (orange) do not prohibit constructing the shape’s underlying torus-
topology self-union with our algorithm (green).

Previous boolean methods define a restrictive class of input 3D pointsets that are closed

with respect to set operations. The methods output a restrictive class of boundary

representation or spatial partition. In almost all cases, it is assumed that creating a valid

boundary representation from a broader class of inputs is a separate task, delegated to

the user or preprocessing. Namely, inputs not meeting the strict requirements are not

handled directly.

Boolean operations Previous works differ by generality of input/output representa-

tions and tradeoffs between performance and robustness. We compare our representation

and algorithms to the state of the art in Sections ?? and ??. For now, we categorize

approaches, highlighting salient similarities and distinctions.

The current standard in robustness is CGAL’s exact-arithmetic implementation [54]

of Nef polyhedra [23]. CGAL’s implementation requires a valid Nef polyhedron data

structure (Sphere Maps and Selective Nef Complexes) as input, with currently available

tools in CGAL and OpenSCAD (a modeling tool bootstrapping CGAL) only allowing

conversion of embedded polyhedra to this form, excluding inputs with self-intersections,

non-manifold features, and inner cavities, although the latter two could be represented by

the Nef representation. More fundamentally, the generality of the representation requires

a complex heavy-weight data structure and has a significant impact on performance.

On the other extreme, Douze et al. [45] assume inputs in the restricted form of embedded
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polyhedra with vertices in general position, but is extremely efficient and is capable of

handling very large meshes. Douze et al. introduce the concept of variadic boolean

operations: immediately evaluating boolean operations involving many inputs rather

than decomposing into a tree of binary operations.

Recently, Barki et al. [16] use a more general yet lightweight representation and exact

rational arithmetic to handle a variety of near degeneracies. Their efficient algorithm

maintains robustness on a 26-model benchmark.

All methods so far are similar to ours in that they add intersections of boundary rep-

resentations, and proceed to classify elements of the boundary to construct the result.

However, these algorithms assume that input surfaces are free of self-intersections. Self-

intersections are not only a ubiquitous meshing artifact, but also a common way to model

interesting topologies Figure 4.2.

Many early methods based on intersection and classification suffered from robustness

problems, before exact-arithmetic based methods became practical. This leads to devel-

opment of more robust approaches, initially based on conversion to volumetric represen-

tations, starting from [91]. The downside of these techniques is that the approximation

of the original meshes depends on the chosen resolution level for the volume grid, and

high accuracy requires high tessellation. Different approaches were used to accelerate

this approach, reduce complexity of the output (e.g. using adaptivity [133]), and make

it possible to preserve the original mesh as much as possible [101, 136, 142]. The funda-

mental issue with this flavor of technique is the approximate and grid-dependent nature

of volumetric calculations: while increasing robustness, these may lead to hard-to-control

topology changes and deviations from the original geometry.

The space-partition view of boolean operations has appeared most clearly in binary space

partitioning (BSP) methods, starting with [124, 97]. Bernstein & Fussell [20] combined

this with robust predicates to develop an efficient and robust way to compute booleans

on surfaces in BSP representation. As in most other works on booleans, conversion to
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Nested components Non-nested components

Figure 4.3: Combinatorially, the multi-component shapes on the left and right are the
same, though their outer hulls (thick) differ.

this representation is viewed as a preprocess, with the range of inputs this preprocess can

handle not precisely defined. While compared to volumetric-grid approaches, BSP meth-

ods increase mesh complexity more moderately and input geometry is better preserved,

yet significant refinement is still needed. Campen & Kobbelt [31] localized their BSP-

based method using an octree and perform refinement only locally near intersections.

Importantly, this work points out that BSP trees provide a general representation of

space partition that flexibly performs both boolean operations, outer hull computations,

and other operations. We expand this idea, but use a higher-level and more compact

representation of space partition.

Mesh repair Mesh repair techniques historically deviate from boolean operations by

focusing on converting a maximally broad range of input meshes to a normalized repre-

sentation (e.g., closed manifold meshes without self-intersections). These methods often

rely on volumetric approximation and for certain problems (e.g., hole-filling) this may be

unavoidable. If possible, preserving original geometry is desirable. A common example

of mesh repair of this type is computation of the outer hull, though both state-of-the-art

methods [31, 9] do not appear to disambiguate nested and non-nested components (see

Figure 4.3). For some problems, such as preparing models for 3D printing, the outer hull
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Figure 4.4: The outer-hull (e.g., [9, 31] is simpler to extract, but not always appropriate.
Hollow cavities should be maintained for 3D printing not only to reduce material costs,
but to maintain functional properties like balancing.

may be inappropriate as it removes inner cavities (see Figure 4.4).

Approaches to robustness, and sources of non-robustness Many codes (e.g.,

[19, 82, 45]) explicitly assume general position of inputs (no four points on a circle, no

co-planar intersections, etc.) and do not attempt to handle numerical non-robustness.

The development of new boolean and mesh repair techniques was driven, to a large

extent, by robustness considerations. We consider more explicitly how robustness was

addressed in different contexts, and the unresolved problems we are addressing in our

approach.

The most comprehensive approach is to represent all objects using exact arithmetic.

With advances in filtered predicates for efficiency, this approach is increasingly preferred.

We (like others [54, 16]) largely follow it. Earlier BSP-based work used the observation

[122] that representing points as the intersection of original planes eliminates the need

for exact computations (only exact predicates). This, in principle makes it possible to do

most computations robustly in floating point, but some constructions or rounding still

inevitably appear in all methods, and lead to non-robustness, often in subtle ways.

For example, Banerjee & Rossignac [13] and later Xu & Keyser [139] build topologies

using exact computation but construct vertex positions using fixed-precision floating

point numbers, leading to self-intersections, inversions (see Figure 4.5) and degeneracies
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Figure 4.5: By outputting an exact solid mesh, our method ensures there are no inversions
(illustrated as correct signed distance on left). Previous methods may create inversions,
and even small inversions catastrophically effect signed distance to the output (right).

Method Cavities Non-
manifold

Multi-
comp.

Exact Seams Degen-
eracies

Self-
inter.

|w| >
1

CGAL X X • • X X X X

[Campen... 2010a] X X X X X X • X

QuickCSG • X X X X X X X

Carve • • • X X X X X

Cork • • • X X X X X

[Bernstein... 2009] • • X • • X X X

[Barki... 2015] • • • • • • X X

Our method • • • • • • • •

Table 4.1: Mesh boolean algorithm input preconditions feature chart: Previous tech-
niques fall short have severe input restrictions.

in the output. Campen & Kobbelt [31] round all input vertices aggressively to ensure

exact plane intersections for a BSP-representation. We discuss several other problems in

existing techniques in greater detail as we describe our method. For our approach (and

all exact methods), conversion of the output to a floating point (if such a conversion is

desired) is a potential source of problems, although we have observed it in a very small

proportion of cases and attack it with an additional heuristic utilizing our core method

in Section 4.6.1.
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4.3 Concepts

The key element of our method is construction of a data structure representing the mesh

arrangement, consisting of cells annotated with winding numbers, patches and their

adjacency graph, that allows us to extract results of a variety of operations from the

arrangement.

This structure is a relatively lightweight representation of a space partition (compared,

e.g., to a BSP tree) as it is based on compound surface objects (patches) and allows for

complex cells (does not require them to be convex or even topological balls). Yet, it

allows us to perform all operations robustly and efficiently.

The inputs to our arrangement creation algorithm are n piecewise-constant winding

number triangle meshes A1, . . . ,An. For extraction of the results of specific operations

from the arrangement we use an variadic extraction function f used to determine the

solid mesh boundary of which region(s) of space carved out by A1, . . . ,An to output.

4.3.1 Piecewise-constant winding number meshes

A triangle mesh is a set of 3D vertices (some of which may be geometrically coinciding)

and a set of triangles connecting these vertices, each triangle represented by a triplets of

vertices, with orientation implied by the vertex order for non-degenerate triangles. We

may view triangles as triplets of vertices as well as pointsets in 3D. When there is an

ambiguity, we call the former combinatorial triangles and the latter geometric triangles.

The same applies to edges and vertices: a combinatorial vertex is a vertex index, and a

combinatorial edge is a pair of vertex indices.

Effectively, any valid triangular mesh in Wavefront OBJ-like format, is a valid input,

subject to one general condition: we require that triangle meshes Ai induce a piecewise-
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Figure 4.6: Our assumptions allow a wide class of inputs with self-intersections, multiple
components and non-manifold connections, but does not include open boundaries or
non-manifold flaps.

constant integer generalized winding number (PWN) field wi [64]:

wi(p)Z pR \ |Ai|, (4.1)

where |Ai| denotes the union of all triangles of Ai viewed as point sets. For a triangle

mesh, this is simply the sum of the signed solid angles t(p) of each oriented triangle t:

wi(p) =
1

4

∑
t∈Ai

t(p). (4.2)

We call meshes with this property piecewise-constant winding number meshes or PWN

meshes.

1 −1
00

2

A PWN mesh Ai can be interpreted as dividing all of R3 into regions

that are outside (wi = 0) or inside (wi0) of the “solid implied by Ai.”

This allows multiplicity (|wi| > 0) for parts of space considered to be

twice, thrice, etc. inside and also allows for negative insideness (wi < 0) for parts of

space inside an inverted part of Ai (see inset).

PWN meshes may exhibit commonly witnessed “artifacts” making them unsuitable for

previous algorithms (see Table 4.1 and Figure 4.6).
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Non-manifold: PWN mesh connectivity may be non-manifold at vertices or edges.

Coplanar, Duplicate: Co-planar and duplicate facets (i.e., geometrically identical,

but logically distinct: either belonging to different meshes, or using vertices with the

same positions) do not necessarily invalidate a PWN mesh. For example, the conjoining

of two cubes abutting along a triangle is a PWN mesh. The conjoining of two entirely

identical cubes is a also PWN mesh. However, a cube with a single duplicated triangle

is not a PWN mesh.

Cavities, Multi-comp., |w| > 1: The winding number elegantly handles correctly ori-

ented boundaries of multiple connected components or nested shells, such as a hollowed-

out sphere with an outer boundary and inversely oriented boundary of the inner cavity.

If the inner boundary were not inversely oriented then the core has w = 2 > 1 and is

considered twice inside.

Seams: A mesh with a combinatorially open boundary does not necessarily imply that

it is not PWN. Open boundaries are permissible so long as they meet up geometrically

along seams.

Exact: As discussed in Section 4.5, the vertices of PWN mesh may be defined with

rational coordinates, not just floating-point.

Self-inter.: A PWN mesh may have structured self-intersections. For example, two

overlapping spheres constitute a valid PWN mesh. Similarly, a vertex-displacement

of a PWN mesh without seams is also a PWN mesh regardless of any incurred self-

intersections [107]. We will say that a mesh is free of self-intersections if any two geo-

metric triangles of the mesh intersect only over a (combinatorially) shared edge or vertex,

or are combinatorially identical. We allow duplicate combinatorial triangles, as these are

needed to handle a variety of degenerate configurations correctly.

Degeneracies: Geometrically degenerate triangles (zero area) do not affect the wind-

ing number. This implies that one-dimensional “needles” will be ignored entirely. One

82



can formalize ignoring degenerate triangles as reconstructing a discretization of the dis-

continuity sheets of the winding number field. For purposes of boolean set operations,

we operate on open-set interiors without boundary.

Verification We may verify whether a mesh Ai is PWN by resolving self-intersections

(see Section 4.5.1) and then checking that the total signed incidence of every edge in the

result is zero. For any edge e = {i, j} an oriented triangle f = {i, j, k} contributes +1 to

the total signed incidence of e. An oppositely oriented triangle g = {j, i, `} contributes

−1.

4.3.2 Variadic extraction function

In general, the extraction function f takes as input a winding number vector w =

[w1, . . . , wn] corresponding to the winding number of each input mesh at the points of a

given cell of the space partition defined by the mesh arrangement. The function f returns

“true” if a region with this winding number vector is to be included in the output, and

“false” otherwise.

For example, to implement n-way union, one would provide:

funion (w) =


true if

inside any︷ ︸︸ ︷
i | wi0 ,

false otherwise.

(4.3)

When n = 1, this function will identify a mesh’s self-union.

Similarly for n-way intersection:

fintersect (w) =


true if

inside all︷ ︸︸ ︷
wi0 i ,

false otherwise.

(4.4)
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Some extractions are asymmetric, e.g., subtraction (A1 \ A2):

fminus (w) = w10︸︷︷︸
inside of A1

and w2 = 0︸ ︷︷ ︸
outside of A2

(4.5)

One can also design more esoteric functions, such as extracting all parts of space inside

at least two of the inputs:

fmin-2 (w) =


true if i and ji | wi, wj0,

false otherwise.

(4.6)

Changing the two-sided inequalities above (e.g., wi0) to single-sided inequalities (e.g.,

wi > 0) results in orientation-sensitive operations [31, 64]. Orientation sensitivity is

useful in some cases, where inversion more intuitively denotes the exterior or void space

of an input shape.

4.3.3 Solid meshes

Our algorithm’s output meshes belong to a special subclass of PWN meshes that we call

solid meshes. Solid meshes are free of self-intersections, degenerate triangles or duplicate

triangles, and their generalized winding number field is either zero or one.

Note that even if the input meshes A1 and A2 are manifold polyhedra,

the output of C = A1A2 may be a non-manifold solid mesh (e.g., if A1

bounds the unit cube and A2 bounds the unit cube offset by (1, 1, 0)

then C will contain a non-manifold edge where A and A2 “kiss”, see

inset).
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4.4 Overview

Before worrying about details of the method, we review the key aspects

of each stage. For now, we consider the usual binary boolean operations on two meshes

A and B. The insets in this section illustrate the stages of the computation of the

asymmetric difference A \ B.

Arrangement construction In the first stage, we resolve all intersections between

input meshes using exact arithmetic. We add new triangles by subdividing the inputs

so that all intersections occur exactly at edges and vertices. All refined triangles retain

references to the original triangles of A and B.

0

1
3

5
6 7

2

4

In the second stage, we determine adjacency information between cells

defining a space partition. We organize the mesh resulting from re-

solving intersections in the first stage into patches of triangles con-

nected by manifold edges. By definition, patches are incident to each

other along non-manifold mesh edges. Two cells are adjacent via a

shared oriented boundary patch. Two patches incident on the same

non-manifold edge may bound the same cell. We determine the patch-

cell relations by sorting facets from all incident patches around this

edge. In this way, we determine the cell adjacency for each connected

component of the adjacency graph of patches. To ensure correct cell

adjacency of nested components, we identify a boundary facet of the

ambient cell surrounding each component and determine if it is con-

tained in an interior (non-ambient) cell of another component, via point location (see

Section 4.5.5). After merging the cell adjacency graphs across connected components,

there remains a single ambient cell outside of all components.

In the third stage, we assign winding numbers with respect to A and B to each cell, w =

[wA, wB].
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Union Intersection Difference

Figure 4.7: Alternative extractions (AB, AB, B\A) share the same input mesh arrange-
ment.

[0,0]

[0,1]

[1,0]

[1,1]

Having constructed the cell-patch adjacency information in the previ-

ous stage, this step is purely combinatorial. The ambient “0”-cell is

defined to [0, 0].

+[1, 0]

+[0, 1]

−[0, 1]

−[1, 0]

Remaining cells are labeled via a traversal of the cells: we add +1

or −1 to the winding number of the originating mesh of the patch

crossed between cells depending on the patch orientation. For example,

consider an unlabeled cell adjacent to a cell labeled [a, b] via a patch

originating from input A. That unlabeled cell will receive [a + 1, b] if

crossing into the oriented patch or [a− 1, b] if crossing out.

Extracting the result We identify desired output cells purely by

their assigned winding numbers. For the difference A \ B, we collect the cells labeled

[1, 0]. We return the facets of the patches separating these desired cells from undesired

cells, reversing orientations if necessary. Different extractions reuse the same intersection

resolution, cell adjacency, and winding-number labeling of the first three stages (see

Figure 4.7).

4.5 Algorithms

In this section, we consider in detail the algorithms for each of the steps overviewed in

Section Section 4.4. We will break each stage into core subroutines. For each subroutine,
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we will provide preconditions on its input and postconditions on its output. We start

with specifying preconditions and postconditions of our method as a whole.

Preconditions The method accepts as input a sequence of PWN meshes, and an

extraction function whose arguments correspond to the mesh sequence. The mesh vertex

coordinates are assumed to be rational coordinates, a property we call (Exact). We

review exactness in the Appendix. In accepting as input the broader class of exact

coordinates rather than floating point values, we accommodate upstream operations,

whose output is exact.

Postconditions The output of our algorithm is guaranteed to be an exact solid mesh.

As such it is a valid input to a downstream application of our own algorithm or another

module in CGAL. Observe that while our input preconditions permit self-intersections,

and co-planar/degenerate/duplicate facets—by design, these will never occur in our out-

put.

4.5.1 Intersection resolution

The first stage of arrangement construction resolves all triangle-triangle intersections,

enriching the mesh combinatorics so that all intersections are exactly represented by

shared vertices and edges. We consider all input meshes as a single mesh, i.e., we make

no distinction between intersections and self-intersections.

Preconditions The input is an exact PWN mesh A.

Postconditions The output is an exact PWN mesh free of self-intersections, co-

incident vertices, and degenerate triangles, inducing exactly the same winding number

field as the input mesh.
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Algorithm Self-intersection resolution consists of four steps: (1.0) discard exactly zero

area input triangles as they do not affect the winding number, (1.1) compute the intersec-

tion between every pair of triangles, (1.2) conduct a constrained Delaunay triangulation

for every co-planar cluster of intersections, and (1.3) extract and replicate subtriangles

within each triangle from its cluster’s triangulation.

For now we set aside conservative culling for performance acceleration. We consider all

pairs of triangles a and b in A. The intersection intersect(a, b) between these triangles

can be one of the following four cases: empty, a single point, a line segment, or a

convex polygon (see Figure 4.8). This intersection must be computed exactly, therefore

intersect(a, b) commutes.

Input triangles Subdivided constraints Cluster CDT

Figure 4.8: Blue triangles intersect the green at a point, segments and a polygon (left,
3D). Subdivided constraints reduce to coplanar points and segments (middle, 2D). The
original green triangle is replaced with replications of the green triangles of a constrained
Delaunay triangulation (CDT) of the coplanar cluster (right, 2D).

Next we replace each input triangle with a triangulation containing those elements re-

sulting from the intersections.

Previous methods construct this triangulation independently for each triangle [64, 9,

16], but this approach may introduce inconsistencies between overlapping triangles due

to non-general position configurations (see Figure 4.9). Inconsistent triangulations of

coplanar intersections result in violating the precondition of the following stages that

the mesh is free of intersections as defined in Section 4.3.1.

Instead, we gather clusters of triangles connected via non-trivial co-planar intersections

(i.e., intersections resulting in convex polygons). By construction all triangles in a cluster
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Figure 4.9: Two overlapping, co-planar right triangles (left) admit multiple constrained
Delaunay triangulations (CDTs). Independent triangulation could lead to inconsistent
CDTs (middle and right).

\ =
Figure 4.10: We retain the relationship between the output triangles and the inputs.
Because of our exactness, attributes like texture coordinates are losslessly maintained.

share the same supporting plane. We compute a 2D constrained Delaunay triangulation

(CDT) of the convex hull of each cluster. The original constraints collected from triangles

in the cluster are the points, segments and polygons resulting from intersections with all

other triangles in the input mesh A, as well as the vertex points and edges of the cluster

triangles themselves. We further subdivide segment constraints so that all intersections

are resolved as constraint Steiner points. Finally, we compute the CDT of the convex

hull of these points and segments; no additional Steiner vertices are required.

With CDTs constructed for each cluster, we iterate over each original triangle t to

collect its respective subdivisions. We select among the CDT cluster those sub-triangles

{t1, t2, . . .} whose three vertices, according to exact 2D predicates, are not strictly outside

t. We clone each sub-triangle ti and orient it to match t, again using exact 2D predicates.

In order to label winding number vectors (Section 4.5.3), the cloned oriented subtriangle

stores a reference (ID) to t. This reference is also useful for applications requiring

interpolation of texture coordinates, colors, or other attributes onto the boolean output

mesh (see Figure 4.10).
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We clean up by purging geometrically duplicate vertices. As we are using exact vertex

representation, this can be done efficiently using lexicographical sorting and unique entry

extraction from the list of vertices. The result is a possibly non-manifold mesh with

possible duplicate triangles, but no self-intersections.

Duplicate triangles need to be retained at this stage, as their removal requires knowledge

of the extraction function.

[0, 0]

[1, 1]

[1, 0]

not PWN

The output mesh has exactly the same winding number field as the

input. This immediately follows from the fact that in the result all

non-zero area triangles of the original meshes are retained, possibly in

the subdivided form as a result of intersection resolution. One aspect

of ensuring this is cloning sub-triangles at co-planar intersections. In

the inset figure, the orange and blue shapes share a side. If only one

set of faces is kept in the output the result is not a PWN mesh.

4.5.2 Partitioning space into cells

The second stage explicitly constructs a set of cells. We define a cell as a union of oriented

patches forming a closed manifold mesh with no self-intersections and its interior. The

set of cells forms a space partition.

Each patch is a subset of triangles of the input mesh and inherits their orientation; the

patch is a maximal connected set of faces with all edges shared by two faces from the

set being manifold. The condition implies that a boundary edge of a patch (if it exists)

is a non-manifold junction with neighboring patches.

Boundary patches of a cell may be geometrically coplanar, producing zero-volume cells;

by the absence of self-intersections, such patches necessarily consist of single triangles

sharing the same vertices.
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Preconditions The input is a PWN mesh free of self-intersections, co-incident vertices,

and degenerate triangles.

cells patchesPostconditions The output is a bipartite directed graph encoding

of cell-patch incidences. Each patch node has one incoming and one

outgoing edge to cell nodes, representing the volumetric regions the

positive and negative sides of the (oriented) patch, respectively, which

we call above and below cells. In the following, we refer to “patch”

(the combinatorial and geometric data structure) and “patch node” (the bipartite graph

node) interchangeably, and likewise for cells.

The output also includes mutual references between patches and input mesh triangles,

i.e., each patch node contains a list of triangles, and each triangle has a pointer to the

patch it is contained in.

Geometrically, the cells cover all R3. Some cells will have zero geo-

metric volume. These cells are always bound by exactly two clones of

the same geometric triangle: i.e. two patches, each with one triangle.

There may be many such degenerate cells stacked on the same multiply

cloned triangle.

When the input to this stage is the resolved intersection (see Section 4.5.1) of n piecewise-

constant winding number inducing meshes, then the output is denoted a valid cell-patch

data structure.

Algorithm Our cell partitioning algorithm first separates the input mesh into con-

nected components of triangles. Two triangles are considered connected if and only if

they share an edge.

For each such connected component, we construct a cell-patch graph independently of the

other components. First, we cluster triangles into patches. Starting with any unassigned
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triangle we grow a new patch traversing across manifold edges until the boundary of the

patch is either empty or consists only of non-manifold edges.

During clustering, we record, for each non-manifold edge, its incident patches.

The adjacency between patches is encoded as a matrix A, setting A(p, q) = e. which

means that patch p is incident to patch q sharing with it a representative non-manifold

edge e. Incident patches p and q may share multiple non-manifold edges, and the choice

of representative A(p, q) is arbitrary.

We now construct the bipartite graph of cells and patches encoding the volumetric par-

tition: while the patches have already been established above, it remains to construct

the cells and to add, for each patch p, one outgoing edge to C↑(p) and one incoming

edge from C↓(p), the cells above and below p, respectively.

We will traverse all patch-patch incidences in arbitrary order.

p
r2

rk

r1
C↑

C↓C↑

C↓

C↑C↓

C+

C−

C↑

C↓

C+

C−

C+

C−

C+C−

When visiting an incident pair (p, q), we retrieve the representative

edge e = A(p, q). As detailed in Section 4.5.5, we sort the e-incident

patches cyclically around e, with respect to p’s orientation.

Suppose the sort results in the ordering [p, r1, r2, . . . , rk], so that r1 and

rk are immediately “above” and “below” p, respectively (see inset).

If we think of this sorting order as “upward,” then each patch’s own orientation is either

consistent or inconsistent with the sorting order (e.g. in inset, r2 is inconsistent). Let

C+(ri) ≡ C↑(ri) and C−(ri) ≡ C↓(ri) if patch ri is oriented consistently with the sort,

otherwise let C+(ri) ≡ C↓(ri) and C−(ri) ≡ C↑(ri).

We now propagate cell assignments by iterating over each consecutive pair of e-incident

patches in order, beginning with (p, r1) and ending with (rk, p). When we visit the pair

(ri, ri+1), our task is to identify the cell references C+(ri) ≡ C−(ri+1). If both C+(ri)

and C−(ri+1) are unassigned, we assign them both to a newly created cell node. If only

one is unassigned, we set it to the other cell node. If both are assigned to distinct cell
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nodes, we merge the two cell nodes of the bipartite graph. After visiting all patch-patch

incidences, the bipartite graph for one connected component is complete.

K2

K1 K3

A(K3)
A(K1)

L(K2,p) = A(K2)

p

After completing each connected component, it remains to merge the

bipartite graphs. In particular, the ambient cell of a nested component

must be equated to the corresponding internal cell of the enclosing

component (see inset). As a special case, the ambient cells of all non-

nested components must be equated.

As detailed in Section 4.5.5, for each component Ki, we identify its ambient cell A(Ki).

We now iterate over each component, determine whether it is nested, and find the cell

to which its ambient cell should be equal. When we visit component Ki, we select an

arbitrary point p ∈ Ki. We build a set of candidate enclosing components E = {Kj | j 6=

i,p 6∈ A(Kj)} consisting of every component KjKi whose ambient cell does not contain

p. To determine whether a cell contains p, we use point location (Section 4.5.5), which

given a point p and component Kj returns the containing cell L(Kj ,p) and distance

from p to Kj .

If the set E is not empty, then Ki is a nested component. Among the candidates E,

we select the one (and only) component Kj closest to p. We merge the bipartite graph

nodes A(Ki) and L(Kj ,p), equating the ambient cell of the nested component to the

interior cell of its enclosing component, respectively.

If the set E is empty, then Ki is not a nested component. In this case, we equate its

ambient cell A(Ki) with the universal ambient cell C0, defined as the cell containing “all

points at infinity”, by merging these two nodes in the bipartite graph.

After we have processed all components, the ambient cell of each nested component has

been equated with the interior cell of its enclosing component, and the ambient cell of

all non-nested components is C0. The bipartite graph is now connected; each patch is

incident to two cells in a consistent manner.
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4.5.3 Winding number labeling

In the third stage, we compute the winding number of each cell with respect to each

input mesh.

Preconditions The input is a valid cell-patch graph. The universal ambient cell is

seeded with a known winding number vector; by default w = [0, . . . , 0], signifying that

infinity lies outside all shapes. Only the combinatorial (not geometric) aspects of the

input are considered by this algorithm: instead of computing winding numbers geometri-

cally, we use property that the winding number changes by 1 or −1, whenever a surface is

crossed, and thus can be computed by propagation along the cell-patch bipartite graph.

Postconditions The output is a valid cell-patch data structure with consistently la-

beled winding number vector for each cell. Neighboring cells will differ in winding number

vector by exactly +1 or −1 in a single entry corresponding to the originating mesh of

the patch between them, signed according to its orientation.

This process assigns winding numbers to zero-volume cells, formed by duplicate triangles;

although no points have this winding number, one can view this as the number the

interior points would have if the cell boundaries are separated consistently with face

ordering.

Algorithm Given cell C with a known winding number vector wc, we assign the

winding number vector of neighboring cells via breadth first traversal. For each oriented

patch p separating cell C from neighbor cell N , if the winding number vector wn is still

unknown we set it to wc adjusted to account for crossing patch p, originating from mesh

Ai:

wnwc + sp[i1 . . . in], (4.7)
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where sp is +1 if cell C lies above p and N below and−1 if vice versa, and ij is Kronecker’s

delta. We then add cell N to the queue of cells to process later. When the queue is

empty, all cells have been labeled, and the algorithm has completed.

Complements By default, all input meshes Ai are assumed to represent bounded

solids. Under this convention, the winding number at infinity is zero, wj(∞) = 0.

Winding numbers elegantly handle complements by subtraction from 1. If Aj is the

complement of Ai = Aci , then

wj = 1− |wi| or wj = 1− wi, (4.8)

depending on whether the complement operator is orientation-insensitive or -sensitive,

respectively (see inset).1

Ai

+1 −1
0

Ac
isensitive

+2
+1

0

Ac
iinsensitive

00
+1

As a consequence, if Aj represents the unbounded complement of some bounded solid,

then the seeded winding number vector at infinity should be wj(∞) = 1.

In this way the winding number elegantly captures set identities. In particular, we

produce exactly the same result for A \ B and A ∩ Bc.

4.5.4 Operation result extraction

Now that the arrangement data structure is constructed, it allows us to perform arbitrary

extraction operations. We extract the triangulated boundary of all cells for which an

extraction function f is true.

1In the orientation-insensitive case, the complement of the complement results in taking the absolute
value of the winding number w, preserving orientation-insensitive insideness defined as w0.
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Preconditions The input is a valid cell-patch data structure with consistently labeled

winding number vectors and a predicate function f(w) returning true or false for a

given winding number vector w. As in the previous stage, this stage makes use only of

combinatorial (not geometric) aspects of the input.

Postconditions The output is a solid mesh.

Algorithm We flag all cells that pass f , collecting all patches separating a flagged cell

from an unflagged cell, and then collecting all triangles of those patches, flipping the

orientation of triangles from patches with a flagged cell above and unflagged cell below.

We then purge possible boundaries arising from zero-volume symbolic cells. Since these

always occur as perfect combinatorial duplicates of single triangles, we need only remove

all triangles with zero total signed occurrence: sum of +1 if oriented i, j, k and −1 if

k, j, i.

4.5.5 Core low-level subroutines

The robustness of our method rests on the correctness of several core low-level subrou-

tines.

Point location

We are asked to locate in which cell a given point lies. This is a special case of the

fundamental point location problem in computational geometry. We take special care to

solve this problem robustly and in the presence of zero-volume cells (e.g., due to resolved

co-planar intersections).

Preconditions The input is a query point q ∈ R3 and a valid cell-patch data structure.

The query point q must not lie exactly on the input mesh.
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Postcondition The output is the unique cell containing the query.

Algorithm Searching over all triangles, we find a triangle t containing the point c on

the input mesh closest to the query point q. Point c lies either exactly at a vertex v of t,

or else along an edge e, or else within the interior of t (but not on its boundary). None

of these cases is trivial. The vertex v or edge e could be a non-manifold junction of many

cells, and the triangle t could be from a patch lying deep in a “stack” of zero-volume

cells due to duplicated faces.

In fact, only at edges can we robustly determine the symbolic and geometric cell arrange-

ment. The cyclic ordering of cells incident on an edge e is consistent, and since q does

not lie on the input mesh it must lie in one of the incident cells. We insert a dummy

facet connecting e and q into the sorted list of facets incident on ε. The next facet after

the dummy (or previous facet before) must form a patch bounding the cell containing q.

The ambiguity in the case where c lies within the triangle t arises in the presence of

duplicates of the triangle t. Since all duplicates share the same three edges, we choose

one arbitrarily as the sorting edge e, and insert a dummy as in the edge case above.

If the closest point c lies at a vertex v, we identify a good sorting edge e (i.e., on the

convex hull of v and its vertex neighbors) and again insert a dummy as above. Identifying

the containing cell of a query whose point of closest approach is a vertex will also arise

when identifying the ambient cell of a component. In this case, we project edges incident

on v onto the plane formed by q−c and any orthogonal vector (rather than the xy plane)

and then follow the rest of the ambient cell identification algorithm in Section 4.5.5.

Ambient cell identification

In this subroutine, we identify the ambient cell (containing all points at infinity) of a

given mesh.
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counterexample for [Attene 14] xy-projection of 
incident normals
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Figure 4.11: Consider a tetrahedron (orange) inside a wedge (blue), connected at a
non-manifold vertex. One face normal of the interior tetrahedron (orange) has a larger
x-component than the normals of exterior triangles (blue) incident on this non-manifold
outer vertex.

Preconditions The input is a possibly non-manifold but self-intersection-free triangle

mesh and a corresponding cell-patch data structure.

Postconditions The output is a facet guaranteed to contain an outer vertex (a vertex

on the convex hull of the vertices) and participate in a patch forming part of the boundary

of the ambient cell of this mesh containing all points at infinity.

Algorithm We could solve this problem by identifying the cell containing some ar-

bitrary far away point using the point location algorithm of Section 4.5.5. However,

we enjoy the performance benefits of avoiding closest point computation by choosing a

query point with a vertex as its known closest point.

We locate a vertex v with the maximum x-coordinate magnitude, breaking ties arbitrar-

ily. It follows immediately that q = v + (1, 0, 0) lies in the desired ambient cell and that

v is the point of closest approach of q to the input mesh.

We will identify the ambient cell by finding a facet incident on v that is part of a patch

on the ambient cell’s boundary. To find an incident outer facet, we first select an edge

incident on this vertex that also lies on the convex hull. Then we sort facets cyclically

around this edge and select one of the two facets that are part of ambient-cell boundary
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patches.

Sorting facets around an edge is discussed in Section 4.5.5, so it remains to identify an

edge of the convex hull edge on the vertex with maximal x-coordinate. We rely on our

exact representation of the input mesh and the ability to determine predicates exactly

(e.g., is a point below, on, or above a plane?). We sort incident edges with respect

to their projection on the xy-plane. We select the edge whose projected edge-vector

ε = (ex, ey) is most orthogonal to the x-axis. Our particular exact representation kernel

allows construction of quotients (but not square roots), so we identify the edge with

maximum slope as a line function of x: that is, according to |ey/ex|. We may break ties

arbitrarily because all edges with maximum slope must lie on the convex hull.

Remark [9] proceeds in a similar way by finding a maximal x-coordinate vertex and then

chooses the incident triangle whose normal has the largest magnitude x-component. This

criterion cannot be applied if the vertex is non-manifold: an inner “flap” might have a

more outward-pointing normal than the true outer facets. For a concrete counterexample,

consider extruding the triangle {(0, 0), (1, 1), (0, 2)} two units in the z-direction, then

move the lower-right corner to (2, 1, 0) and add a inner tetrahedron connecting that

vertex to the top-left corners and any interior vertex floating below (see Figure 4.11).

Cyclical sort triangles about a common edge

The cell partitioning, point location, and ambient cell identification subroutines depend

on the ability to sort triangles about a common edge robustly. We sort only at one rep-

resentative edge between incident patches, rather than at every edge of the triangulation

(cf. [9, 16]).

Sorting triangles around a common edge is misleadingly innocuous. This subroutine

must (and will) ensure consistent ordering of exactly duplicate triangles (e.g., resulting

from resolved co-planar input triangles) and geometrically correct ordering of nearly

co-planar triangles.
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Consistent ordering Inconsistent ordering

Figure 4.12: Consider five co-planar facets (lines) incident on two oriented edges (dots).
Using the edge orientation to sign these indices during sorting ensures that orderings
from either edge are consistent (left). Otherwise the sort is the same regardless of the
edge orientation leading to inconsistent ordering.

Preconditions The input is a set ofm non-degenerate triangles t1, . . . , tm incident on a

mutual (non-degenerate) edge {i, j}. Each triangle ti is endowed with a globally assigned

index i (e.g., its index in the non-manifold output mesh after resolving all intersections).

It is assumed that if two triangles are coplanar, then either they intersect only along the

edge {i, j} (their dihedral angle is 180◦) or they are geometrically identical (same third

vertex position and their dihedral angle is 0◦).

Postconditions This subroutine outputs a sorted (clockwise) ordering of the trian-

gles, looking down the edge {i, j}. Geometrically distinct triangles are sorted cyclically

according to their dihedral angle with the first triangle t1. Duplicate triangles—without

loss of generality all are {i, j, k}—are sorted consistently in the sense that their relative

ordering is maintained when sorting around {i, j}, {j, k}, or {k, i} and their ordering is

reversed when sorting around {j, i}, {k, j}, or {i, k}.

Algorithm Let us say that each triangle t is positively incident on {i, j} if t = {i, j, k}

and otherwise negatively incident (i.e., if t = {k, j, i}).

Let pk refer to the vertex position of triangle tk’s third “flap” vertex not lying on the

shared edge {i, j}. Our recursive divide-and-conquer algorithm begins by selecting a

starting triangle t = t0 and sorting each other triangle tk into one of four groups, based
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Figure 4.13: We conduct extensive evaluation of the robustness of our method on a
dataset of 10,000 popular real-world models.

on whether pk lies (1) co-planar with t0 and on the same side of {i, j} as p0, (2) co-planar

with t0, and on the opposite side of {i, j} as p0, (3) below the plane of t0, (4) above the

plane of t0.

We sort within groups (1) and (2) by simulating simplicity à la [47]. Duplicate triangles

are sorted according to their uniquely assigned index k. To ensure that this ordering is

consistent and not erroneously reversed when viewed from a different edge incident on

the same replicated triangles, we sign these indices based on the signed incidence of each

triangle with respect to {i, j} (see Figure 4.12). This symbolic perturbation will differ

depending on the input indices, but once indices are fixed it is always consistent. Only

the ordering of zero-volume cells are effected, so different orderings will always produce

the same geometric result.

Triangles in groups (3) and (4) are sorted by recursive calls. The complete output is

then simply the merger of the four sorted groups.

4.6 Implementation

We implemented the algorithm in C++ utilizing the exact arithmetic kernel of the pop-

ular CGAL library. We specifically use its subroutines for: exact testing and con-

struction triangle-triangle intersections; 2D constrained Delaunay tessellation (CDT);

point-triangle closest point queries and point-plane predicates. We found CGAL’s CDT
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implementation to be robust on all examples if constraints are subdivided at intersections

as a preprocess.

We also use CGAL’s built-in bounding-box-based spatial acceleration for collecting a

list of candidate triangle-triangle intersections. We further accelerate the exact triangle-

triangle intersection detection and construction by processing candidates in parallel. Due

to the reference counting employed by CGAL’s deferred evaluation exact number type

(CGAL::Lazy exact nt), seemingly read-only simultaneous access of the triangle data is

unsafe. Fortunately intersection detection and construction is compute-bound, so even

placing mutex locks around every mesh vertex leads to parallelism performance gains.

We also use CGAL’s axis-aligned bounding-box hierarchy for point to triangle-soup

closest point querying. We further accelerate the point location in Section 4.5.5 by

culling points entirely outside of the bounding box of a component (the query point

must then lie in that component’s ambient cell).

We have integrated our open-source implementation into libigl [65].

4.6.1 Converting to floating-point

While input meshes with floating-point vertex position coordinates losslessly convert to

our exact representation, the reverse is not true about our output exact meshes. Naively

rounding a solid exact mesh to floating point may result in a non-solid mesh due to

newly introduced self-intersections. This occurs in 2.19% of our output meshes in the

Thingiverse dataset.

In Computational Geometry, this problem is known as vertex rounding. Without allowing

subdivision of facets and insertion of new vertices, this problem is NP-hard [84]. Allowing

for re-triangulation, a robust—albeit slow and complicated—solution to this problem

exists in theory [52].

To fit into floating-point pipelines and fairly compare to previous methods producing
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54.7%no self-intersections 

83.9%no degenerate faces

91.8%no duplicate faces

74.5%single component 

85.9%edge-manifold

77.6%vertex-manifold

88.6%no open boundaries

Cleanliness of the 10,000 Thingiverse meshes

Figure 4.14: The Thingi10K dataset contains real-world meshes with real-world prob-
lems.

floating-point output meshes (e.g. [19, 9, 45]), we propose a heuristic for rounding our

exact output meshes to floating-point. Our heuristic is related to the method proposed

in [108].

Preconditions We assume the input to be a solid triangle-mesh with exact coordi-

nates.

Postconditions Though we can make no guarantees of convergence, our exact method

equipped with this rounding heuristic successfully finds self-intersection free floating-

point meshes for 99.95% of the dataset. Otherwise, we can only claim the output to

remain a PWN mesh.

Heuristic Given a solid mesh with exact vertices, we iteratively apply the following

steps: (1) round all vertices to double precision floating-point coordinates, (2) find all

triangles participating in self-intersections (if none, then return), (3) round all vertices

of these triangles to single precision floating-point coordinates, and (4) compute the

self-union of the resulting mesh.
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4.7 Experiments and results

Constructed or procedurally generated examples may help investigate corner cases, but

do not necessarily report how robustly an algorithm will perform in practice. To this

end, we gather a dataset of 10,000 meshes from “the wild,” and test our method and

previous works against it. Considering these meshes as a representative sampling of a

general population of meshes encountered in practice, we evaluate the restrictiveness of

preconditions and the robustness of claimed postconditions across methods.

4.7.1 Thingi10K dataset

Contents and methodology The Thingi10K dataset contains the first 10,000 meshes

of “Featured” models on thingiverse.com, a popular shape repository. These models

are heavily biased toward models designed by amateurs or semi-professionals for 3D

printing (though there is no official restrictive policy). We therefore interpret these

models as a representative sampling of the population of meshes intended to model a

solid 3D object.

Each “Thing” featured on thingiverse.com may contain several distinct mesh files.

We collected the first 2011 Things, totalling 10,000 meshes (see Figure 4.13). All Things

are released under free licenses (GPL, LGPL, Creative Commons, BSD, or public do-

main). The original meshes came in a biased variety of file formats: 9956 .stl, 42

.obj, one .off, and one .ply. The vast majority of meshes have single-precision

vertex-coordinates. Since .stl files store triangle streams rather than meshes, we

100010 100,000

number of 
faces

5078

immediately merge exactly duplicate corners. The number of

faces in each mesh follow a log-normal distribution with geo-

metric mean = 5077.6 and geometric standard deviation = 8.5

(see inset).
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Postconditions, self-union of 8616 meshes

without open boundaries

with zero total signed edge-incidence

without self-intersections

produced a result...
our method

Cork

Carve
QuickCSG

Attene

100%
CGAL

Figure 4.15: Previous methods frequently failed to produce an output without self-
intersections, without open boundaries, and with piecewise-constant winding number.

10,000 meshes
8616 pwn

4963
polyhedra

5113 solid

Comparing preconditions Of the 10,000 meshes, 8616 meet

our PWN precondition. Of these, 5113 are solid meshes, and of

those 4963 are manifold polyhedra.

The 10,000 meshes exhibit a variety of typical problematic

cases: open boundaries, self-intersections, non-manifold ele-

ments, multiple components, etc. (see Figure 4.14). Among the 4524 meshes containing

self-intersections, 3082 contain coplanar self-intersections. This quantifies an approxi-

mation of the fraction of models deviating from the general positioning assumption.

Many “problematic” meshes seem to result from modeling with self-intersections (see

Figure 4.2) and overlapping, independently modeled components or from previous failed

boolean operations.
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4.7.2 Testing self-union

Assuming each mesh in the Thingi10K dataset to represent an intended solid, we compare

extracting a valid boundary of this solid with available implementations of five previous

works: “CGAL” [34], “Carve” [33], “Cork” [19], “QuickCSG” [45], “Attene” [9].

We emphasize that the results of experimental comparison in this case reflect both al-

gorithmic limitations and implementation deficiencies, so a different implementation of

any given method could potentially perform better. The no-longer-maintained imple-

mentation of [20] failed on most examples. Similarly, the web-service implementation

of [31] failed to produce a result roughly 40% of the time. We are unable to obtain

implementations or outputs for other methods (e.g. [16]).

We limit our comparison to the 8616 PWN meshes. Of these, only 3413 contain self-

intersections. Nonetheless, we consider all 8616 PWN meshes as implementations relying

on internal rounding (e.g. [9, 19]) often also stumble on nearly self-intersecting meshes.

Attene’s mesh repair method computes the outer hull, rather than the self-union [9].

The other implementations do not provide an explicit API for conducting self-union, so

we intersect the input model with its conservative bounding box.

Comparing postconditions The expected result of the self-union operation is a solid

mesh. We report whether the tested methods successfully produced an output and

whether that output met certain necessary postconditions. Testing whether the output

mesh is solid requires a correct implementation of cyclic facet ordering around a non-

manifold edge to determine that all incident cells are alternating zero to one winding

number. Absent trusted third-party code, we test for necessary (but not sufficient) con-

ditions: lack of self-intersections, lack of open boundaries, lack of non-zero total signed

incidence edges. Such meshes are a strict subclass of PWN meshes, but a superclass of

solid meshes. Our exact method succeeds with 100% success rate across all criteria (see

Figure 4.15). Previous methods fall short in at least one criteria. This unique success
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Running time distributions, self-union of 8616 meshes
seconds

QuickCSG

0.05

Carve

0.22

ours

0.25

CGAL

1.7

Cork

0.06

Figure 4.16: The performance of our method is competitive with existing floating-point
methods and faster than the state-of-the-art exact method [34]. Geometric means given
for each method. Unequal histogram areas correspond to success rate.

Performance profile of four-stage algorithm
% of total running time

Performance profile of resolve intersections stage
% of resolve intersections running time

Performance profile of partition cells stage
% of partition cells running time

one pixel-column for each mesh, sorted by total runnging time

resolve intersections 

partition cells label winding numbers extract boundary

detection

construction
CDT stitching

Figure 4.17: The main bottleneck of our algorithm is triangle-triangle intersection res-
olution. Within this major stage, the intersection detection and exact construction
dominate.
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places our exact method robustly into the exact geometry pipeline.

In a floating-point context, our method also out-performs all others. Our heuristic

for converting our exact outputs to floating-point meshes in Section 4.6.1 succeeds in

removing new self-intersections all but five cases out of the 8616. These meshes fail to

converge after 20 iterations. Rates of closedness and total signed edge-incidence are—by

construction—maintained at 100%.

The specific causes of failure of the previous methods are difficult to determine. We can

identify robustness flaws associated with characteristics of the input meshes. Methods

assuming general positioning or resorting to numerical perturbation [19, 45] will struggle

in the presence of coplanar intersections.

Attene assumes accurate floating-point normals during self-intersection

culling and outer hull extraction [9], but inputs may contain degenerate

or nearly degenerate triangles with untrustworthy normals. The inset

highlights self-intersections (orange) and an open boundary (red) on a

problematic output of Attene’s.

Performance We collected timing information across the 8616 self-

unions for our method and four of the other methods (CGAL, Carve, QuickCSG, Cork)

locally on a machine with an 8-core Intel Xeon 3GHz processor with 16GB of memory.2

The violin histograms of running timings in Figure 4.16 show that while ours is not the

fastest, it is competitive.

The Thingi10K dataset also provides means to further examine the performance of our

individual subroutines. The profile in Figure 4.17 reveals that resolving intersections is

the dominating bottleneck.

2Attene provided results independently.
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SELF-INTERSECTING INPUT OUTER HULL

Figure 4.18: Self-intersections confuse per-vertex ambient occlusion and sharp-line de-
tection. Rendering the outerhull ameliorates this.

Figure 4.19: David emerges from a block by repeatedly subtracting the Minkowski sum
of a drill bit along piecewise-linear paths.
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4.7.3 General discussion

Outer hull The outer hull of an input triangle mesh is defined as those triangles

reachable from infinity by some (possibly non-straight) path that does not intersect the

mesh [32, 9]. In general, the outer hull cannot be categorized in terms of the winding

number: boundaries with inner hollow cavities with zero winding number are not part

of the outer hull. For some applications, retaining these inner cavities is crucial. For

other applications, such as rendering, the outer hull may be appropriate and desired (see

Figure 4.18). We can easily adapt our algorithm to compute outer hulls. We construct

cell partition according to Section 4.5.2, find the ambient cell according to Section 4.5.5,

and simply extract its boundary as per Section 4.5.4.

Minkowski sums The Minkowski sum of a solid mesh A along a line segment {s, d}

can be computed as the union of A at s, A at d, and the union of all prisms formed by

triangles of A along {s, d}:

A+ {s, d} =
⋃(

A+ s,A+ d,
⋃
tA

t+ {s, d}
)
. (4.9)

Explicitly computing the union of all triangular prism via our mesh boolean algorithm

would produce the correct result but after too much unnecessary computation: most

neighboring prisms are exact duplicates. We cull the union of prisms with a pre-process,

removing all facets with zero total signed occurrence, replacing all instances of facets

with 2k total signed occurrences with k positive/negative clones. This proof-of-concept

inherits the robustness of our method, but is likely suboptimal in terms of performance

compared to specialized methods [32]. In Figure 4.19, we simulate a CNC-milling tool.

Traditional binary boolean tests A traditional test for a boolean algorithm is to

select two meshes, randomly rotate them, then conduct a binary operation (union, in-

tersection, difference, etc.) and investigate the result for artifacts or errors. This type
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=∩
Our stable intersection
with self

Cork

QuickCSG

Perturbed by 1e-6 Perturbed by 1e-12 No perturbation

Perturbed by 1e-5

Figure 4.20: Numerical perturbation can produce spurious artifacts.

...
A ∪ B A ∩ B A \ B B \ A

×1400

Figure 4.21: We reproduce and exhaustively expand the pairwise testing in [16] (see
supplemental material).
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Union of each mesh of [Barki et al. 2015] with itself rotated by π
10 ,

2π
10 , . . . π

Figure 4.22: We reproduce and expand upon the A-union-rotated-A style test in [16].

of testing encourages the general positioning assumption and may give a false sense of

robustness in cases with coplanar intersections and exact co-incidences. An extreme case

is taking the intersection of an object with a clone of itself (see Figure 4.20). Methods

based on numerical perturbation, such as [19], panic in the presence of so many co-planar

intersections.

For completeness, we reproduce and expand upon the testing in [16]. Barki et al. com-

pute the union and intersection for 22 pairs of meshes from a collection of 26 standard

computer graphics meshes (the Armadillo, the Cow, the Dino, etc.). We exhaustively

compute union, intersection, and both asymmetric differences for all pairs (see Fig-

ure 4.21). All 4(26(26 + 1))/2 = 1404 tests result in valid solid meshes. For two of these

meshes, Barki et al. also computes the union and intersection of the mesh and a clone

rotated by random rotation. For all 26 meshes, we compute the union of the mesh and

10 clones rotated by /10, 2/10, . . . , about the same axis (see Figure 4.22). All our results

are valid solid meshes.

The robustness of several previous works rely on the assumption that input vertices

lie on a regular grid [31] or at general positions [19, 45]. However, input rounding
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four icosahedra our intersection Trimble SketchUp Pro’s intersections

self-intersections open boundaries

Figure 4.23: A popular commercial app produces three different results (presumably due
to randomization), yet all are incorrect.

Figure 4.24: Our method supports n-ary operations. For example, extracting all regions
inside at least k of the input spheres centered at each corner of the unit cube.

or perturbation—no matter how subtle—may introduce unnecessary intersections that

merge disjoint components (see Figure 4.31) or cause numerical problems (see Fig-

ure 4.20). In contrast, the exact nature of our approach allows us to only resolve

intersections already present in the inputs.

Others (e.g., [16]) have demonstrated robustness issues with boolean implementations

in commercial software such as Maya. We add to this by comparing to Trimble’s

SketchUp Pro. SketchUp Pro consistently fails to intersect four randomly rotated

icosahedra (see Figure 4.23). We also attempted to union each of the 26 models of [16]

with a clone rotated by 18 (a simplified version of Figure 4.22). After a day of computa-

tion, only 12 produced an output, and none were without flaws (all were combinatorially

open, only two were without self-intersections).

Although very common, inputs with multiple, possibly nested, components are often
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Union of ten tetrahedra

ours:
cascading:

4.5 seconds
8.9 seconds

ours:
cascading:

4.5 seconds
weeks

Region inside at least five tetrahedra

Figure 4.25: Simple and complex variadic operations cost the same using our mesh
arrangements. Converting variadic operations to a cascade of binary operations is worst-
case exponential in time.

overlooked in previous works. The implementation of [31] assumes only single component

inputs, and [34] does not detect nested voids automatically. In contrast, our algorithm

correctly handles multiple components as illustrated in Figure 4.26.

Stress tests In addition to standard tests on common computer graphics models, we

also stress test our algorithm on challenging examples. Our algorithm is robust for

carrying out consecutive boolean operations because the output solid mesh is trivially a

valid PWN input for the following operations (see Figure 4.27).

An interesting and challenging application of boolean operations is to “undo” boolean

subtractions given only the argument and the result, produced by an unknown boolean

implementation (see Figure 4.28).

Generality Besides conventional boolean operations, the space partition defined by

mesh arrangement is useful for many important geometry processing applications. In

Figure 4.29, the outer hull computation is a necessary preprocessing step for generating

a volumetric discretization for structural analysis [145]. The outer hull is also useful for

culling extra internal complexity (see Figure 4.30).

Our variadic formulation also allows us to compute regions inside at least k of the input

meshes without the combinatorial explosion associated with binary boolean operations

(see Figure 4.24). Figure 4.25 considers ten intersecting tetrahedra. Our variadic union
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Figure 4.26: Disconnected stars and overlapping spike components correctly unites with
a nested turtle (slice view above).

of all ten tets is roughly twice as fast as decomposing the union into a cascading tree of bi-

nary union operations (and 6.5× faster than a linear chain of binary unions). Intuitively,

this is because our intersection resolution is the most economical for this arrangement.

In contrast, repeated unions will require resolving intersections with previous results,

aggregating unnecessary complexity: though geometrically identical, our result has 384

triangles, compared to the cascading tree’s 1000. We also construct extraction of the

region inside at least five input tetrahedra. Decomposing this into a binary tree of cas-

cading operations leads to an exponential number of operations in the number of tets

((5
(

10
5

)
− 1) = 1259 binary operations for ten tets). The aggregation of complexity is

catastrophic leading to performance measured in hours. Instead, extracting this result

from our arrangement requires the same cost as extracting the union: just a few seconds.

Lastly, the cell data structure used by our algorithm can be easily extended for cus-

tomized applications. For example, it is easy to eliminate small cells immersed inside a

shape (see Figure 4.32).

4.8 Limitations & Future work

A limitation of this method is the requirement that the input mesh have no open bound-

aries or non-manifold “flaps”. Of the 10,000 meshes in our Thingiverse dataset, 18% did

not meet our preconditions. While repairing invalid input meshes is beyond the scope
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Figure 4.27: We reproduce the carving example of [20] by subtracting 10,000 dodecahedra
from a box.

Result of boolean subtraction on 
unknown shape using unknown algorithm Undo!

? \ =

Figure 4.28: The groved, yellow frog is the result of subtracting the stripy, blue flog from
an unknown (presumably solid) frog using some boolean implementation (not ours). Our
robust union recovers the original frog (blue and yellow).

of this method, many previous works are available [8, 30, 64]. On the other hand, the

high-level structure of our approach would clearly extend to meshes with boundaries and

unstructured non-manifoldness via the generalized winding number [64]. However, our

low-level combinatorial and sorting based subroutines would need to be replaced with

robust or exact evaluations of the generalized winding number. While Barki et al. [16]

provide a partial solution for simple cases (e.g., clipping a closed model with a plane), a

robust solution for arbitrary geometrically open models is elusive.

Our method is variadic, but does not optimize operations based on the request extraction

and inputs. For example, consider conducting the 1000-way union of 999 overlapping

spheres enclosed and their conservative bounding box. Clearly resolving the intersections

between the 999 spheres is overkill. It would be interesting to explore compiler-style

optimization of this computation based on the geometry of the input meshes and the

given extraction function.
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Figure 4.29: Tetrahedralization of the input foot mesh fails due to overlapping input
components, but succeeds after self-union. The volume mesh helps analyze the shapes
structure.

High-res input 1000-triangle 
outer hull decimation 1000-triangle 

naive decimation

Figure 4.30: The coin mesh has been modeled with many overlapping components (gold).
Constructing the outer hull adds many new vertices, but removes hidden interior geom-
etry. After decimation, the few triangles are well spent on the visible surface (silver).
Naive decimation wastes precious triangles on the hidden interior (bronze).

In the hopes of fostering continued work in this direction and more exhaustive testing

in geometry processing at large, we release both our code and 10,000-mesh Thingiverse

dataset to the community.
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Figure 4.31: The letters are separated overlapping components on the cryptex. Exact
union reveals disjoint rings, shown in different colors, but small tolerances between parts
cause inexact methods to merge over zealously.

Slicing through...
... self-union

... outer hull ... self-union,
no small cells

Figure 4.32: The self-union of a wheel of cheese retains its internal bubbles after slicing
(intersecting) with a knife (blue wedge). Slicing the outer hull reveals no bubbles. Elim-
inating small volumes cells in the self-union before extraction, produces a few bubbles.
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Chapter 5

Thingi10K: A Dataset of 10,000

3D-Printing Models

This chapter is based on our submission to Symposium of Geometry Processing 2016. It

is in collaboration with Alec Jacobson. My contributions include statistical analysis of

Thingi10K, ShapeNetCore and MPZ14 dataset; the creation and maintenance of online

query interface for Thingi10K dataset.

Figure 5.1: The Thingi10K dataset contains 10,000 models from from featured “things”
on thingiverse.com, a popular online repository.
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5.1 Introduction and background

The iconic Stanford bunny, now 23 years old, has been melted, shattered, and deformed

countless times. While mostly a fun subculture, “bunny torture” is also a legacy of an

earlier time when few interesting and free 3D models existed. Testing on such standard

models persists despite well-known limitations. As Greg Turk, originator of the bunny,

advises, “I actually consider the bunny to be too good as a test model. It is fairly smooth,

it has manifold connectivity, and it isn’t too complex” [130].

Oversimplified testing provides a false sense of robustness and causes not only visual ar-

tifacts in computer graphics applications, but also fabrication and functionality artifacts

when processing geometry intended for 3D printing. Fortunately, 3D models are now

abundant. Modern consumer-level 3D printing technologies nurture new communities of

professional and amateur 3D modelers, who share and sell 3D-printable models online

(e.g., shapeways.com, sketchfab.com, thingiverse.com). This wealth of data also

echoes the demand for state-of-the-art processing techniques and automation within 3D

printing pipelines.

However, testing remains inadequate. Existing datasets contain only sanitized models

(e.g., [3, 71, 93]) or draw from populations containing raw models not specifically in-

tended for printing (rather, e.g., for shape classification [114, 35] or scene understanding

[96, 39]).

In this paper, we will show that the characteristics and issues common to 3D printing

models are distinct from models intended for visualization. As such, validating geometry

processing techniques related to 3D printing requires a new representative dataset. This

ideal dataset should encompass the different contextual and geometric characteristics of

commonly printed shapes. Characteristics common to 3D printing models should appear

with proportional distributions, and characteristics inconsistent with models intended

for fabrication should be infrequent (e.g., the open boundaries of a video game character’s

clothing).
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We propose a dataset of 10,000 models culled from a popular shape repository for 3D

printing enthusiasts, thingiverse.com. Hereon, we refer to our dataset as Thingi10K.

Beyond collecting tags and class information available online, we analyze geometric char-

acteristics of each model (e.g., manifoldness, lack of self-intersections, genus). We con-

trast these statistics against existing large datasets and investigate correlations within

the data.

Existing datasets. Myles et al. collect 116 models from academic sources (Stanford

Scanning Repository [71] and Aim@Shape Repository [3]) to test their parameteriza-

tion algorithm [93]. These models correspond to best-case input due to their extreme

cleanliness and general position assumption (i.e., no four points on a circle, no coplanar

intersections, etc.). For 3D printing models in the wild, degeneracies, non-manifoldness

and self-intersections are abundant, not special cases. Structured modeling and coordi-

nate quantization tends to break rather than fulfill general position assumptions.

Computer vision and machine learning applications demand large scale training datasets.

For example, the NYU Depth Dataset collects thousands of depth video sequences of

indoor scenes for object classification [96]. The Princeton Shape Benchmark collects

1,814 polygonal models of specific objects (e.g., animals, furniture) from various internet

sources for shape classification [114]. More recently, ShapeNet collects more than three

million annotated models [35]. The ShapeNetCore subset contains 57,459 single-object

models with semi-automatically generated category information. Although models from

these datasets resemble physical objects, their geometric characteristics suggest their

intention was for visualization rather than fabrication. These datasets are not suitable

for testing 3D printing techniques.

In addition to generic datasets, a variety of specialized datasets exist. For example, Lim

et al. provide 219 IKEA 3D models for pose-estimation [75]. Recently, Choi et al. released

a dataset of 10,000 scanned objects, with a subset of 383 successfully reconstructed 3D

models [39]. The Shape Retrieval Contest releases multiple datasets each year to test re-
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Figure 5.2: Our online query interface selects subsets of Thingi10K.
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trieval algorithms including generic [25, 72], non-rigid humans [103], sketch-based shapes

[73, 74], shape correspondences [24], facial expressions [94, 134], and range scans [46].

Our Thingi10K dataset complements these sources by providing a specialized dataset for

3D printing objects.

We are not the first to utilize Thingiverse models for academic purposes. To test a

rapid prototyping interface, Mueller et al. consider Thingiverse models, but report that

meshing artifacts required manual cleanup before processing [90]. Beyer et al. procedu-

rally collect 2,250 models with specific tags from Thingiverse to test a decomposition

algorithm [21]. Buehler et al. manually sift through 25,000 models from search results

on Thingiverse to identify 363 models as “assistive technologies” [27]. Beyond testing

a specific routine, these works do not analyze low-level geometric characteristics of the

collected models. These collected datasets are also not publicly available.

Contributions. Unlike previous datasets, our Thingi10K dataset reflects the variety,

complexity and (lack of) quality of 3D printing models. It is immediately useful for

testing the performance of methods for structural analysis [121, 145, 132], shape opti-

mization [105, 12, 92], or solid geometry operations [144]. Due to its specialized nature

and correlated contextual information, we suspect the dataset is also useful for machine

learning and data mining algorithms. We compare the collected contextual information

and computed geometric properties of our dataset in detail against two existing datasets:

MPZ14 and ShapeNetCore. We demonstrate that these represent two extreme cases in

terms geometric quality while our dataset provides a mixture of geometric qualities re-

flecting real-world settings. All data and analysis of our dataset are freely available to

the public. To facilitate exploration and future reuse, we provide an easy-to-use online

query interface (see Figure 5.2). This interface augments the Thingiverse front-end with

our geometric analysis of each model.
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5.2 Methodology

Instead of our hiring professional modelers or scanning physical objects, we leverage the

availability of 3D models hosted and shared online. Among all 3D shape repositories,

we select Thingiverse for its large and active user community, its vast collection of print-

validated designs, and its restriction to open-source licenses.

As one of the largest online shape repositories, Thingiverse hosts more than a million

user-uploaded things, 3D designs consisting of one or more 3D models (i.e., one or more

mesh files). As of October 2015, Thingiverse has more than 2 million active users, with

30-40 uploads each week and 1.7 million downloads per month [81]. Thanks to this

community, a design is typically not only modeled virtually but also fabricated by one

or more users, which provides invaluable real-world validations.

Our Thingi10K dataset consists of 10,000 models (from 2011 things) systematically culled

from Thingiverse via web crawling. Rather than randomly sample the entire repository,

which may contain bogus models uploaded by inexperienced users or for testing pur-

poses, we focus on things featured on Thingiverse. Featured things are entirely and

independently selected by Thingiverse staff based on their design, beauty and manufac-

turability. In a sense, these 10,000 models represent a subset of the top-quality designs on

Thingiverse. Thingi10K contains every 3D model of every thing featured by Thingiverse

between Sept. 16, 2009 and Nov. 15, 2015.

5.3 Analysis

The 10,000-model dataset comes from 2,011 unique things designed by 1,083 unique

users, covering a large variety. Nearly all models are stored as .stl files (9,956); the

rest are .obj (42), .ply (1), and .off (1). We analyze both geometric and contextual

information of our dataset to illustrate its representational quality and diversity.
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Figure 5.3: Percentile plots of vertex and component count.
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Figure 5.4: Highest resolution models from each dataset.

5.3.1 Geometry information

We analyze a variety of mesh complexity and quality measures on our dataset of 3D

printing models and compare with two existing datasets: MPZ14 (116 models) and

ShapeNetCore (2000 models uniformly sampled from 57,459).

Complexity

Complexity of 3D model does not directly correlate with 3D printing cost. We evaluated

three different measures to quantify the complexity of our dataset: number of vertices,

number of disconnected components and genus.

Figure 5.3 provides the percentile plot of both vertex and component count over each
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Thingi10K ShapeNetCore

Figure 5.5: Connected components of Thingi10K models tend to represent salient parts;
those in ShapeNetCore are often just disconnected patches (models with most compo-
nents shown).

dataset. The vertex count plot indicates that the MPZ14 dataset favors moderately

high resolution models and excludes extremely low or high resolution models. On the

other hand, the distribution over our dataset and ShapeNetCore is similar, with our

dataset covering a larger range. Figure 5.4 illustrates the highest resolution model of

each dataset.

Many geometry processing algorithms assume input will be processed one component

at a time, so it is not a surprise that MPZ14 contains exclusively single-component

models. This assumption is not valid in the context of 3D printing, where multiple

components could overlap to form a larger shape. Analysing each component separately

may lead to incorrect results. Within our dataset 29% of models have more than one

component. ShapeNetCore is 83% multi-component, but close inspection finds many

models are composed of incoherent patches or isolated faces (see Figure 5.5) In contrast,

3D printing models with high numbers of components in Thingi10K are typically by

design, with the base shape naturally decomposing into smaller components.

The genus distribution of our Thingi10K dataset is similar to MPZ14, but our dataset

covers a larger range of genus, with the highest genus over 60 times larger than in MPZ14
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Figure 5.6: Models with the highest genus from each dataset.

(see Figure 5.6). To avoid confusion, we limit the genus comparison to single-component,

closed and manifold meshes. Zero of the ShapeNetCore models meet this criteria.

Mesh quality

Mesh qualities of a dataset play a major role in determining its usability and repre-

sentation of models in the wild. For example, degenerate or sliver triangles will cause

poor accuracy in non-robust finite element simulations, and fragile volumetric meshing

routines will fail in the presence of self-intersections. It is crucial to understand the

mesh quality of real-world input data in order to design robust and practical algorithms.

Existing datasets often focus on high-level properties and provide little insight on their

mesh qualities. Our analysis aims to fill this gap.

We analyze 13 mesh quality measurements:

Closed: Every edge is adjacent to 2 or more faces.

Oriented: Every non-boundary edge has zero signed incidence. In other words, the

number of positively oriented incident faces must equal to the number of negatively

oriented incident faces.
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Figure 5.7: MPZ14 models are “too clean,” whereas ShapeNetCore are unrealistically
corrupted in the context of 3D printing.
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Figure 5.8: Percentile plots mesh quality measures.

No isolated vertices: All vertices are adjacent to at least one face.

No duplicated faces: There does not exist a pair of faces sharing the same set of

vertices.

Vertex-manifold: The one-ring neighborhood of every vertex is a topological disc.

Edge-manifold: Every non-boundary edge must be incident to exactly two faces.

No degeneracy: All faces must have non-collinear vertices. Degeneracy can be checked

with exact predicates [113].

No self-intersection: The intersection of any two faces is either empty, a shared vertex,

or a shared edge. Exact predicates are necessary to ensure correctness.

No coplanar intersections: No two faces are coplanar and overlapping. This is a

strictly weaker condition than “no self-intersection.”

Piecewise-constant winding number (PWN): The winding number field at any

non-mesh point is piece-wise constant ([144]).

Solid: The input mesh must be a valid boundary of a subspace of R3. Specifically, it

must be PWN, self-intersection free and induce a {0, 1} winding number field.

Aspect ratio: The aspect ratio of a triangle is the ratio of its circumradius to the

diameter of its incircle.

Intrinsically Delaunay: All edges must have non-negative cotangent weights [51].

Figure 5.7 shows the percentage of models that satisfy each of the first 11 quality mea-
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Figure 5.9: Models with tag math (left), sculpture (middle) and scan (right).
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Figure 5.10: Thingi10K user tags highlight the dataset’s variety.

sures. Figure 5.8 illustrates the maximum, average aspect ratio and the fraction of

non-intrinsic Delaunay edges over all models in each dataset. Our analysis shows that

MPZ14 has “unrealistically pristine” mesh quality, whereas ShapeNetCore exhibits mesh

quality issues not common to 3D printed models, reflecting that it is gathered from a

larger space of 3D models.

MPZ14 has perfect mesh quality according to seven different measures. In particular, all

models are manifold, oriented and degeneracy-free. Because many geometry processing

algorithms do not require the input model to be closed or self-intersection free, data

from MPZ14 are perfect as proof-of-concept examples. However, their high quality is

due to the fact that models were selected not on merits of their shape, functionality or

aesthetics, but rather because they meet certain quality criteria or have been sanitized.

On the other hand, ShapeNetCore has very poor mesh quality according to 6 measures

in Figure 5.7. Its maximum and average triangle aspect ratios are visibly worse than

Thingi10K and MPZ14. This is partially due to the fact that these data are collected
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directly from the internet, where models were not necessary designed for fabrication

purposes. Many existing learning algorithms side-step the quality issues by transforming

boundary representations to depth images or bounding box hierarchies [63]. Performing

geometry processing algorithms directly on these models is very hard due to poor mesh

quality.

In contrast, our dataset offers a curated collection of 3D meshes with a large range of

mesh qualities. It contains a significant number of high quality models as well as a non-

negligible proportion of models with common mesh quality problems. Due to its large

quantity, our dataset is ideal for stress-testing purposes where one can easily select a

subset of the data that matches any combination of mesh criteria (Section 5.4). Because

all data are sampled from real-world models designed to be 3D printed, our dataset

provides an unbiased view of the mesh qualities used in practice. Our analysis could

be used to gauge the restrictions posed by various assumptions on mesh quality. For

example, an algorithm assuming self-intersection-free input would automatically exclude

45% of inputs, which may not be acceptable in a real-world settings.

5.3.2 Contextual information

Each thing in our dataset is annotated by its original designer. Thingiverse supports

three types of annotations: category, subcategory and tags. The first two must be

selected from a predefined list of categories, and the last one is a set of free-form texts

created by the user. A total of 4892 distinct tags are used in our dataset. Figure 5.10

illustrates the most frequently used tags.

Unlike ShapeNet [35], which focuses on providing categorical annotations specific to ob-

ject classification purposes, our dataset comes with a rich and diverse set of original tags

ranging from the semantics of a 3D model to the printer/material used for fabrication.

For example, Figure 5.9 shows all models with tags math, sculpture and scan.

When combined with geometric analysis, our annotations reveal interesting insights un-
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Figure 5.11: A soap bubble chair is decomposed and re-oriented by its designer for
support-free 3D printing.
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Figure 5.12: All 10,000 models come under open source licenses.

available from previous works. For example, a simple frequency analysis indicates Open-

SCAD is the most popular modeling tool used by Thingiverse users. Our dataset shows

that 98% of OpenSCAD models are closed, while only 91% of SketchUp models and 85%

of TinkerCAD models are closed

Furthermore, due its fabrication-focused nature, many uploaded meshes are “print-

ready” in the sense that their orientation and decompositions are designed for optimal

printing outcome (See figure 5.11). Recent papers have tried to solve problems such as

decomposing a large model to fit in the print volume and finding ideal print orienta-

tions [37]. The Thingi10K models, by their intrinsic nature of being successful prints,

represent ground truth data.

Lastly, all things are published under one of the open source licenses. Figure 5.12 illus-

trates all licenses supported by Thingiverse.
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5.4 Online query interface

To facilitate our goal of understanding 3D printed shapes, we provide an online query

interface, ten-thousand-models.appspot.com for anyone to explore and dissect the

dataset. The query terms may consist of one or more clauses. Each clause specifies a

single search condition, e.g. “genus¿100”. Multiple clauses are separated by commas,

and the search engine retrieves models that satisfy all search conditions.

Our query interface is very useful in dissecting the dataset based on mesh quality mea-

sures. For example, all single-component, manifold solid meshes without self-intersection

and degeneracies can be obtained with the query term “num component=1, is manifold,

is solid, without self-intersection, without degeneracy”. All meshes satisfy-

ing these criteria are listed on the result page (Figure 5.2). We also provide an auto-

generated python script to batch download results for custom search terms.

Users of our online query interface can view all contextual and geometry model details

(Figure 5.13). In particular, we respect the copyright of each model. On the model detail

page, we clearly indicate the original author and open source licence of each model. We

also provide links to the original Thingiverse pages where the raw data can be obtained.

To demonstrate the power of our online query interface, Figure 5.14 shows some inter-

esting search results and the query used.

5.5 Conclusion

In this work, we present a large-scale annotated 3D dataset based on models used in 3D

printing applications. Our dataset consists of 10,000 meshes crawled systematically from

Thingiverse. We analyze both the contextual and geometric information of our dataset

and compare with two existing 3D model datasets. Our analysis shows our data covers

a large range of categories and provides a balanced representation of real-world data in
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Figure 5.13: Both contextual and geometric information of each model are available on
its model detail page.

terms of mesh complexity and quality. The entire dataset and our analysis are freely

available to the public, and we provide a query interface to facilitate the exploration and

dissection of our dataset.

Our dataset could be used as input for stress-testing purposes as well as ground truth

for learning algorithms. As for future work, we plan to update and increase the size

of the dataset over time to reflect the fast-evolving nature of the 3D printing commu-

nity. Specifically, we would like to include all featured things from Thingiverse and add

support for users to suggest additional models for inclusion. We hope our dataset and

the accompanying analysis provide an informative summary of 3D printing models and

clarify the requirements for geometry processing algorithms to be robust.
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genus>100 num components>100

tag:sculpture, genus>1

tag:math, genus>=1 tag:openscad, is not closedtag:tinkercad, # component>1 tag:sketchup, is solid

not orientable, num faces>50000

tag:scan, is closed

is solid, is not manifold

Figure 5.14: Our web interface returns subsets of the Thingi10K dataset via text queries.
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Chapter 6

Conclusion

In this thesis, I present four different works under the unifying theme of pushing the

limit of 3D printing technologies.

In Chapter 2, we tackle the topic of printability. While traditional finite element analysis

could be used to model elastic deformation under a fixed load distribution, the usage

cases for 3D printed shapes are complex and unpredictable. Our algorithm computes

the worst case load distribution that causes the most damage to a given shape. The

resulting weakness highlights the problematic regions and could be used as guidance for

subsequent modification.

Chapter 3 presents a family of tilable and printable patterns called “Elastic Textures” to

achieve a large range of isotropic material properties. We also provides an entire pipeline

for designing spatially tiling such “Elastic Textures” to achieve a target deformation

behavior.

Lastly, many high-level geometry processing tasks depends on the robustness of low-

level operations. This is especially true for 3D printing applications where the input 3D

models deviates significantly in complexity and quality from standard 3D models used

in computer graphics research (Chapter 5). In Chapter 4 we describe a robust, general
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and variadic algorithm for carrying out a family of solid geometry operations. We test

our method on 10,000 models “wild” models crawled from Thingiverse, a popular shape

repository.

6.1 Unsolved problems and future works

While 3D printing technologies have shown great promises in many industry sectors,

we have encountered several shortcomings that may limit or prevent them from being

reliable or be applied in large scale. These shortcomings serve as the ground for future

research and development directions.

6.1.1 Material properties

Due to the nature of the fabrication process, 3D printed materials are often very anisotropic.

Most published works on computational fabrication in computer graphics assume isotropic

material properties for simplicity. Extending these works to handle anisotropic material

often increases the complexity of the solution and sometimes invalidates key assumptions

that render the solution incorrect.

6.1.2 Accuracy

All fabrication methods come with a margin of error. In the case of 3D printing, the

margin of error is printer-dependent and changes over time. 3D printer venders often

specify the theoretical minimum resolution (e.g. layer thickness, laser radius etc.) of

their products, but it has very little to do with the practical resolution and accuracy.

Despite that inaccuracy in geometry may significantly change the solution, it is rarely

considered in computational fabrication research.
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6.1.3 Volumetric meshing

A large number of published work, including ours, relies on finite element simulation to

analyze the physical properties 3D printed models. However, how to obtain the volumet-

ric mesh for such simulation is rarely discussed. The state-of-the-art tetrahedral mesh

generator, TetGen, falls short when confronted with models used in everyday practice by

the 3D printing community. Without a robust method for generating tetrahedron mesh,

many algorithms for 3D model analysis and computational design cannot yet match the

need from 3D printing industry.

6.1.4 Large scale validation

Although the price for 3D printing has been falling continuously, it is still very hard to

conduct large scale physical validation experiments due to the time and efforts involved.

Without such large scale tests, it is often difficult to check the robustness and generality

of different approaches.
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structural strength of 3d printable objects. ACM Trans. Graph., 2012.

[122] K. Sugihara and M. Iri. Construction of the Voronoi diagram for one million

generators in single-precision arithmetic. Proc. of the IEEE, 1992.

[123] A. Telea and A. Jalba. Voxel-based assessment of printability of 3d shapes. In

Proceedings of the 10th international conference on Mathematical morphology and

its applications to image and signal processing, ISMM’11, pages 393–404, Berlin,

Heidelberg, 2011. Springer-Verlag.

150

http://help.solidworks.com/2011/english/SolidWorks/cworks/LegacyHelp/Simulation/Materials/Material_models/Linear_Elastic_Orthotropic_Model.htm
http://help.solidworks.com/2011/english/SolidWorks/cworks/LegacyHelp/Simulation/Materials/Material_models/Linear_Elastic_Orthotropic_Model.htm
http://help.solidworks.com/2011/english/SolidWorks/cworks/LegacyHelp/Simulation/Materials/Material_models/Linear_Elastic_Orthotropic_Model.htm


[124] W. C. Thibault and B. F. Naylor. Set operations on polyhedra using binary space

partitioning trees. In Proc. SIGGRAPH, 1987.

[125] S. Timoshenko and S. Woinowsky-Krieger. Theory of plates and shells. Engineering

Societies Monographs, New York: McGraw-Hill, 1940.

[126] S. Torquato. Random heterogeneous materials: microstructure and macroscopic

properties, volume 16. Springer, 2002.

[127] S. Torquato and A. Donev. Minimal surfaces and multifunctionality. Proceedings

of the Royal Society of London. Series A: Mathematical, Physical and Engineering

Sciences, 460(2047):1849–1856, 2004.

[128] S. Torquato, S. Hyun, and A. Donev. Multifunctional composites: optimizing

microstructures for simultaneous transport of heat and electricity. Physical review

letters, 89(26):266601, 2002.

[129] S. Torquato, S. Hyun, and A. Donev. Optimal design of manufacturable three-

dimensional composites with multifunctional characteristics. Journal of Applied

Physics, 94(9):5748–5755, 2003.

[130] G. Turk. The stanford bunny .

http://www.cc.gatech.edu/˜turk/bunny/bunny.html, 2000.

[131] N. Umetani, T. Igarashi, and N. J. Mitra. Guided exploration of physically valid

shapes for furniture design. ACM Trans. Graph., 31(4):86:1–86:11, July 2012.

[132] N. Umetani and R. Schmidt. Cross-sectional structural analysis for 3d printing

optimization. In SIGAsia Technical Briefs, 2013.

[133] G. Varadhan, S. Krishnan, T. Sriram, and D. Manocha. Topology preserving

surface extraction using adaptive subdivision. In Proc. SGP, 2004.

[134] R. C. Veltkamp, S. van Jole, H. Drira, B. B. Amor, M. Daoudi, H. Li, L. Chen,

P. Claes, D. Smeets, J. Hermans, et al. Shrec’11 track: 3d face models retrieval.

151



In 3DOR, 2011.
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