default search action
Joris M. Mooij
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c42]Philip A. Boeken, Onno Zoeter, Joris M. Mooij:
Evaluating and Correcting Performative Effects of Decision Support Systems via Causal Domain Shift. CLeaR 2024: 551-569 - [i38]Leihao Chen, Onno Zoeter, Joris M. Mooij:
Modeling Latent Selection with Structural Causal Models. CoRR abs/2401.06925 (2024) - [i37]Philip A. Boeken, Onno Zoeter, Joris M. Mooij:
Evaluating and Correcting Performative Effects of Decision Support Systems via Causal Domain Shift. CoRR abs/2403.00886 (2024) - [i36]Teodora Pandeva, Martijs Jonker, Leendert Hamoen, Joris M. Mooij, Patrick Forré:
Robust Multi-view Co-expression Network Inference. CoRR abs/2409.19991 (2024) - 2023
- [c41]Philip A. Boeken, Noud de Kroon, Mathijs de Jong, Joris M. Mooij, Onno Zoeter:
Correcting for selection bias and missing response in regression using privileged information. UAI 2023: 195-205 - [c40]Tom Claassen, Joris M. Mooij:
Establishing Markov equivalence in cyclic directed graphs. UAI 2023: 433-442 - [i35]Tom Claassen, Joris M. Mooij:
Establishing Markov Equivalence in Cyclic Directed Graphs. CoRR abs/2309.03092 (2023) - 2022
- [c39]Arnoud A. W. M. de Kroon, Joris M. Mooij, Danielle Belgrave:
Causal Bandits without prior knowledge using separating sets. CLeaR 2022: 407-427 - [c38]Philip Versteeg, Joris M. Mooij, Cheng Zhang:
Local Constraint-Based Causal Discovery under Selection Bias. CLeaR 2022: 840-860 - [c37]Tineke Blom, Joris M. Mooij:
Robustness of model predictions under extension. UAI 2022: 213-222 - [i34]Philip Versteeg, Cheng Zhang, Joris M. Mooij:
Local Constraint-Based Causal Discovery under Selection Bias. CoRR abs/2203.01848 (2022) - 2021
- [j12]Tineke Blom, Mirthe M. van Diepen, Joris M. Mooij:
Conditional independences and causal relations implied by sets of equations. J. Mach. Learn. Res. 22: 178:1-178:62 (2021) - [c36]Alexander Marx, Arthur Gretton, Joris M. Mooij:
A weaker faithfulness assumption based on triple interactions. UAI 2021: 451-460 - [c35]Philip A. Boeken, Joris M. Mooij:
A Bayesian nonparametric conditional two-sample test with an application to Local Causal Discovery. UAI 2021: 1565-1575 - [i33]Tineke Blom, Joris M. Mooij:
Causality and independence in perfectly adapted dynamical systems. CoRR abs/2101.11885 (2021) - [i32]Maximilian Ilse, Patrick Forré, Max Welling, Joris M. Mooij:
Efficient Causal Inference from Combined Observational and Interventional Data through Causal Reductions. CoRR abs/2103.04786 (2021) - 2020
- [j11]Joris M. Mooij, Sara Magliacane, Tom Claassen:
Joint Causal Inference from Multiple Contexts. J. Mach. Learn. Res. 21: 99:1-99:108 (2020) - [c34]Joris M. Mooij, Tom Claassen:
Constraint-Based Causal Discovery using Partial Ancestral Graphs in the presence of Cycles. UAI 2020: 1159-1168 - [i31]Joris M. Mooij, Tom Claassen:
Constraint-Based Causal Discovery In The Presence Of Cycles. CoRR abs/2005.00610 (2020) - [i30]Tineke Blom, Mirthe M. van Diepen, Joris M. Mooij:
Conditional Independences and Causal Relations implied by Sets of Equations. CoRR abs/2007.07183 (2020) - [i29]Arnoud A. W. M. de Kroon, Danielle Belgrave, Joris M. Mooij:
Causal Discovery for Causal Bandits utilizing Separating Sets. CoRR abs/2009.07916 (2020) - [i28]Alexander Marx, Arthur Gretton, Joris M. Mooij:
A Weaker Faithfulness Assumption based on Triple Interactions. CoRR abs/2010.14265 (2020) - [i27]Tineke Blom, Joris M. Mooij:
Robustness of Model Predictions under Extension. CoRR abs/2012.04723 (2020)
2010 – 2019
- 2019
- [c33]Philip Versteeg, Joris M. Mooij:
Boosting Local Causal Discovery in High-Dimensional Expression Data. BIBM 2019: 2599-2604 - [c32]Patrick Forré, Joris M. Mooij:
Causal Calculus in the Presence of Cycles, Latent Confounders and Selection Bias. UAI 2019: 71-80 - [c31]Tineke Blom, Stephan Bongers, Joris M. Mooij:
Beyond Structural Causal Models: Causal Constraints Models. UAI 2019: 585-594 - [i26]Patrick Forré, Joris M. Mooij:
Causal Calculus in the Presence of Cycles, Latent Confounders and Selection Bias. CoRR abs/1901.00433 (2019) - [i25]Philip Versteeg, Joris M. Mooij:
Boosting Local Causal Discovery in High-Dimensional Expression Data. CoRR abs/1910.02505 (2019) - 2018
- [c30]Sara Magliacane, Thijs van Ommen, Tom Claassen, Stephan Bongers, Philip Versteeg, Joris M. Mooij:
Domain Adaptation by Using Causal Inference to Predict Invariant Conditional Distributions. NeurIPS 2018: 10869-10879 - [c29]Paul K. Rubenstein, Stephan Bongers, Joris M. Mooij, Bernhard Schölkopf:
From Deterministic ODEs to Dynamic Structural Causal Models. UAI 2018: 114-123 - [c28]Patrick Forré, Joris M. Mooij:
Constraint-based Causal Discovery for Non-Linear Structural Causal Models with Cycles and Latent Confounders. UAI 2018: 269-278 - [c27]Tineke Blom, Anna Klimovskaia, Sara Magliacane, Joris M. Mooij:
Causal Discovery in the Presence of Measurement Error. UAI 2018: 570-579 - [i24]Stephan Bongers, Joris M. Mooij:
From Random Differential Equations to Structural Causal Models: the stochastic case. CoRR abs/1803.08784 (2018) - [i23]Tineke Blom, Joris M. Mooij:
Generalized Strucutral Causal Models. CoRR abs/1805.06539 (2018) - [i22]Patrick Forré, Joris M. Mooij:
Constraint-based Causal Discovery for Non-Linear Structural Causal Models with Cycles and Latent Confounders. CoRR abs/1807.03024 (2018) - [i21]Thijs van Ommen, Joris M. Mooij:
Algebraic Equivalence of Linear Structural Equation Models. CoRR abs/1807.03527 (2018) - [i20]Tineke Blom, Anna Klimovskaia, Sara Magliacane, Joris M. Mooij:
An Upper Bound for Random Measurement Error in Causal Discovery. CoRR abs/1810.07973 (2018) - 2017
- [c26]Christos Louizos, Uri Shalit, Joris M. Mooij, David A. Sontag, Richard S. Zemel, Max Welling:
Causal Effect Inference with Deep Latent-Variable Models. NIPS 2017: 6446-6456 - [c25]Thijs van Ommen, Joris M. Mooij:
Algebraic Equivalence Class Selection for Linear Structural Equation Models. UAI 2017 - [c24]Paul K. Rubenstein, Sebastian Weichwald, Stephan Bongers, Joris M. Mooij, Dominik Janzing, Moritz Grosse-Wentrup, Bernhard Schölkopf:
Causal Consistency of Structural Equation Models. UAI 2017 - [e2]Frederick Eberhardt, Elias Bareinboim, Marloes H. Maathuis, Joris M. Mooij, Ricardo Silva:
Proceedings of the UAI 2016 Workshop on Causation: Foundation to Application co-located with the 32nd Conference on Uncertainty in Artificial Intelligence (UAI 2016), Jersey City, USA, June 29, 2016. CEUR Workshop Proceedings 1792, CEUR-WS.org 2017 [contents] - [i19]Christos Louizos, Uri Shalit, Joris M. Mooij, David A. Sontag, Richard S. Zemel, Max Welling:
Causal Effect Inference with Deep Latent-Variable Models. CoRR abs/1705.08821 (2017) - [i18]Paul K. Rubenstein, Sebastian Weichwald, Stephan Bongers, Joris M. Mooij, Dominik Janzing, Moritz Grosse-Wentrup, Bernhard Schölkopf:
Causal Consistency of Structural Equation Models. CoRR abs/1707.00819 (2017) - [i17]Sara Magliacane, Thijs van Ommen, Tom Claassen, Stephan Bongers, Philip Versteeg, Joris M. Mooij:
Causal Transfer Learning. CoRR abs/1707.06422 (2017) - 2016
- [j10]Joris M. Mooij, Jonas Peters, Dominik Janzing, Jakob Zscheischler, Bernhard Schölkopf:
Distinguishing Cause from Effect Using Observational Data: Methods and Benchmarks. J. Mach. Learn. Res. 17: 32:1-32:102 (2016) - [c23]Sara Magliacane, Tom Claassen, Joris M. Mooij:
Ancestral Causal Inference. NIPS 2016: 4466-4474 - [i16]Sara Magliacane, Tom Claassen, Joris M. Mooij:
Ancestral Causal Inference. CoRR abs/1606.07035 (2016) - [i15]Paul K. Rubenstein, Stephan Bongers, Joris M. Mooij, Bernhard Schölkopf:
From Deterministic ODEs to Dynamic Structural Causal Models. CoRR abs/1608.08028 (2016) - [i14]Stephan Bongers, Jonas Peters, Bernhard Schölkopf, Joris M. Mooij:
Structural Causal Models: Cycles, Marginalizations, Exogenous Reparametrizations and Reductions. CoRR abs/1611.06221 (2016) - [i13]Sara Magliacane, Tom Claassen, Joris M. Mooij:
Joint Causal Inference on Observational and Experimental Datasets. CoRR abs/1611.10351 (2016) - 2015
- [j9]Christiaan A. de Leeuw, Joris M. Mooij, Tom Heskes, Danielle Posthuma:
MAGMA: Generalized Gene-Set Analysis of GWAS Data. PLoS Comput. Biol. 11(4) (2015) - [c22]Jerome Cremers, Joris M. Mooij:
An Empirical Study of the Simplest Causal Prediction Algorithm. ACI@UAI 2015: 30-39 - 2014
- [j8]Jonas Peters, Joris M. Mooij, Dominik Janzing, Bernhard Schölkopf:
Causal discovery with continuous additive noise models. J. Mach. Learn. Res. 15(1): 2009-2053 (2014) - [c21]Nicholas Cornia, Joris M. Mooij:
Type-II Errors of Independence Tests Can Lead to Arbitrarily Large Errors in Estimated Causal Effects: An Illustrative Example. CI@UAI 2014: 35-42 - [e1]Joris M. Mooij, Dominik Janzing, Jonas Peters, Tom Claassen, Antti Hyttinen:
Proceedings of the UAI 2014 Workshop Causal Inference: Learning and Prediction co-located with 30th Conference on Uncertainty in Artificial Intelligence (UAI 2014), Quebec City, Canada, July 27, 2014. CEUR Workshop Proceedings 1274, CEUR-WS.org 2014 [contents] - [i12]Joris M. Mooij, Dominik Janzing, Bernhard Schölkopf:
From Ordinary Differential Equations to Structural Causal Models: the deterministic case. CoRR abs/1408.2063 (2014) - [i11]Joris M. Mooij, Jonas Peters, Dominik Janzing, Jakob Zscheischler, Bernhard Schölkopf:
Distinguishing cause from effect using observational data: methods and benchmarks. CoRR abs/1412.3773 (2014) - 2013
- [c20]Bernhard Schölkopf, Dominik Janzing, Jonas Peters, Eleni Sgouritsa, Kun Zhang, Joris M. Mooij:
Semi-supervised Learning in Causal and Anticausal Settings. Empirical Inference 2013: 129-141 - [c19]Tom Claassen, Joris M. Mooij, Tom Heskes:
Learning Sparse Causal Models is not NP-hard. UAI 2013 - [c18]Joris M. Mooij, Tom Heskes:
Cyclic Causal Discovery from Continuous Equilibrium Data. UAI 2013 - [c17]Joris M. Mooij, Dominik Janzing, Bernhard Schölkopf:
From Ordinary Differential Equations to Structural Causal Models: the deterministic case. UAI 2013 - [i10]Joris M. Mooij, Dominik Janzing, Bernhard Schölkopf:
From Ordinary Differential Equations to Structural Causal Models: the deterministic case. CoRR abs/1304.7920 (2013) - [i9]Tom Claassen, Joris M. Mooij, Tom Heskes:
Learning Sparse Causal Models is not NP-hard. CoRR abs/1309.6824 (2013) - [i8]Joris M. Mooij, Tom Heskes:
Cyclic Causal Discovery from Continuous Equilibrium Data. CoRR abs/1309.6849 (2013) - 2012
- [j7]Dominik Janzing, Joris M. Mooij, Kun Zhang, Jan Lemeire, Jakob Zscheischler, Povilas Daniusis, Bastian Steudel, Bernhard Schölkopf:
Information-geometric approach to inferring causal directions. Artif. Intell. 182-183: 1-31 (2012) - [c16]Bernhard Schölkopf, Dominik Janzing, Jonas Peters, Eleni Sgouritsa, Kun Zhang, Joris M. Mooij:
On causal and anticausal learning. ICML 2012 - [i7]Jonas Peters, Joris M. Mooij, Dominik Janzing, Bernhard Schölkopf:
Identifiability of Causal Graphs using Functional Models. CoRR abs/1202.3757 (2012) - [i6]Povilas Daniusis, Dominik Janzing, Joris M. Mooij, Jakob Zscheischler, Bastian Steudel, Kun Zhang, Bernhard Schölkopf:
Inferring deterministic causal relations. CoRR abs/1203.3475 (2012) - [i5]Dominik Janzing, Jonas Peters, Joris M. Mooij, Bernhard Schölkopf:
Identifying confounders using additive noise models. CoRR abs/1205.2640 (2012) - [i4]Joris M. Mooij, Hilbert J. Kappen:
Sufficient conditions for convergence of Loopy Belief Propagation. CoRR abs/1207.1405 (2012) - 2011
- [j6]Suzanna Martens, Joris M. Mooij, N. Jeremy Hill, Jason Farquhar, Bernhard Schölkopf:
A Graphical Model Framework for Decoding in the Visual ERP-Based BCI Speller. Neural Comput. 23(1): 160-182 (2011) - [c15]John A. Quinn, Joris M. Mooij, Tom Heskes, Michael Biehl:
Learning of causal relations. ESANN 2011 - [c14]Oliver Stegle, Christoph Lippert, Joris M. Mooij, Neil D. Lawrence, Karsten M. Borgwardt:
Efficient inference in matrix-variate Gaussian models with \iid observation noise. NIPS 2011: 630-638 - [c13]Joris M. Mooij, Dominik Janzing, Tom Heskes, Bernhard Schölkopf:
On Causal Discovery with Cyclic Additive Noise Models. NIPS 2011: 639-647 - [c12]Jonas Peters, Joris M. Mooij, Dominik Janzing, Bernhard Schölkopf:
Identifiability of Causal Graphs using Functional Models. UAI 2011: 589-598 - 2010
- [j5]Joris M. Mooij:
libDAI: A Free and Open Source C++ Library for Discrete Approximate Inference in Graphical Models. J. Mach. Learn. Res. 11: 2169-2173 (2010) - [j4]Gustavo Camps-Valls, Joris M. Mooij, Bernhard Schölkopf:
Remote Sensing Feature Selection by Kernel Dependence Measures. IEEE Geosci. Remote. Sens. Lett. 7(3): 587-591 (2010) - [c11]Joris M. Mooij, Oliver Stegle, Dominik Janzing, Kun Zhang, Bernhard Schölkopf:
Probabilistic latent variable models for distinguishing between cause and effect. NIPS 2010: 1687-1695 - [c10]Povilas Daniusis, Dominik Janzing, Joris M. Mooij, Jakob Zscheischler, Bastian Steudel, Kun Zhang, Bernhard Schölkopf:
Inferring deterministic causal relations. UAI 2010: 143-150 - [c9]Joris M. Mooij, Dominik Janzing:
Distinguishing between cause and effect. NIPS Causality: Objectives and Assessment 2010: 147-156
2000 – 2009
- 2009
- [c8]Joris M. Mooij, Dominik Janzing, Jonas Peters, Bernhard Schölkopf:
Regression by dependence minimization and its application to causal inference in additive noise models. ICML 2009: 745-752 - [c7]Dominik Janzing, Jonas Peters, Joris M. Mooij, Bernhard Schölkopf:
Identifying confounders using additive noise models. UAI 2009: 249-257 - 2008
- [c6]Patrik O. Hoyer, Dominik Janzing, Joris M. Mooij, Jonas Peters, Bernhard Schölkopf:
Nonlinear causal discovery with additive noise models. NIPS 2008: 689-696 - [c5]Joris M. Mooij, Hilbert J. Kappen:
Bounds on marginal probability distributions. NIPS 2008: 1105-1112 - 2007
- [j3]Joris M. Mooij, Hilbert J. Kappen:
Loop Corrections for Approximate Inference on Factor Graphs. J. Mach. Learn. Res. 8: 1113-1143 (2007) - [j2]Vicenç Gómez, Joris M. Mooij, Hilbert J. Kappen:
Truncating the Loop Series Expansion for Belief Propagation. J. Mach. Learn. Res. 8: 1987-2016 (2007) - [j1]Joris M. Mooij, Hilbert J. Kappen:
Sufficient Conditions for Convergence of the Sum-Product Algorithm. IEEE Trans. Inf. Theory 53(12): 4422-4437 (2007) - [c4]Bastian Wemmenhove, Joris M. Mooij, Wim Wiegerinck, Martijn A. R. Leisink, Hilbert J. Kappen, Jan P. Neijt:
Inference in the Promedas Medical Expert System. AIME 2007: 456-460 - [c3]Joris M. Mooij, Bastian Wemmenhove, Bert Kappen, Tommaso Rizzo:
Loop Corrected Belief Propagation. AISTATS 2007: 331-338 - 2006
- [i3]Joris M. Mooij, Bert Kappen:
Loop corrections for approximate inference. CoRR abs/cs/0612030 (2006) - [i2]Vicenç Gómez, Joris M. Mooij, Hilbert J. Kappen:
Truncating the loop series expansion for Belief Propagation. CoRR abs/cs/0612109 (2006) - 2005
- [c2]Joris M. Mooij, Hilbert J. Kappen:
Sufficient Conditions for Convergence of Loopy Belief Propagation. UAI 2005: 396-403 - [i1]Joris M. Mooij, Hilbert J. Kappen:
Sufficient conditions for convergence of the Sum-Product Algorithm. CoRR abs/cs/0504030 (2005) - 2004
- [c1]Joris M. Mooij, Hilbert J. Kappen:
Validity Estimates for Loopy Belief Propagation on Binary Real-world Networks. NIPS 2004: 945-952
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-22 20:09 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint