default search action
Max Simchowitz
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j3]Max Simchowitz, Aleksandrs Slivkins:
Exploration and Incentives in Reinforcement Learning. Oper. Res. 72(3): 983-998 (2024) - [c46]Adam Block, Dylan J. Foster, Akshay Krishnamurthy, Max Simchowitz, Cyril Zhang:
Butterfly Effects of SGD Noise: Error Amplification in Behavior Cloning and Autoregression. ICLR 2024 - [c45]Lirui Wang, Kaiqing Zhang, Allan Zhou, Max Simchowitz, Russ Tedrake:
Robot Fleet Learning via Policy Merging. ICLR 2024 - [c44]Thomas Cohn, Seiji Shaw, Max Simchowitz, Russ Tedrake:
Constrained Bimanual Planning with Analytic Inverse Kinematics. ICRA 2024: 6935-6942 - [i52]Boyuan Chen, Diego Marti Monso, Yilun Du, Max Simchowitz, Russ Tedrake, Vincent Sitzmann:
Diffusion Forcing: Next-token Prediction Meets Full-Sequence Diffusion. CoRR abs/2407.01392 (2024) - [i51]Allen Z. Ren, Justin Lidard, Lars Ankile, Anthony Simeonov, Pulkit Agrawal, Anirudha Majumdar, Benjamin Burchfiel, Hongkai Dai, Max Simchowitz:
Diffusion Policy Policy Optimization. CoRR abs/2409.00588 (2024) - 2023
- [c43]Adam Block, Max Simchowitz, Alexander Rakhlin:
Oracle-Efficient Smoothed Online Learning for Piecewise Continuous Decision Making. COLT 2023: 1618-1665 - [c42]Max Simchowitz, Abhishek Gupta, Kaiqing Zhang:
Tackling Combinatorial Distribution Shift: A Matrix Completion Perspective. COLT 2023: 3356-3468 - [c41]Aviv Netanyahu, Abhishek Gupta, Max Simchowitz, Kaiqing Zhang, Pulkit Agrawal:
Learning to Extrapolate: A Transductive Approach. ICLR 2023 - [c40]Daniel Pfrommer, Max Simchowitz, Tyler Westenbroek, Nikolai Matni, Stephen Tu:
The Power of Learned Locally Linear Models for Nonlinear Policy Optimization. ICML 2023: 27737-27821 - [c39]Max Simchowitz, Anurag Ajay, Pulkit Agrawal, Akshay Krishnamurthy:
Statistical Learning under Heterogenous Distribution Shift. ICML 2023: 31800-31851 - [c38]Adam Block, Ali Jadbabaie, Daniel Pfrommer, Max Simchowitz, Russ Tedrake:
Provable Guarantees for Generative Behavior Cloning: Bridging Low-Level Stability and High-Level Behavior. NeurIPS 2023 - [c37]Adam Block, Max Simchowitz, Russ Tedrake:
Smoothed Online Learning for Prediction in Piecewise Affine Systems. NeurIPS 2023 - [c36]Chuning Zhu, Max Simchowitz, Siri Gadipudi, Abhishek Gupta:
RePo: Resilient Model-Based Reinforcement Learning by Regularizing Posterior Predictability. NeurIPS 2023 - [c35]Thomas Cohn, Mark Petersen, Max Simchowitz, Russ Tedrake:
Non-Euclidean Motion Planning with Graphs of Geodesically-Convex Sets. Robotics: Science and Systems 2023 - [i50]Adam Block, Max Simchowitz, Russ Tedrake:
Smoothed Online Learning for Prediction in Piecewise Affine Systems. CoRR abs/2301.11187 (2023) - [i49]Adam Block, Alexander Rakhlin, Max Simchowitz:
Oracle-Efficient Smoothed Online Learning for Piecewise Continuous Decision Making. CoRR abs/2302.05430 (2023) - [i48]Max Simchowitz, Anurag Ajay, Pulkit Agrawal, Akshay Krishnamurthy:
Statistical Learning under Heterogenous Distribution Shift. CoRR abs/2302.13934 (2023) - [i47]Aviv Netanyahu, Abhishek Gupta, Max Simchowitz, Kaiqing Zhang, Pulkit Agrawal:
Learning to Extrapolate: A Transductive Approach. CoRR abs/2304.14329 (2023) - [i46]Thomas Cohn, Mark Petersen, Max Simchowitz, Russ Tedrake:
Non-Euclidean Motion Planning with Graphs of Geodesically-Convex Sets. CoRR abs/2305.06341 (2023) - [i45]Daniel Pfrommer, Max Simchowitz, Tyler Westenbroek, Nikolai Matni, Stephen Tu:
The Power of Learned Locally Linear Models for Nonlinear Policy Optimization. CoRR abs/2305.09619 (2023) - [i44]Max Simchowitz, Abhishek Gupta, Kaiqing Zhang:
Tackling Combinatorial Distribution Shift: A Matrix Completion Perspective. CoRR abs/2307.06457 (2023) - [i43]Adam Block, Daniel Pfrommer, Max Simchowitz:
Imitating Complex Trajectories: Bridging Low-Level Stability and High-Level Behavior. CoRR abs/2307.14619 (2023) - [i42]Chuning Zhu, Max Simchowitz, Siri Gadipudi, Abhishek Gupta:
RePo: Resilient Model-Based Reinforcement Learning by Regularizing Posterior Predictability. CoRR abs/2309.00082 (2023) - [i41]Thomas Cohn, Seiji Shaw, Max Simchowitz, Russ Tedrake:
Constrained Bimanual Planning with Analytic Inverse Kinematics. CoRR abs/2309.08770 (2023) - [i40]Lirui Wang, Kaiqing Zhang, Allan Zhou, Max Simchowitz, Russ Tedrake:
Fleet Policy Learning via Weight Merging and An Application to Robotic Tool-Use. CoRR abs/2310.01362 (2023) - [i39]Adam Block, Dylan J. Foster, Akshay Krishnamurthy, Max Simchowitz, Cyril Zhang:
Butterfly Effects of SGD Noise: Error Amplification in Behavior Cloning and Autoregression. CoRR abs/2310.11428 (2023) - 2022
- [c34]Andrew J. Wagenmaker, Max Simchowitz, Kevin Jamieson:
Beyond No Regret: Instance-Dependent PAC Reinforcement Learning. COLT 2022: 358-418 - [c33]Hyung Ju Suh, Max Simchowitz, Kaiqing Zhang, Russ Tedrake:
Do Differentiable Simulators Give Better Policy Gradients? ICML 2022: 20668-20696 - [c32]Andrew J. Wagenmaker, Yifang Chen, Max Simchowitz, Simon S. Du, Kevin G. Jamieson:
First-Order Regret in Reinforcement Learning with Linear Function Approximation: A Robust Estimation Approach. ICML 2022: 22384-22429 - [c31]Andrew J. Wagenmaker, Yifang Chen, Max Simchowitz, Simon S. Du, Kevin G. Jamieson:
Reward-Free RL is No Harder Than Reward-Aware RL in Linear Markov Decision Processes. ICML 2022: 22430-22456 - [c30]Adam Block, Max Simchowitz:
Efficient and Near-Optimal Smoothed Online Learning for Generalized Linear Functions. NeurIPS 2022 - [c29]Jack Umenberger, Max Simchowitz, Juan C. Perdomo, Kaiqing Zhang, Russ Tedrake:
Globally Convergent Policy Search for Output Estimation. NeurIPS 2022 - [i38]Andrew Wagenmaker, Yifang Chen, Max Simchowitz, Simon S. Du, Kevin Jamieson:
Reward-Free RL is No Harder Than Reward-Aware RL in Linear Markov Decision Processes. CoRR abs/2201.11206 (2022) - [i37]H. J. Terry Suh, Max Simchowitz, Kaiqing Zhang, Russ Tedrake:
Do Differentiable Simulators Give Better Policy Gradients? CoRR abs/2202.00817 (2022) - [i36]Edgar Minasyan, Paula Gradu, Max Simchowitz, Elad Hazan:
Online Control of Unknown Time-Varying Dynamical Systems. CoRR abs/2202.07890 (2022) - [i35]Jack Umenberger, Max Simchowitz, Juan C. Perdomo, Kaiqing Zhang, Russ Tedrake:
Globally Convergent Policy Search over Dynamic Filters for Output Estimation. CoRR abs/2202.11659 (2022) - [i34]Adam Block, Max Simchowitz:
Efficient and Near-Optimal Smoothed Online Learning for Generalized Linear Functions. CoRR abs/2205.13056 (2022) - 2021
- [b1]Max Simchowitz:
Statistical Complexity and Regret in Linear Control. University of California, Berkeley, USA, 2021 - [j2]Esther Rolf, David Fridovich-Keil, Max Simchowitz, Benjamin Recht, Claire J. Tomlin:
A Successive-Elimination Approach to Adaptive Robotic Source Seeking. IEEE Trans. Robotics 37(1): 34-47 (2021) - [c28]Tyler Westenbroek, Max Simchowitz, Michael I. Jordan, S. Shankar Sastry:
On the Stability of Nonlinear Receding Horizon Control: A Geometric Perspective. CDC 2021: 742-749 - [c27]Thodoris Lykouris, Max Simchowitz, Alex Slivkins, Wen Sun:
Corruption-robust exploration in episodic reinforcement learning. COLT 2021: 3242-3245 - [c26]Juan C. Perdomo, Max Simchowitz, Alekh Agarwal, Peter L. Bartlett:
Towards a Dimension-Free Understanding of Adaptive Linear Control. COLT 2021: 3681-3770 - [c25]Andrew J. Wagenmaker, Max Simchowitz, Kevin G. Jamieson:
Task-Optimal Exploration in Linear Dynamical Systems. ICML 2021: 10641-10652 - [c24]Edgar Minasyan, Paula Gradu, Max Simchowitz, Elad Hazan:
Online Control of Unknown Time-Varying Dynamical Systems. NeurIPS 2021: 15934-15945 - [c23]Max Simchowitz, Christopher Tosh, Akshay Krishnamurthy, Daniel J. Hsu, Thodoris Lykouris, Miroslav Dudík, Robert E. Schapire:
Bayesian decision-making under misspecified priors with applications to meta-learning. NeurIPS 2021: 26382-26394 - [c22]Juan C. Perdomo, Jack Umenberger, Max Simchowitz:
Stabilizing Dynamical Systems via Policy Gradient Methods. NeurIPS 2021: 29274-29286 - [i33]Andrew Wagenmaker, Max Simchowitz, Kevin G. Jamieson:
Task-Optimal Exploration in Linear Dynamical Systems. CoRR abs/2102.05214 (2021) - [i32]Max Simchowitz, Aleksandrs Slivkins:
Exploration and Incentives in Reinforcement Learning. CoRR abs/2103.00360 (2021) - [i31]Juan C. Perdomo, Max Simchowitz, Alekh Agarwal, Peter L. Bartlett:
Towards a Dimension-Free Understanding of Adaptive Linear Control. CoRR abs/2103.10620 (2021) - [i30]Tyler Westenbroek, Max Simchowitz, Michael I. Jordan, S. Shankar Sastry:
On the Stability of Nonlinear Receding Horizon Control: A Geometric Perspective. CoRR abs/2103.15010 (2021) - [i29]Max Simchowitz, Christopher Tosh, Akshay Krishnamurthy, Daniel Hsu, Thodoris Lykouris, Miroslav Dudík, Robert E. Schapire:
Bayesian decision-making under misspecified priors with applications to meta-learning. CoRR abs/2107.01509 (2021) - [i28]Andrew Wagenmaker, Max Simchowitz, Kevin G. Jamieson:
Beyond No Regret: Instance-Dependent PAC Reinforcement Learning. CoRR abs/2108.02717 (2021) - [i27]Juan C. Perdomo, Jack Umenberger, Max Simchowitz:
Stabilizing Dynamical Systems via Policy Gradient Methods. CoRR abs/2110.06418 (2021) - [i26]Andrew Wagenmaker, Yifang Chen, Max Simchowitz, Simon S. Du, Kevin Jamieson:
First-Order Regret in Reinforcement Learning with Linear Function Approximation: A Robust Estimation Approach. CoRR abs/2112.03432 (2021) - 2020
- [c21]Mark Braverman, Elad Hazan, Max Simchowitz, Blake E. Woodworth:
The Gradient Complexity of Linear Regression. COLT 2020: 627-647 - [c20]Max Simchowitz, Karan Singh, Elad Hazan:
Improper Learning for Non-Stochastic Control. COLT 2020: 3320-3436 - [c19]Dylan J. Foster, Max Simchowitz:
Logarithmic Regret for Adversarial Online Control. ICML 2020: 3211-3221 - [c18]Chi Jin, Akshay Krishnamurthy, Max Simchowitz, Tiancheng Yu:
Reward-Free Exploration for Reinforcement Learning. ICML 2020: 4870-4879 - [c17]Esther Rolf, Max Simchowitz, Sarah Dean, Lydia T. Liu, Daniel Björkegren, Moritz Hardt, Joshua Blumenstock:
Balancing Competing Objectives with Noisy Data: Score-Based Classifiers for Welfare-Aware Machine Learning. ICML 2020: 8158-8168 - [c16]Max Simchowitz, Dylan J. Foster:
Naive Exploration is Optimal for Online LQR. ICML 2020: 8937-8948 - [c15]Kianté Brantley, Miroslav Dudík, Thodoris Lykouris, Sobhan Miryoosefi, Max Simchowitz, Aleksandrs Slivkins, Wen Sun:
Constrained episodic reinforcement learning in concave-convex and knapsack settings. NeurIPS 2020 - [c14]Zakaria Mhammedi, Dylan J. Foster, Max Simchowitz, Dipendra Misra, Wen Sun, Akshay Krishnamurthy, Alexander Rakhlin, John Langford:
Learning the Linear Quadratic Regulator from Nonlinear Observations. NeurIPS 2020 - [c13]Max Simchowitz:
Making Non-Stochastic Control (Almost) as Easy as Stochastic. NeurIPS 2020 - [i25]Max Simchowitz, Karan Singh, Elad Hazan:
Improper Learning for Non-Stochastic Control. CoRR abs/2001.09254 (2020) - [i24]Max Simchowitz, Dylan J. Foster:
Naive Exploration is Optimal for Online LQR. CoRR abs/2001.09576 (2020) - [i23]Chi Jin, Akshay Krishnamurthy, Max Simchowitz, Tiancheng Yu:
Reward-Free Exploration for Reinforcement Learning. CoRR abs/2002.02794 (2020) - [i22]Dylan J. Foster, Max Simchowitz:
Logarithmic Regret for Adversarial Online Control. CoRR abs/2003.00189 (2020) - [i21]Esther Rolf, Max Simchowitz, Sarah Dean, Lydia T. Liu, Daniel Björkegren, Moritz Hardt, Joshua Blumenstock:
Balancing Competing Objectives with Noisy Data: Score-Based Classifiers for Welfare-Aware Machine Learning. CoRR abs/2003.06740 (2020) - [i20]Kianté Brantley, Miroslav Dudík, Thodoris Lykouris, Sobhan Miryoosefi, Max Simchowitz, Aleksandrs Slivkins, Wen Sun:
Constrained episodic reinforcement learning in concave-convex and knapsack settings. CoRR abs/2006.05051 (2020) - [i19]Max Simchowitz:
Making Non-Stochastic Control (Almost) as Easy as Stochastic. CoRR abs/2006.05910 (2020) - [i18]Zakaria Mhammedi, Dylan J. Foster, Max Simchowitz, Dipendra Misra, Wen Sun, Akshay Krishnamurthy, Alexander Rakhlin, John Langford:
Learning the Linear Quadratic Regulator from Nonlinear Observations. CoRR abs/2010.03799 (2020)
2010 – 2019
- 2019
- [j1]Jason D. Lee, Ioannis Panageas, Georgios Piliouras, Max Simchowitz, Michael I. Jordan, Benjamin Recht:
First-order methods almost always avoid strict saddle points. Math. Program. 176(1-2): 311-337 (2019) - [c12]Max Simchowitz, Ross Boczar, Benjamin Recht:
Learning Linear Dynamical Systems with Semi-Parametric Least Squares. COLT 2019: 2714-2802 - [c11]Lydia T. Liu, Max Simchowitz, Moritz Hardt:
The Implicit Fairness Criterion of Unconstrained Learning. ICML 2019: 4051-4060 - [c10]Lydia T. Liu, Sarah Dean, Esther Rolf, Max Simchowitz, Moritz Hardt:
Delayed Impact of Fair Machine Learning. IJCAI 2019: 6196-6200 - [c9]Max Simchowitz, Kevin G. Jamieson:
Non-Asymptotic Gap-Dependent Regret Bounds for Tabular MDPs. NeurIPS 2019: 1151-1160 - [i17]Max Simchowitz, Ross Boczar, Benjamin Recht:
Learning Linear Dynamical Systems with Semi-Parametric Least Squares. CoRR abs/1902.00768 (2019) - [i16]Max Simchowitz, Kevin G. Jamieson:
Non-Asymptotic Gap-Dependent Regret Bounds for Tabular MDPs. CoRR abs/1905.03814 (2019) - [i15]Mark Braverman, Elad Hazan, Max Simchowitz, Blake E. Woodworth:
The gradient complexity of linear regression. CoRR abs/1911.02212 (2019) - [i14]Thodoris Lykouris, Max Simchowitz, Aleksandrs Slivkins, Wen Sun:
Corruption Robust Exploration in Episodic Reinforcement Learning. CoRR abs/1911.08689 (2019) - 2018
- [c8]Reinhard Heckel, Max Simchowitz, Kannan Ramchandran, Martin J. Wainwright:
Approximate ranking from pairwise comparisons. AISTATS 2018: 1057-1066 - [c7]Max Simchowitz, Horia Mania, Stephen Tu, Michael I. Jordan, Benjamin Recht:
Learning Without Mixing: Towards A Sharp Analysis of Linear System Identification. COLT 2018: 439-473 - [c6]Lydia T. Liu, Sarah Dean, Esther Rolf, Max Simchowitz, Moritz Hardt:
Delayed Impact of Fair Machine Learning. ICML 2018: 3156-3164 - [c5]Max Simchowitz, Ahmed El Alaoui, Benjamin Recht:
Tight query complexity lower bounds for PCA via finite sample deformed wigner law. STOC 2018: 1249-1259 - [i13]Reinhard Heckel, Max Simchowitz, Kannan Ramchandran, Martin J. Wainwright:
Approximate Ranking from Pairwise Comparisons. CoRR abs/1801.01253 (2018) - [i12]Max Simchowitz, Horia Mania, Stephen Tu, Michael I. Jordan, Benjamin Recht:
Learning Without Mixing: Towards A Sharp Analysis of Linear System Identification. CoRR abs/1802.08334 (2018) - [i11]Lydia T. Liu, Sarah Dean, Esther Rolf, Max Simchowitz, Moritz Hardt:
Delayed Impact of Fair Machine Learning. CoRR abs/1803.04383 (2018) - [i10]Max Simchowitz, Ahmed El Alaoui, Benjamin Recht:
Tight Query Complexity Lower Bounds for PCA via Finite Sample Deformed Wigner Law. CoRR abs/1804.01221 (2018) - [i9]Max Simchowitz:
On the Randomized Complexity of Minimizing a Convex Quadratic Function. CoRR abs/1807.09386 (2018) - [i8]Max Simchowitz, Kevin G. Jamieson, Jordan W. Suchow, Thomas L. Griffiths:
Adaptive Sampling for Convex Regression. CoRR abs/1808.04523 (2018) - [i7]Lydia T. Liu, Max Simchowitz, Moritz Hardt:
Group calibration is a byproduct of unconstrained learning. CoRR abs/1808.10013 (2018) - [i6]Esther Rolf, David Fridovich-Keil, Max Simchowitz, Benjamin Recht, Claire J. Tomlin:
A Successive-Elimination Approach to Adaptive Robotic Sensing. CoRR abs/1809.10611 (2018) - 2017
- [c4]Max Simchowitz, Kevin G. Jamieson, Benjamin Recht:
The Simulator: Understanding Adaptive Sampling in the Moderate-Confidence Regime. COLT 2017: 1794-1834 - [i5]Max Simchowitz, Kevin G. Jamieson, Benjamin Recht:
The Simulator: Understanding Adaptive Sampling in the Moderate-Confidence Regime. CoRR abs/1702.05186 (2017) - [i4]Max Simchowitz, Ahmed El Alaoui, Benjamin Recht:
On the Gap Between Strict-Saddles and True Convexity: An Omega(log d) Lower Bound for Eigenvector Approximation. CoRR abs/1704.04548 (2017) - [i3]Jason D. Lee, Ioannis Panageas, Georgios Piliouras, Max Simchowitz, Michael I. Jordan, Benjamin Recht:
First-order Methods Almost Always Avoid Saddle Points. CoRR abs/1710.07406 (2017) - 2016
- [c3]Jason D. Lee, Max Simchowitz, Michael I. Jordan, Benjamin Recht:
Gradient Descent Only Converges to Minimizers. COLT 2016: 1246-1257 - [c2]Max Simchowitz, Kevin G. Jamieson, Benjamin Recht:
Best-of-K-bandits. COLT 2016: 1440-1489 - [c1]Stephen Tu, Ross Boczar, Max Simchowitz, Mahdi Soltanolkotabi, Ben Recht:
Low-rank Solutions of Linear Matrix Equations via Procrustes Flow. ICML 2016: 964-973 - [i2]Jason D. Lee, Max Simchowitz, Michael I. Jordan, Benjamin Recht:
Gradient Descent Converges to Minimizers. CoRR abs/1602.04915 (2016) - [i1]Max Simchowitz, Kevin G. Jamieson, Benjamin Recht:
Best-of-K Bandits. CoRR abs/1603.02752 (2016)
Coauthor Index
aka: Ben Recht
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-07 01:25 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint