default search action
ISPASS 2019: Madison, WI, USA
- IEEE International Symposium on Performance Analysis of Systems and Software, ISPASS 2019, Madison, WI, USA, March 24-26, 2019. IEEE 2019, ISBN 978-1-7281-0746-2
Paper Session I: Best Paper Nominees
- Zacharias Hadjilambrou, Shidhartha Das, Paul N. Whatmough, David M. Bull, Yiannakis Sazeides:
GeST: An Automatic Framework For Generating CPU Stress-Tests. 1-10 - Hossein Golestani, Scott A. Mahlke, Satish Narayanasamy:
Characterization of Unnecessary Computations in Web Applications. 11-21 - Runchao Han, Nikos Foutris, Christos Kotselidis:
Demystifying Crypto-Mining: Analysis and Optimizations of Memory-Hard PoW Algorithms. 22-33 - Matthew Halpern, Behzad Boroujerdian, Todd W. Mummert, Evelyn Duesterwald, Vijay Janapa Reddi:
One Size Does Not Fit All: Quantifying and Exposing the Accuracy-Latency Trade-Off in Machine Learning Cloud Service APIs via Tolerance Tiers. 34-47
Paper Session II: Analyis Tools
- Karl Taht, James Greensky, Rajeev Balasubramonian:
The POP Detector: A Lightweight Online Program Phase Detection Framework. 48-57 - Almutaz Adileh, Cecilia González-Alvarez, Juan Miguel De Haro Ruiz, Lieven Eeckhout:
Racing to Hardware-Validated Simulation. 58-67 - Kuba Kaszyk, Harry Wagstaff, Tom Spink, Björn Franke, Michael F. P. O'Boyle, Bruno Bodin, Henrik Uhrenholt:
Full-System Simulation of Mobile CPU/GPU Platforms. 68-78 - Md Aamir Raihan, Negar Goli, Tor M. Aamodt:
Modeling Deep Learning Accelerator Enabled GPUs. 79-92 - Shoaib Akram, Jennifer B. Sartor, Kathryn S. McKinley, Lieven Eeckhout:
Emulating and Evaluating Hybrid Memory for Managed Languages on NUMA Hardware. 93-105
Paper Session III: System Characterization
- Yufeng Zhou, Xiaowan Dong, Alan L. Cox, Sandhya Dwarkadas:
On the Impact of Instruction Address Translation Overhead. 106-116 - Guru Prasad Srinivasa, Scott Haseley, Geoffrey Challen, Mark Hempstead:
Quantifying Process Variations and Its Impacts on Smartphones. 117-126 - Athanasios Chatzidimitriou, George Papadimitriou, Dimitris Gizopoulos, Shrikanth Ganapathy, John Kalamatianos:
Assessing the Effects of Low Voltage in Branch Prediction Units. 127-136
Poster Session
- Aajna Karki, Chethan Palangotu Keshava, Spoorthi Mysore Shivakumar, Joshua Skow, Goutam Madhukeshwar Hegde, Hyeran Jeon:
Tango: A Deep Neural Network Benchmark Suite for Various Accelerators. 137-138 - Dilip P. Vasudevan, George Michelogiannakis, David Donofrio, John Shalf:
PARADISE - Post-Moore Architecture and Accelerator Design Space Exploration Using Device Level Simulation and Experiments. 139-140 - Mahmoud Khairy, Akshay Jain, Tor M. Aamodt, Timothy G. Rogers:
A Detailed Model for Contemporary GPU Memory Systems. 141-142 - Suk-Joo Chae, Tae-Sun Chung:
DSMM: A Dynamic Setting for Memory Management in Apache Spark. 143-144 - Jiancong Ge, Ming Ling:
Fast Modeling of the L2 Cache Reuse Distance Histograms from Software Traces. 145-146 - Bradley Wang, Ayaz Akram, Jason Lowe-Power:
FlexCPU: A Configurable Out-of-Order CPU Abstraction. 147-148 - Qi Yu, Bruce R. Childers, Libo Huang, Cheng Qian, Zhiying Wang:
Hierarchical Page Eviction Policy for Unified Memory in GPUs. 149-150 - Jonathan S. Lew, Deval A. Shah, Suchita Pati, Shaylin Cattell, Mengchi Zhang, Amruth Sandhupatla, Christopher Ng, Negar Goli, Matthew D. Sinclair, Timothy G. Rogers, Tor M. Aamodt:
Analyzing Machine Learning Workloads Using a Detailed GPU Simulator. 151-152
Paper Session IV: Workload Characterization
- Joo Hwan Lee, Hyesoon Kim:
Empirical Investigation of Stale Value Tolerance on Parallel RNN Training. 153-164 - Milos Nikolic, Mostafa Mahmoud, Andreas Moshovos, Yiren Zhao, Robert D. Mullins:
Characterizing Sources of Ineffectual Computations in Deep Learning Networks. 165-176 - Yu Emma Wang, Yuhao Zhu, Glenn G. Ko, Brandon Reagen, Gu-Yeon Wei, David Brooks:
Demystifying Bayesian Inference Workloads. 177-189 - Enrico Armenio Deiana, Simone Campanoni:
Workload Characterization of Nondeterministic Programs Parallelized by STATS. 190-201 - Siying Feng, Subhankar Pal, Yichen Yang, Ronald G. Dreslinski:
Parallelism Analysis of Prominent Desktop Applications: An 18- Year Perspective. 202-211
Paper Session V: Data Centers and Cloud Computing
- Yanqi Zhang, Yu Gan, Christina Delimitrou:
µqSim: Enabling Accurate and Scalable Simulation for Interactive Microservices. 212-222 - Paul Reeser, Guilhem Tesseyre, Marcus Callaway:
Distributed Software Defined Networking Controller Failure Mode and Availability Analysis. 223-232 - Kewen Wang, Mohammad Maifi Hasan Khan, Nhan Nguyen, Swapna S. Gokhale:
A Model Driven Approach Towards Improving the Performance of Apache Spark Applications. 233-242 - Sahel Sharify, Alan W. Lu, Jin Chen, Arnamoy Bhattacharyya, Ali B. Hashemi, Nick Koudas, Cristiana Amza:
An Improved Dynamic Vertical Partitioning Technique for Semi-Structured Data. 243-256
Paper Session VI: Performance Modeling and Prediction
- Sander De Pestel, Sam Van den Steen, Shoaib Akram, Lieven Eeckhout:
RPPM: Rapid Performance Prediction of Multithreaded Workloads on Multicore Processors. 257-267 - Masab Ahmad, Halit Dogan, Christopher J. Michael, Omer Khan:
HeteroMap: A Runtime Performance Predictor for Efficient Processing of Graph Analytics on Heterogeneous Multi-Accelerators. 268-281 - Zhongyuan Zhao, Hyoukjun Kwon, Sachit Kuhar, Weiguang Sheng, Zhigang Mao, Tushar Krishna:
mRNA: Enabling Efficient Mapping Space Exploration for a Reconfiguration Neural Accelerator. 282-292 - Sangkug Lym, Donghyuk Lee, Mike O'Connor, Niladrish Chatterjee, Mattan Erez:
DeLTA: GPU Performance Model for Deep Learning Applications with In-Depth Memory System Traffic Analysis. 293-303 - Angshuman Parashar, Priyanka Raina, Yakun Sophia Shao, Yu-Hsin Chen, Victor A. Ying, Anurag Mukkara, Rangharajan Venkatesan, Brucek Khailany, Stephen W. Keckler, Joel S. Emer:
Timeloop: A Systematic Approach to DNN Accelerator Evaluation. 304-315
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.