default search action
Adam M. Oberman
Person information
- affiliation: McGill University
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j27]Vikram Voleti, Chris Finlay, Adam Oberman, Christopher Pal:
Multi-resolution continuous normalizing flows. Ann. Math. Artif. Intell. 92(5): 1295-1317 (2024) - 2023
- [j26]Xinlin Li, Mariana Parazeres, Adam Oberman, Alireza Ghaffari, Masoud Asgharian, Vahid Partovi Nia:
EuclidNets: An Alternative Operation for Efficient Inference of Deep Learning Models. SN Comput. Sci. 4(5): 507 (2023) - [j25]Tiago Salvador, Kilian Fatras, Ioannis Mitliagkas, Adam M. Oberman:
A Reproducible and Realistic Evaluation of Partial Domain Adaptation Methods. Trans. Mach. Learn. Res. 2023 (2023) - [i26]Kumar Krishna Agrawal, Arna Ghosh, Adam Oberman, Blake A. Richards:
Addressing Sample Inefficiency in Multi-View Representation Learning. CoRR abs/2312.10725 (2023) - 2022
- [c9]Charline Le Lan, Stephen Tu, Adam Oberman, Rishabh Agarwal, Marc G. Bellemare:
On the Generalization of Representations in Reinforcement Learning. AISTATS 2022: 4132-4157 - [c8]Tiago Salvador, Stephanie Cairns, Vikram Voleti, Noah Marshall, Adam M. Oberman:
FairCal: Fairness Calibration for Face Verification. ICLR 2022 - [c7]Mariana Oliveira Prazeres, Xinlin Li, Adam M. Oberman, Vahid Partovi Nia:
EuclidNets: Combining Hardware and Architecture Design for Efficient Training and Inference. ICPRAM 2022: 141-151 - [i25]Charline Le Lan, Stephen Tu, Adam Oberman, Rishabh Agarwal, Marc G. Bellemare:
On the Generalization of Representations in Reinforcement Learning. CoRR abs/2203.00543 (2022) - [i24]Tiago Salvador, Kilian Fatras, Ioannis Mitliagkas, Adam M. Oberman:
A Reproducible and Realistic Evaluation of Partial Domain Adaptation Methods. CoRR abs/2210.01210 (2022) - [i23]Vikram Voleti, Christopher Pal, Adam M. Oberman:
Score-based Denoising Diffusion with Non-Isotropic Gaussian Noise Models. CoRR abs/2210.12254 (2022) - [i22]Xinlin Li, Mariana Parazeres, Adam M. Oberman, Alireza Ghaffari, Masoud Asgharian, Vahid Partovi Nia:
EuclidNets: An Alternative Operation for Efficient Inference of Deep Learning Models. CoRR abs/2212.11803 (2022) - 2021
- [j24]Mariana Oliveira Prazeres, Adam M. Oberman:
Stochastic Gradient Descent with Polyak's Learning Rate. J. Sci. Comput. 89(1): 25 (2021) - [i21]Tiago Salvador, Stephanie Cairns, Vikram Voleti, Noah Marshall, Adam M. Oberman:
Bias Mitigation of Face Recognition Models Through Calibration. CoRR abs/2106.03761 (2021) - [i20]Tiago Salvador, Vikram Voleti, Alexander Iannantuono, Adam M. Oberman:
Improved Predictive Uncertainty using Corruption-based Calibration. CoRR abs/2106.03762 (2021) - [i19]Vikram Voleti, Chris Finlay, Adam M. Oberman, Christopher J. Pal:
Multi-Resolution Continuous Normalizing Flows. CoRR abs/2106.08462 (2021) - 2020
- [j23]Adam M. Oberman, Tiago Salvador:
A Partial Differential Equation Obstacle Problem for the Level Set Approach to Visibility. J. Sci. Comput. 82(1): 14 (2020) - [j22]Levon Nurbekyan, Alexander Iannantuono, Adam M. Oberman:
No-Collision Transportation Maps. J. Sci. Comput. 82(2): 45 (2020) - [c6]Maxime Laborde, Adam M. Oberman:
A Lyapunov analysis for accelerated gradient methods: from deterministic to stochastic case. AISTATS 2020: 602-612 - [c5]Aram-Alexandre Pooladian, Chris Finlay, Tim Hoheisel, Adam M. Oberman:
A principled approach for generating adversarial images under non-smooth dissimilarity metrics. AISTATS 2020: 1442-1452 - [c4]Chris Finlay, Jörn-Henrik Jacobsen, Levon Nurbekyan, Adam M. Oberman:
How to Train Your Neural ODE: the World of Jacobian and Kinetic Regularization. ICML 2020: 3154-3164 - [p1]Adam M. Oberman:
Partial differential equation regularization for supervised machine learning. 75 Years of Mathematics of Computation 2020 - [i18]Chris Finlay, Jörn-Henrik Jacobsen, Levon Nurbekyan, Adam M. Oberman:
How to train your neural ODE. CoRR abs/2002.02798 (2020) - [i17]Chris Finlay, Augusto Gerolin, Adam M. Oberman, Aram-Alexandre Pooladian:
Learning normalizing flows from Entropy-Kantorovich potentials. CoRR abs/2006.06033 (2020) - [i16]Ryan Campbell, Chris Finlay, Adam M. Oberman:
Deterministic Gaussian Averaged Neural Networks. CoRR abs/2006.06061 (2020) - [i15]Ryan Campbell, Chris Finlay, Adam M. Oberman:
Adversarial Boot Camp: label free certified robustness in one epoch. CoRR abs/2010.02508 (2020)
2010 – 2019
- 2019
- [j21]Chris Finlay, Adam M. Oberman:
Improved Accuracy of Monotone Finite Difference Schemes on Point Clouds and Regular Grids. SIAM J. Sci. Comput. 41(5): A3097-A3117 (2019) - [c3]Chris Finlay, Aram-Alexandre Pooladian, Adam M. Oberman:
The LogBarrier Adversarial Attack: Making Effective Use of Decision Boundary Information. ICCV 2019: 4861-4869 - [i14]Chris Finlay, Adam M. Oberman:
Empirical confidence estimates for classification by deep neural networks. CoRR abs/1903.09215 (2019) - [i13]Chris Finlay, Aram-Alexandre Pooladian, Adam M. Oberman:
The LogBarrier adversarial attack: making effective use of decision boundary information. CoRR abs/1903.10396 (2019) - [i12]Chris Finlay, Adam M. Oberman:
Scaleable input gradient regularization for adversarial robustness. CoRR abs/1905.11468 (2019) - [i11]Adam M. Oberman, Tiago Salvador:
A Partial Differential Equation Obstacle Problem for the Level Set Approach to Visibility. CoRR abs/1908.00578 (2019) - [i10]Aram-Alexandre Pooladian, Chris Finlay, Tim Hoheisel, Adam M. Oberman:
A principled approach for generating adversarial images under non-smooth dissimilarity metrics. CoRR abs/1908.01667 (2019) - [i9]Adam M. Oberman:
Partial differential equation regularization for supervised machine learning. CoRR abs/1910.01612 (2019) - [i8]Aram-Alexandre Pooladian, Chris Finlay, Adam M. Oberman:
Farkas layers: don't shift the data, fix the geometry. CoRR abs/1910.02840 (2019) - 2018
- [j20]Bilal Abbasi, Adam M. Oberman:
Computing the Level Set Convex Hull. J. Sci. Comput. 75(1): 26-42 (2018) - [j19]Chris Finlay, Adam M. Oberman:
Approximate Homogenization of Fully Nonlinear Elliptic PDEs: Estimates and Numerical Results for Pucci Type Equations. J. Sci. Comput. 77(2): 936-949 (2018) - [j18]Penghang Yin, Minh Pham, Adam M. Oberman, Stanley J. Osher:
Stochastic Backward Euler: An Implicit Gradient Descent Algorithm for k-Means Clustering. J. Sci. Comput. 77(2): 1133-1146 (2018) - [j17]Bilal Abbasi, Jeff Calder, Adam M. Oberman:
Anomaly Detection and Classification for Streaming Data using PDEs. SIAM J. Appl. Math. 78(2): 921-941 (2018) - [i7]Adam M. Oberman, Jeff Calder:
Lipschitz regularized Deep Neural Networks converge and generalize. CoRR abs/1808.09540 (2018) - 2017
- [j16]Jun Liu, Brittany D. Froese, Adam M. Oberman, Mingqing Xiao:
A multigrid scheme for 3D Monge-Ampère equations. Int. J. Comput. Math. 94(9): 1850-1866 (2017) - [c2]Pratik Chaudhari, Adam M. Oberman, Stanley J. Osher, Stefano Soatto, Guillaume Carlier:
Partial differential equations for training deep neural networks. ACSSC 2017: 1627-1631 - [i6]Robert Graham, Adam M. Oberman:
Approximate Convex Hulls. CoRR abs/1703.01350 (2017) - [i5]Pratik Chaudhari, Adam M. Oberman, Stanley J. Osher, Stefano Soatto, Guillaume Carlier:
Deep Relaxation: partial differential equations for optimizing deep neural networks. CoRR abs/1704.04932 (2017) - [i4]Penghang Yin, Minh Pham, Adam M. Oberman, Stanley J. Osher:
Stochastic Backward Euler: An Implicit Gradient Descent Algorithm for k-means Clustering. CoRR abs/1710.07746 (2017) - 2016
- [j15]Adam M. Oberman, Ian Zwiers:
Adaptive Finite Difference Methods for Nonlinear Elliptic and Parabolic Partial Differential Equations with Free Boundaries. J. Sci. Comput. 68(1): 231-251 (2016) - [i3]Bilal Abbasi, Jeff Calder, Adam M. Oberman:
Anomaly detection and classification for streaming data using partial differential equations. CoRR abs/1608.04348 (2016) - 2015
- [j14]Adam M. Oberman, Tiago Salvador:
Filtered schemes for Hamilton-Jacobi equations: A simple construction of convergent accurate difference schemes. J. Comput. Phys. 284: 367-388 (2015) - 2014
- [j13]Jean-David Benamou, Brittany D. Froese, Adam M. Oberman:
Numerical solution of the Optimal Transportation problem using the Monge-Ampère equation. J. Comput. Phys. 260: 107-126 (2014) - [j12]Yanghong Huang, Adam M. Oberman:
Numerical Methods for the Fractional Laplacian: A Finite Difference-Quadrature Approach. SIAM J. Numer. Anal. 52(6): 3056-3084 (2014) - [i2]Jun Liu, Brittany D. Froese, Adam M. Oberman, Mingqing Xiao:
A multigrid solver for the three dimensional Monge-Ampère equation. CoRR abs/1411.7018 (2014) - 2013
- [j11]Adam M. Oberman:
Finite difference methods for the Infinity Laplace and pp-Laplace equations. J. Comput. Appl. Math. 254: 65-80 (2013) - [j10]Brittany D. Froese, Adam M. Oberman:
Convergent Filtered Schemes for the Monge-Ampère Partial Differential Equation. SIAM J. Numer. Anal. 51(1): 423-444 (2013) - [j9]Adam M. Oberman:
A Numerical Method for Variational Problems with Convexity Constraints. SIAM J. Sci. Comput. 35(1) (2013) - 2011
- [j8]Brittany D. Froese, Adam M. Oberman:
Fast finite difference solvers for singular solutions of the elliptic Monge-Ampère equation. J. Comput. Phys. 230(3): 818-834 (2011) - [j7]Brittany D. Froese, Adam M. Oberman:
Convergent Finite Difference Solvers for Viscosity Solutions of the Elliptic Monge-Ampère Equation in Dimensions Two and Higher. SIAM J. Numer. Anal. 49(4): 1692-1714 (2011) - 2010
- [i1]Brittany D. Froese, Adam M. Oberman:
Fast finite difference solvers for singular solutions of the elliptic Monge-Ampére equation. CoRR abs/1006.5748 (2010)
2000 – 2009
- 2009
- [j6]Adam M. Oberman, Ryo Takei, Alexander Vladimirsky:
Homogenization of Metric Hamilton-Jacobi Equations. Multiscale Model. Simul. 8(1): 269-295 (2009) - 2006
- [j5]Adam M. Oberman:
Convergent Difference Schemes for Degenerate Elliptic and Parabolic Equations: Hamilton-Jacobi Equations and Free Boundary Problems. SIAM J. Numer. Anal. 44(2): 879-895 (2006) - 2005
- [j4]Adam M. Oberman:
A convergent difference scheme for the infinity Laplacian: construction of absolutely minimizing Lipschitz extensions. Math. Comput. 74(251): 1217-1230 (2005) - [c1]Diogo A. Gomes, Adam M. Oberman:
Computing the Effective Hamiltonian using a Variational Approach. CDC/ECC 2005: 729-733 - 2004
- [j3]Adam M. Oberman:
A convergent monotone difference scheme for motion of level sets by mean curvature. Numerische Mathematik 99(2): 365-379 (2004) - [j2]Diogo A. Gomes, Adam M. Oberman:
Computing the Effective Hamiltonian Using a Variational Approach. SIAM J. Control. Optim. 43(3): 792-812 (2004) - 2003
- [j1]Adam M. Oberman, Thaleia Zariphopoulou:
Pricing early exercise contracts in incomplete markets. Comput. Manag. Sci. 1(1): 75-107 (2003)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-30 21:33 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint