
University of South Florida University of South Florida

Digital Commons @ University of Digital Commons @ University of

South Florida South Florida

USF Tampa Graduate Theses and Dissertations USF Graduate Theses and Dissertations

12-11-2009

Synthesis of Local Thermo-Physical Models Using Genetic Synthesis of Local Thermo-Physical Models Using Genetic

Programming Programming

Ying Zhang
University of South Florida

Follow this and additional works at: https://digitalcommons.usf.edu/etd

 Part of the American Studies Commons

Scholar Commons Citation Scholar Commons Citation
Zhang, Ying, "Synthesis of Local Thermo-Physical Models Using Genetic Programming" (2009). USF
Tampa Graduate Theses and Dissertations.
https://digitalcommons.usf.edu/etd/103

This Dissertation is brought to you for free and open access by the USF Graduate Theses and Dissertations at
Digital Commons @ University of South Florida. It has been accepted for inclusion in USF Tampa Graduate Theses
and Dissertations by an authorized administrator of Digital Commons @ University of South Florida. For more
information, please contact digitalcommons@usf.edu.

https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/etd
https://digitalcommons.usf.edu/grad_etd
https://digitalcommons.usf.edu/etd?utm_source=digitalcommons.usf.edu%2Fetd%2F103&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/439?utm_source=digitalcommons.usf.edu%2Fetd%2F103&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usf.edu

Synthesis of Local Thermo-Physical Models Using Genetic Programming

by

Ying Zhang

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Chemical and Biomedical Engineering

College of Engineering

University of South Florida

Major Professor: Aydin K. Sunol, Ph.D.

John A. Llewellyn, Ph.D.

Scott W. Campbell, Ph.D.

Luis H. Garcia-Rubio, Ph.D.

Rafael Perez, Ph.D.

Date of Approval:

December 11, 2008

Keywords: data mining, symbolic regression, function identification, parameter

regression, statistic analysis, process simulation

© Copyright 2009, Ying Zhang

ACKNOWLEDGMENTS

 I wish to express my deepest gratitude to Dr. Aydin K. Sunol, for his continuous

guidance and encouragement throughout my Ph.D. experience.

 I would also like to thank Dr. John A. Llewellyn, Dr. Scott W. Campbell, Dr. Luis

H. Garcia-Rubio and Dr. Rafael Perez for being my committee members and taking time

from their busy schedules. Finally, I would like to thank my family for their help.

 i

TABLE OF CONTENTS

LIST OF TABLES iv

LIST OF FIGURES v

ABSTRACT viii

CHAPTER ONE: INTRODUCTION 1

CHAPTER TWO: LITERATURE REVIEW 6

 2.1 Review of local models for phase partition coefficients 6

 2.2 Review of data mining techniques in the knowledge discovery process 14

 2.3 Elements of structural regression using genetic programming 21

 2.3.1 Terminal set, function set and initial representation 23

 2.3.2 Fitness measures for models of varying complexity 25

 2.3.2.1 Fitness function with no penalty for the model

 complexity 25

 2.3.2.2 Fitness function with model complexity control 26

 2.3.2.2.1 Minimum description length 27

 2.3.2.2.2 Parsimony pressure 28

 2.3.2.3 Fitness function using external validation 30

 2.3.3 Genetic operators 31

 2.3.3.1 Reproduction and crossover 31

 2.3.3.2 Mutation 33

 2.3.4 Selection strategy 35

2.4 Parametric regression: review of objective functions and

 optimization methods 36

 2.5 Applications of intelligent system in chemical engineering 43

CHAPTER THREE: A HYBRID SYSTEM FOR STRUCTURAL AND

 PARAMETRIC OPTIMIZATION 46

 3.1 The system structure 46

 3.2 Data and data preparation 48

 3.3 The regression strategy 49

 3.4 Implementation with MATLAB based genetic search toolbox 53

 3.4.1 The population architecture 54

 3.4.2 The population size 57

 ii

 3.4.3 The principal component analysis and the selection of

 terminal & function sets 59

 3.4.4 Genetic operator 62

 3.4.5 Fitness evaluation 64

 3.4.6 Selection strategy 67

 3.4.7 Decimation strategy 69

 3.4.8 Result designation and termination criteria 72

 3.4.9 Summary 73

 3.5 Model evaluation 74

 3.5.1 Statistical analysis 74

 3.5.1.1 Graphical methods 74

 3.5.1.2 Goodness of fit statistics 76

 3.5.1.3 Cross validation and prediction 76

 3.5.2 Steady state and dynamic simulation using local models 78

CHAPTER FOUR: RESULTS AND DISCUSSIONS 79

 4.1 Local composition models and their impact 79

 4.1.1 Developed models for mixtures that form ideal or

 near-ideal solutions and their statistical analysis 80

 4.1.2 Performance of models for separation of ideal and near ideal

 mixtures 84

 4.1.3 Developed models for mixtures that form non-ideal

 solutions and their statistical analysis 89

 4.1.4 Performance of models for separation of non-ideal solutions 93

 4.2 Discussion 99

 4.2.1 Ideal gaseous and liquid mixture 100

 4.2.2 Non-ideal gaseous mixture and ideal liquid mixture 101

 4.2.3 Ideal gaseous and non-ideal liquid mixture 102

 4.2.4 Non-ideal gaseous mixture and non-ideal liquid mixture 103

 4.2.5 Linear model vs. nonlinear model 104

 4.2.6 Extrapolation 105

CHAPTER FIVE: CONCLUSIONS AND RECOMMENDATIONS 107

REFERENCES 110

APPENDICES 115

 Appendix A. User Manual for GP Package 116

 A.1 MATLAB files 116

 A.2 Architecture 116

 A.3 How to use the GP package 118

 iii

Appendix B. Statistical Analysis 122

 B.1 Tests for outliers 122

 B.2 Evaluation of final model: cross-validation 124

ABOUT THE AUTHOR End Page

 iv

LIST OF TABLES

Table 4.1 Result Summary for Propylene (1)-Propane (2) 81

Table 4.2 Standard Error Analysis for Generated K1 and K2 Model 84

Table 4.3 Propane-Propylene Distillation Column Profile 88

Table 4.4 Result Summary for Acetone (1) -Water (2) 89

Table 4.5 Standard Error Analysis for Local Model for Acetone-Water System 92

Table 4.6 Tower Profile at Different Runtime 98

Table 4.7 R
2
 of Different Models for K1 in Group Tests 99

Table 4.8 R
2
 of Extrapolation Test 106

Table B.1 MATLAB Code for Outlier Test 122

Table B.2 The Result for Outlier Test 123

Table B.3 MATLAB Code for Data Set Partition 125

Table B.4 The Result for Data Set Partition 126

 v

LIST OF FIGURES

Figure 2.1 Flowchart for an Algorithm for Isothermal Flash Calculation Algorithm

 that Uses Composition Dependent Local Models 8

Figure 2.2 Flowchart for an Algorithm for Isothermal Flash Calculation Algorithm

 that Uses Equation of State 9

Figure 2.3 Architecture of Local Model Strategy 10

Figure 2.4 Knowledge Discovery Process 15

Figure 2.5 Example of a Regression Tree 17

Figure 2.6 A Simple Multilayer Neural Network Model with Two Hidden Nodes 18

Figure 2.7 A Flowchart for Computation through Genetic Programming 23

Figure 2.8 Functional Representation of)(2

p
CTcTba ⋅+⋅+ Using a Tree

 Structure 24

Figure 2.9 An Example of Reproduction Operator 32

Figure 2.10 Crossover Operation for an Algebraic Equation Manipulation 34

Figure 2.11 An Example of Mutation Operation, Type I 34

Figure 2.12 An Example of Mutation Operation, Type II 35

Figure 3.1 A Hybrid System Structure for Structural and Parametric Optimization 47

Figure 3.2 The Structure for Linear-Nonlinear Regression Strategy 51

Figure 3.3 A Schematic Diagram of the Genetic Search Methodology 54

Figure 3.4 A Flowchart of Genetic Search, Steady State Population 55

 vi

Figure 3.5 A Flowchart of Genetic Search, Generational Population 56

Figure 3.6 Fitness vs. Generation Using Different Population Sizes 59

Figure 3.7 Fitness vs. Generation Using Different Mutation and Crossover

 Probabilities 63

Figure 3.8 The Standard Deviation of Fitness Using Different Mutation and

 Crossover Probabilities 64

Figure 3.9 Model’s Accuracy vs. Generation Using Different Fitness Functions 66

Figure 3.10 Model’s Complexity vs. Generation Using Different Fitness Functions 66

Figure 3.11 Model Fitness vs. Generation Using Different Tournament Sizes 68

Figure 3.12 The Standard Deviation of Fitness vs. Generation Using Different

 Tournament Sizes 68

Figure 3.13 Model’s Accuracy vs. Generation Using Different Deletion Strategies 71

Figure 3.14 The Standard Deviation of Fitness vs. Generation Using Different

 Deletion Strategies 72

Figure 4.1 K1 Model vs. Experimental Data for Propylene (1)-Propane (2) 82

Figure 4.2 Residual Plot of K1 for Propylene (1)-Propane (2) 82

Figure 4.3 K2 Model vs. Experimental Data for Propylene (1)-Propane (2) 83

Figure 4.4 Residual Plot of K2 for Propylene (1)-Propane (2) 83

Figure 4.5 P-X1-Y1 at Low Pressures for Propylene (1)-Propane (2) 85

Figure 4.6 P-X1-Y1 at Medium to High Pressures for Propylene (1)-Propane (2) 85

Figure 4.7 K1 vs. Liquid Composition for Different Temperatures for

 Propylene (1)-Propane (2) System 86

Figure 4.8 K1 vs. Pressure for Different Temperatures for Propylene (1)-

 Propane (2) 86

Figure 4.9 Temperature Profile of Propylene-Propane Distillation Column 88

 vii

Figure 4.10 Relative Volatility Profile for Propylene-Propane Distillation Column 89

Figure 4.11 K1 Model vs. Experimental Data for Acetone (1)-Water (2) 90

Figure 4.12 Residual Plot of K1 for Acetone (1)-Water (2) 90

Figure 4.13 K2 Model vs. Experimental Data for Acetone (1)-Water (2) 91

Figure 4.14 Residual Plot of K2 for Acetone (1)-Water (2) 91

Figure 4.15 T-X1-Y1 at Different Temperatures for Acetone (1)-Water (2) 93

Figure 4.16 K1 vs. Liquid Composition at Different Pressures for Acetone (1)-

 Water (2) 94

Figure 4.17 K1 vs. Temperature at Different Pressures for Acetone (1)-Water (2) 94

Figure 4.18 Temperature Profile of Acetone-Water Distillation Column 96

Figure 4.19 Relative Volatility Profile of Acetone-Water Distillation Column 96

Figure 4.20 Distillation Total Flow Rate 97

Figure 4.21 Distillation Column Pressure 98

Figure A.1 Architecture of MATLAB Code 117

 viii

SYNTHESIS OF LOCAL THERMO-PHYSICAL MODELS USING GENETIC

PROGRAMMING

 Ying Zhang

 ABSTRACT

Local thermodynamic models are practical alternatives to computationally

expensive rigorous models that involve implicit computational procedures and often

complement them to accelerate computation for real-time optimization and control.

Human-centered strategies for development of these models are based on approximation

of theoretical models. Genetic Programming (GP) system can extract knowledge from the

given data in the form of symbolic expressions. This research describes a fully data

driven automatic self-evolving algorithm that builds appropriate approximating formulae

for local models using genetic programming. No a-priori information on the type of

mixture (ideal/non ideal etc.) or assumptions are necessary.

The approach involves synthesis of models for a given set of variables and

mathematical operators that may relate them. The selection of variables is automated

through principal component analysis and heuristics. For each candidate model, the

model parameters are optimized in the inner integrated nested loop. The trade-off

between accuracy and model complexity is addressed through incorporation of the

Minimum Description Length (MDL) into the fitness (objective) function.

 ix

Statistical tools including residual analysis are used to evaluate performance of

models. Adjusted R-square is used to test model’s accuracy, and F-test is used to test if

the terms in the model are necessary. The analysis of the performance of the models

generated with the data driven approach depicts theoretically expected range of

compositional dependence of partition coefficients and limits of ideal gas as well as ideal

solution behavior. Finally, the model built by GP integrated into a steady state and

dynamic flow sheet simulator to show the benefits of using such models in simulation.

The test systems were propane-propylene for ideal solutions and acetone-water for non-

ideal. The result shows that, the generated models are accurate for the whole range of

data and the performance is tunable. The generated local models can indeed be used as

empirical models go beyond elimination of the local model updating procedures to

further enhance the utility of the approach for deployment of real-time applications.

 1

CHAPTER ONE

INTRODUCTION

Approaches to modeling of chemical processes have changed significantly in the

past three decades. In general, these approaches are divided into two generic categories.

One is mechanistic modeling, which is mainly based on first principles and fundamental

knowledge. The other is empirical modeling, which is data driven. In the latter, the model

structure and its associated parameters are selected to represent the process data

accurately for a given range and aim to bring ease through simplified model development

stage as well as reduced computational load.

Data driven modeling techniques have been popular for many decades. They are

easier to develop than the mechanistic models, particularly for practitioners. This is

especially true when mechanistic first principles models and their associated thermo-

physical properties are not adequate in representing the real world problems.

Furthermore, these mechanistic models are highly nonlinear and complex, which makes

them difficult to identify [Ramirez 1989] and implement particularly on-real-time

applications. Currently, the most of the data driven modeling methods fall under

statistical methods and artificial neural networks headings [Pöyhönen, 1996]. Neural

networks usually provide models that are accurate in representing the data, but they don't

provide any insight into represented phenomena. Usually, neural networks are black

 2

boxes, and one cannot abstract the underlying physical relationships between input and

output data. It is often desirable to gain some insight into the underlying structures, as

well as make accurate numeric predictions. Application of Genetic Programming (GP)

based approaches are known to produce input-output models with relatively simple and

transparent structures and the associated procedures are coined with “symbolic

regression” terminology.

Genetic Programming allows synthesis of data driven models when model

elements are represented as a tree structure. This tree structure is of variable length and

consists of nodes. The terminal nodes can be input variables, parameters or constants

while thee non-terminal nodes are standard library functions, like addition, subtraction,

multiplication and division. Each tree structure may possibly describe an equation.

Genetic programming works by emulating natural evolution to generate an

optimum model structure that best maximizes some fitness function. Model structures

evolve through the action of operators known as reproduction, crossover and mutation.

Crossover involves interchange of the branches from two parent structures. Mutation is

random creation of a completely new branch. At each generation, a population of model

structures undergoes crossover, mutation and selection and then a fitness function is

evaluated. These operators improve the general fitness of the population. Based on

fitness, the next generation is selected from the pool of old and new structures. The

process repeats itself until some convergence criterion is satisfied and a model is

generated.

 3

One primary classification used for property and process models in Chemical

Engineering is based on algebraic versus differential equation models [Franks 1967]. The

mathematical models are either comprised of a set of algebraic equations for steady-state

operation or by a set of ordinary differential equations (ODE) coupled with algebraic

equations for dynamic (time-dependent) models, or partial differential equations (PDE)

for distributed models. The majority of algebraic mathematical models for physical or

engineered systems can be classified in one of the following three types [Englezos 2001]:

• Type I: A model with a single dependent variable and a single independent

variable. For example, heat capacity model for ideal gas is a function of

temperature.

• Type II: A model with a dependent variable and several independent

variables, for example, a pressure-explicit equation of states (EOS) which is

enable the calculation of fluid phase equilibrium and thermo-physical

properties such as enthalpy, entropy, and density necessary in the design of

chemical processes. Mathematically, a pressure-explicit EOS expresses the

relationship among pressure, volume, temperature, and composition for a fluid

mixture.

• Type III: A model with multiple dependent variables and several independent

variables. A typical group of applications is modeling of reaction kinetics

where possible mechanism is depicted as multiple reactions that are coupled

through concentration of species.

 4

The objective of this dissertation is to develop a methodology, which uses genetic

operations in order to find a symbolic relationship between a single dependent variable

and multiple independent variables, i.e., Type II. The approach was demonstrated for

Type I problems by Zhang [2004] earlier.

The structure and hence the complexity of the model or the equation is not

specified like in the conventional regression, which seeks to find the best set of

parameters for a pre-specified model. The goal is to seek a mathematical expression, in

symbolic form, which fits or approximates a given sample of data using genetic

programming (GP). The approach is called “Symbolic Regression”.

The nested two tier approach is proposed in this research where parameter

regression method is embedded within GP. The GP is employed to optimize the structure

of a model, while classical numerical regression is employed to optimize its parameters

for each proposed structure. The model structure and its parameters are unknown, and

determined for each step through the algorithm. Model’s adequacy is tested through post

analysis.

The approach is tested for a practical and significant problem: development of

local and/or empirical partition coefficient models for vapor liquid separation.

For accurate chemical process design and effective operation, a correct estimate

of physical and thermodynamic properties is a prerequisite. The estimation of these

properties through first principle but complex implicit models for pure components and

mixtures is computationally costly. The computational time is critical particularly in real

time applications. The phase equilibrium calculations are the most computationally

 5

intensive of these properties due to implicit nature of procedures with more complex

property models, especially when used with rigorous separation models [Leesley 1977].

Local thermodynamic models are explicit functions that approximate more

rigorous models that involve implicit computational procedures in equilibrium

calculations. Computations with these functions are fast and non-iterative at times, but

are only valid in a limited region where the functions are accurate. Therefore, local

models need to be updated as the simulation moves into new regions in the state spaces.

Since the late seventies, many functional forms with differing independent variable sets

for these models were suggested and some have been implemented within flow sheet

simulator packages [Perregaard 1992, Storen 1994, and Storen 1997].

This introductory chapter is followed by Chapter Two, where local models, data

mining applications and technologies, evolutionary algorithms and their applications in

chemical engineering, and optimization methods and their objective functions are

reviewed. Chapter Three describes the proposed system structure, guidelines for

determination of GP controlling parameters, and the details of implementing the

approach. Results and discussion are given in Chapter Four. Finally, in Chapter Five,

conclusion and recommendations are presented.

 6

CHAPTER TWO

LITERATURE REVIEW

This chapter includes the review of local models for vapor-liquid partition

coefficient (K value), data mining tasks and techniques, evolutionary algorithms and

optimization methods. In the first section, the development of local models is

summarized. The review on data mining technologies is given in the second section. The

third section describes the development of evolutionary algorithms and the comparison of

different algorithms. More emphasis is given to genetic programming. A brief summary

of applications of intelligent system in chemical engineering is also given at the end of

this section. In the fourth section, some popular optimization methods and pertinent

objective functions (criteria) are reviewed.

2.1 Review of local models for phase partition coefficients

A correct estimate of physical and thermodynamic properties is a prerequisite for

the accurate chemical process design and operation. The calculation of those properties of

pure components and mixtures contributes the major cost in computer time. Local

thermodynamic models are practical alternatives to computationally expensive, more

rigorous macroscopic or molecular models that involve implicit computational

 7

procedures, and often complement them to accelerate computation for run time

optimization and control. Since vapor-liquid equilibrium constant K is among the most

computationally expensive one [Leesley 1977], the research efforts on developing local

models focus on the vapor-liquid equilibrium constant K.

Since the late seventies, several research groups developed local thermodynamic

models and accompanying procedures to be implemented within flow sheet simulator

packages. The objective is to replace, or assist more rigorous thermodynamic models

with local alternatives to reduce the computer time while maintaining the thermodynamic

accuracy at an acceptable level. Local thermodynamic models have been used to

accelerate steady state calculation [Leesley et al. 1977, Chimowitz et al. 1983, Perregaard

1993], dynamic simulation [Chimowitz et al. 1984, Perregaard 1993], and dynamic

optimization [Storen 1997]. The more rigorous thermodynamic models are nonlinear

equation sets which involve iterative calculations for vapor-liquid equilibrium constant

(K) model. The local models are in explicit form, and linear with respect to its parameters.

Their calculation procedures are shown in Figure 2.1 while the flowchart of isothermal,

isobaric flash calculation using an equation of state is shown in Figure 2.2. As can be

seen, the explicit local models are much easier and faster to evaluate, but they are only

valid locally. The local models must be updated, if the simulation proceeds out of the

region where the local model is valid.

The implementation of the idea involves three major components: local model

formulation, error monitor and parameter update, as shown in Figure 2.3.

 8

 Not converged

 Converged

Figure 2.1 Flowchart for an Algorithm for Isothermal Flash Calculation Algorithm

that Uses Composition Dependent Local Models

New estimate

of ix and iy ,

if not direct

substitution.

Compare estimated and

calculated values of ix and iy

Initial estimate of

ix and iy

Calculate

),,,(PTyxK iii

Specify T, P (of equilibrium), and

feed mole fractions iz

Calculate L, by solving

∑ =−+−= 0)]1(/[)1()(LKLzKLf
iii

Calculate

)]1(/[LKLzx iii −+=

iii xKy = (i=1,2,...,n)

 9

 No Yes

Figure 2.2 Flowchart for an Algorithm for Isothermal Flash Calculation Algorithm

that Uses Equation of State

Calculate
lZ using ix , T and P,

Then,),,(i

l

i xPTf

(i=1,2,….,n)

Guess set of iK

(i=1,2,...,n)

Is),,(
i

l

i
xPTf =),,(

i

v

i
yPTf ?

v

i

l

iold

i

new

i

f

f
KK =

Solution for L, and

),,...,2,1(nixi =

),,...,2,1(niyi =

Specify T, P (of equilibrium),

and feed mole fractions iz

Calculate

)]1(/[LKLzx iii −+=

iii xKy = (i=1,2,...,n)

Calculate L, by solving

∑ =−+−= 0)]1(/[)1()(0 LKLzKLf
iii

Calculate
vZ using iy , T and P.

Then,),,(i

v

i yPTf

(i=1,2,….,n)

 10

Figure 2.3 Architecture of Local Model Strategy

The first component of local model based system development is to formulate the

approximate local function. Leesley [1977] developed several local models for ideal

solutions, which didn’t include composition dependence. He derived the local K model

from the complete form:

P

RT

dPV

RT

dPV
P

x

y
K

V

i

P P
L

i

L

is

i

v

ii

i

i

i

S
i

Φ











−Φ

==

∫ ∫

ˆ

exp
0 0

0γ

 (2.1)

After simplification, through ideal solution assumption and avoiding complex

functional forms, an approximation to Eq. (2.1) can be developed for low pressure.

PATPAK
i

s

iii
ln)(lnln ,2,1 −+= (2.2)

Explicit TP

model

Simulator

(Process Model)

Rigorous TP

model

Error Monitor

Parameter

Update

 11

Eq. (2.2) reproduces the temperature dependence of K-values fairly well over the

range of 50-100 °C. However, the relation is too approximate to be useful above the

pressures of 2-3 bars. Thus, a third adjustable coefficient has been introduced in the

approximation formula for high pressure applications:

PAA
T

A
K ii

i

i lnln ,3,2

,1
−+= (2.3)

Chimowitz [1983] extended the local models to non-ideal solutions for multi-

component vapor-liquid system. One of the essential ideas has been to treat multi-

component mixtures as pseudo-binary solutions. The functional form used to model the K

values, which is composition-dependent for each pseudo-binary, has been also derived

from basic thermodynamic considerations. In Chimowitz’s work, he presented a local

model for non-ideal solutions:

PPx
RT

A
K s

iii
lnln)1(ln 2 −+−= (2.4)

Lender [1994] used a sequential least squares procedure to build approximating

formulae from a general model that contains all the terms necessary to represent any

particular mixture:

∑∑
=

++

=

+ +−+++++=
n

i

iin

n

i

ii

s

ii xAxAPA
T

P
A

T

A
TPAAK

1

5

1

2

554

3

21)1(ln)(lnln (2.5)

The problem with this formula is that it has too many parameters (5+2n) to be

efficient. To eliminate the unnecessary terms, Eq. (2.5) is rewritten in the form of:

FQQQA
TT 1

)(
−= (2.6)

 12

Eq. (2.6) is the least squares solution of the Eq. (2.5), where A is the vector of

local model parameters, F is the vector of ln(K) obtained from experimental data, Q is the

matrix of terms. If one lets
1

)(
−= QQC

T
, then,

jjii

ij

ij
CC

C
Corr = (2.7)

If this correlation is found to be higher than a specified tolerance, one of the two

parameters will be eliminated from the corresponding line and column in matrix C.

Stepwise regression strategy is applied. For each parameter introduction, the parameters

are re-computed and the residuals are examined. If they are satisfactory, the local model

is accepted. If not, the parameter is eliminated before introducing the next one. When all

parameters have been examined, the ones that gave the lowest residuals are accented.

The second component is the error monitor to estimate the range of validity of the

local models for a set of parameters and identify when to update the local model. Leesley

and Heyen [1977] fixed upper and lower values of the two independent variables, T and P.

The bounds defined an interval, which included the two data points used in calculating

the parameters. Hillestad et al. [1989] and Storen [1994] developed different error models

for predicting the deviation between local and rigorous thermodynamic property models.

The third component is parameter estimation for updating models as the range of

model have to change. Macchietto [1986] and Hillestad et al. [1989] applied recursive

least-squares methods. The objective here is to preserve information from past data in the

covariance matrix for the parameters. When a new data point is introduced, the

covariance matrix can be updated and new values for the parameters can be obtained.

 13

Storen [1994] used a simplified scheme with correction factors. Ledent [1994] presented

a sequential least squares procedure.

In summary, two major approaches were developed to synthesize local

thermodynamic models. One method is to derive a relationship based on a

thermodynamic insight. Assumptions are made to simplify the relationship [Leesley 1977,

Chimowitz 1983]. Each formula is suitable for a particular type of solutions (ideal/non

ideal etc.). The final structure of formula mostly includes one constant term, one term

that accounts for the temperature influence, and one term accounts for the pressure

influence. In the case of non-ideal solutions, one or more terms may be added, to account

for the composition influence. The other approach to the empirical formulation is on

evaluated statistical basis, i.e. provide a general form of local model, which includes all

the terms described above and their combinations, and then eliminate the redundant terms

by examining the correlation for every pair of parameters [Ledent 1994].

Both approaches are human-centered strategies, and they share a common task of

developing local models. An initial function structure is proposed first, and then the

function structure is simplified and reduced by applying different strategies. The human-

centered approaches may bring some limitations to the final structure of local models due

to the over-simplified structure introduced by inappropriate assumptions made for the

procedure of simplification, or, the insufficient description of the studied system

introduced by proposed initial structure.

The form of local model is important because it is closely related to the

correlation capabilities of the local model. It’s also very important that the local model

 14

ensures a fast, robust and consistent evaluation of the parameters. For this study, we are

interested in a fully automatic algorithm, which can develop formula sufficiently and

flexibly to all solution mixture types and functional forms. This can be obtained with

symbolic regression through genetic programming.

2.2 Review of data mining techniques in the knowledge discovery process

In this study, genetic programming is used as a data mining tool for knowledge

discovery in data.

Knowledge discovery in database (KDD) is the nontrivial process of searching

valid, novel, potentially useful and ultimately understandable patterns or models in data.

It involves a number of steps [Thuraisingham 1999]. For the sake of simplicity, these

steps can be grouped as three major stages: data pre-processing, data mining, and post-

processing. The simplified flowchart is shown in Figure 2.4.

Data mining, here, refers to a particular step in overall knowledge discovery

process. As the core stage of KDD process, it focuses on applying discovery algorithms

to find understandable and useful relationships from observed data. The data mining tasks

can be divided into three major categories [Hand et al. 2001]: model building,

discovering pattern and rules, and retrieval by content.

The tasks of model building can be categorized further based on objectives. The

first is descriptive modeling. The goal of a descriptive model is to describe all of the data.

Examples of such descriptions include models for the overall probability distribution of

 15

the data (density estimation), partitioning of the n-dimensional space into groups (cluster

analysis), and models describing the relationship between variables (dependency

modeling). The second one is predictive modeling. The aim of predictive modeling is to

build a model that will allow the value of one variable to be predicted from the known

values of other variables. The key distinction between prediction and description is that

prediction has, as its objective, one or more than one specifically targeted variables, while

in descriptive problems no single variable is central to the model. Classification and

regression are two of the most popular applications in predictive modeling. In

classification, the variable being predicted is categorical, while in regression the variable

is quantitative.

From a data mining viewpoint, this study can be set in the category of predictive

modeling, which involves both model structure and parameter regression to build a local

model for vapor-liquid equilibrium coefficient K.

Raw Data Model

 Objectives

Figure 2.4 Knowledge Discovery Process

Data Mining Tasks:

*Descriptive modeling

*Predictive modeling

*Discovering patterns and rules

* Retrieval by content

Data Pre-

processing:

*Data integration

*Data cleaning

*Feature Selection

To clean out:

*incomplete/imprecise data

*noisy data

*Missing attribute values

*Redundant or insignificant data

Data Mining techniques:

*Statistics/regression/optimization
*Evolutionary computing

*Neural networks

* Regression Tree

Examine results:

Model Testing

&

Statistics

Analysis

 16

There are many different data mining techniques. In this section, only a few of

techniques that are applicable for predictive modeling are summarized and compared.

These include linear regression, regression tree, neural network, genetic algorithm and

genetic programming.

Since the structure of the linear model is simple, easy to interpret, and estimation

of parameters for linear models is straightforward, linear regression holds a special place

among data-driven data analysis methods.

A linear regression model can be represented as:

i

n

i

i Xaay ∑
=

∧

+=
1

0 (2.8)

where the ai s are parameters that need to be estimated by fitting the model to the given

data set. Xi can simply be original predictor variables xi, or more generalized form of

f(xi), i.e., transformations of the original x variables. f(xi) could be smooth function, such

as log, square-root, or cross-product terms of xis for polynomial models which allows

interaction among the xis in the model.

The parameter estimation for linear regression model is straightforward through

least square fitting. However, selecting a proper model structure to fit the data is a

challenge. This is because the selected model is generally empirical, rather than first

principle. The model may not include all of the predictor variables, or certain functions of

the predictor variables, that are needed for correct prediction.

 17

Regression tree (RT) can be viewed as a variant of decision trees. It’s designed

for approximating real-valued functions, instead of being used for classification as what

traditional decision tree does. Regression tree has representation as Figure 2.5:

Figure 2.5 Example of a Regression Tree

Regression tree is built through a process known as binary recursive partitioning.

This is an iterative process that splits the data into partitions, and then splitting it up

further on each of the branches. In the structure of regression tree, each intermediate node

is decision node that contains a test on one predictor variable's value. The terminal nodes

of the tree contain the predicted output variable values.

The objective function for building an optimum tree structure, i.e. the minimized

function, is the mean absolute. The process of regression tree induction usually has two

phases: building a tree structure that covers the training data, and pruning the tree to the

best size using validation data set. In training process, at each node, the best split that

x2<=1 x2>1

 x1<=3 x1>3

x1

x2 y=10

y=2 y=5

 18

minimizes the mean absolute distance is selected. Partitioning continues until a pre-

specified minimum number of training data are covered by a node, or until the mean

absolute distance within a node is zero. "Pruning" involves chopping off nodes from the

bottom up so that there are fewer and fewer branches in the tree, so, the regression tree is

pruned to avoid the over-fitting.

In terms of performance, regression tree is extremely effective in finding the key

attributes in high dimensional applications. In most applications, these key features are

only a small subset of the original feature set. On the negative side, regression trees

cannot represent compactly many simple functions, for example linear functions. A

second weakness is that the regression tree model is discrete, yet predicts a continuous

variable. For function approximation, the expectation is a smooth continuous function,

but a decision tree provides discrete regions that are discontinuous at the boundaries. For

its explanatory capability, regression tree cannot describe the relationship between output

variable and predictor variables in a form of functions.

Figure 2.6 A Simple Multilayer Neural Network Model with Two Hidden Nodes

v1

v2

w1

w2

w3

w4

w5

w6

Input Hidden layer Output

h1

h2

x1

y x2

x3

 19

Neural networks have been found to be useful because of their learning and

generalization abilities. Model structure presented by neural network is multiple layers of

nonlinear transformations of weighted sums of the input variables. In a single hidden

layer network as shown in Figure 2.6, wi and vi are weight factors, hi is nonlinear

transformation of sum of weighted input variables x. The output variable y is sum of

weighted hi. Therefore, in general, output variable y is a nonlinear function of the input

variables x. As a result, neural network can be used as a nonlinear model for regression.

If there is more than one hidden layers, the outputs from one layer, which is the

transformed linear combinations of nodes in previous layer, serve as inputs to the next

layer. In this next layer, the inputs are combined in exactly the same way, i.e., each node

forms a weighted sum that is then nonlinearly transformed. The number of layers and the

number of nodes per layer are important decisions. There is no limit to the number of

layers that can be used, though it can be proven that a single hidden layer (with enough

nodes in that layer) is sufficient to model any continuous functions [Hand 2001]. Once a

network has been structured for a particular application, this network is ready to be

trained. The weights wi and vi are the parameters of this model and must be determined

from the data in training process.

The fact that neural network is highly parameterized makes it very flexible, so

that it can accurately model relatively small irregularities in functions. On the other hand,

such flexibility means that there is a serious danger of over fitting. In recent years,

strategies have been developed for overcoming this problem. Due to the multiple layers

of nonlinear transformation of weighted sum, the relationship between output variable y

 20

and input variables x is hard to be presented in a single explicit form of mathematical

model, the neural network is usually used as a black box for predictive modeling.

Evolutionary algorithms (EAs) provide an effective avenue for structural and

parametric regression. EAs are originally divided into three major categories, namely

evolutionary programming (EP) [Fogel et al. 1966], evolution strategy [Rechenberg

1973] and genetic algorithms (GAs) [Holland 1975]. In the 1990s, a new branch called

genetic programming (GP) was added to the group which was introduced by John Koza

[Koza 1992, 1994]. GP is an extension of John Holland’s GA in which the genetic

population consists of models of varying complexities and structures.

GA uses binary string to represent possible solutions to a problem, whereas GP

uses tree structure as knowledge representation. Both GA and GP guide the search by

using some genetic operators and the principle of “survival of the fittest”. The major

difference between GA and GP is their coding used to represent possible solutions for a

problem. In GA, the solution is presented in a form of fixed length binary string, and its

output is a quantity. The aim of such coding is to allow the possible solutions to be

manipulated with those genetic operators in evolutionary process. Sometimes, it’s a

challenge to encode the possible solutions in a structure of binary string. GP uses tree

structure with variable sizes, which allows the solution to be manipulated in their current

form. Therefore, GP can be used as a tool for symbolic regression, i.e. structural

regression. The details of GP will be explained in the next section.

 21

2.3 Elements of structural regression using genetic programming

The objective of this research is to find the approximate function for K, which

includes parametric and structural regression. As mentioned earlier, Genetic

programming (GP) is an extension of the genetic algorithm in which the genetic

population consists of possible solutions (that is, compositions of primitive functions and

terminals).

Koza [1992] demonstrated a surprising result that, genetic programming is

capable of symbolic regression. To accomplish this, genetic programming starts with a

pool of randomly generated mathematical models and genetically breeds the population

using the Darwinian principle of survival of the fittest and an analog of naturally

occurring genetic crossover (sexual recombination) operation. In other words, genetic

programming provides a way to search the space of possible model structures to find a

solution that fits, or approximately fits, a given data set.

Genetic programming is a domain independent method that genetically breeds

populations of models to fit the given data set by executing the following three steps that

are also shown in Figure 2.7:

• Generate an initial population of random individuals (mathematical models)

composed of the primitive functions and terminals of the problem.

• Iteratively perform the following intermediate-steps until the termination

criterion has been satisfied:

 22

o Execute each individual in the population and assign it a fitness value

according to how well it solves the problem.

o Create a new population of individuals by applying the following three

primary operations. The operations are applied to individual(s) in the

population selected with a probability based on fitness (i.e., the fitter

the individual, the more likely it is to be selected).

� Reproduction: Copy an existing individual to the new

population.

� Crossover: Create two new offspring individuals for the new

population by genetically recombining randomly chosen parts

of two existing individuals. The genetic crossover (sexual

recombination) operation (described below) operates on two

parental individuals and produces two offspring individuals

using parts of each parent.

� Mutation: randomly alteration in existing individuals, and

produces one offspring individuals.

• The single best individual in the population produced during the run is

designated as the result of the run of genetic programming. This result may be

the solution (or approximate solution) fitted to the given data set.

The description on GP’s components will be given in the following subsections,

which includes terminal set, function set, fitness function, genetic operators and selection

strategies.

 23

Figure 2.7 A Flowchart for Computation through Genetic Programming

2.3.1 Terminal set, function set and initial representation

In genetic programming, any explicit mathematical equations can be represented

by a tree that intermediate nodes are mathematical operators (functions), and terminal

nodes (leaves) are input variables and parameters.

Create Initial Population

Done Terminate?

Crossover

N=N+2

Reproduction

N=N+1

Mutation

N=N+1

N=Population Size?

Gen = 0

Gen=Gen+1

Evaluate fitness of each individual in population

 N = 0

Select Genetic Operation Probabilistically

Yes

Yes

 24

As shown in Figure 2.8, the tree corresponding to the equation of ideal heat

capacity 2TcTbaC
p

⋅+⋅+= can be represented as:

Figure 2.8 Functional Representation of)(2

p
CTcTba ⋅+⋅+ Using a Tree Structure

In this graphical depiction, the function set consists of intermediate nodes of the

tree that are labeled with several mathematical operators, such as +,* and ^. The terminal

set consists of terminal nodes (leaves) of the tree that are labeled with input variables T,

parameters a, b, c and constant “2”.

The terminal and function sets are important components of genetic

programming. The terminal and function sets contain the primitive elements of the

mathematical model to be composed. The sufficiency property requires that the set of

terminals and the set of primitive functions should be capable of expressing a solution to

the problem.

*

^

2 T

c

+

+

a *

T b

 25

2.3.2 Fitness measures for models of varying complexity

The most difficult and most important concept of genetic programming is the

fitness function. The fitness function determines how well a generated model is fit to the

data. Fitness is the driving force of genetic programming. In genetic programming, each

individual model in a population is assigned a fitness value.

2.3.2.1 Fitness function with no penalty for the model complexity

The basic fitness function is a function of the difference between the model

predicted value and the data. Widely used basic fitness functions include the raw fitness,

adjusted fitness and normalized fitness. The raw fitness is the sum of squared errors. In

particular, the raw fitness r (i, t) of an individual model i in the population of size M at

any generation t is

[]∑
=

−=
eN

j

jCjiStir
1

2
)(),(),((2.9)

where S (i, j) is the value returned by individual model i for data case j (of Ne data cases)

and C (j) is the data value for data case j. The closer this sum of squared errors is to zero,

the better the model.

 Another popular raw fitness is absolute error. Since squared error gives greater

weight to extreme differences between the predicted value and the data than absolute

error does, the quality of the model is perhaps more appropriately reflected in absolute

 26

error for some cases. Each raw fitness value can be adjusted (scaled) to produce an

adjusted fitness measure a (i, t). The adjusted fitness value is

)),(1(

1
),(

tir
tia

+
= (2.10)

where r (i, t) is the raw fitness for individual model i at generation t. Unlike raw fitness,

the adjusted fitness is larger for better individuals in the population. Moreover, the

adjusted fitness lies between 0 and 1.

Each such adjusted fitness value a (i, t) is then normalized. The normalized fitness

value n (i, t) is

∑
=

=
M

j

tja

tia
tin

1

),(

),(
),((2.11)

The normalized fitness not only ranges between 0 and 1 and is larger for better

individuals in the population, but the sum of the normalized fitness values is 1. Thus,

normalized fitness is a probability value.

2.3.2.2 Fitness function with model complexity control

It was noted that, after a certain number of generations, the average size of the

mathematical models in a population would start growing at a rapid pace. However, the

increase in complexity of model doesn’t show significant improvement on fitness. This

behavior displayed by GP is called bloat. Bloat often occurs in symbolic regression

problems where GP runs start from a population of small size individuals, and then grows

 27

in complexity to be able to comply with all data. In practice, bloat affects the efficiency

of GP significantly. The over-complicated model structures are computationally

expensive to evolve or use, it also can be hard to interpret, and may display poor ability

of generalization, i.e. overfitting problem. Over the years, many theories have been

proposed to explain bloat from different aspects, but none of them is universally accepted

as a unified theory to explain the various observations on bloat. Therefore, several

strategies for control of complexity were proposed with different theoretical foundations.

2.3.2.2.1 Minimum description length

As described earlier, the problem of over fitting is a common problem to every

application in GP. Besides the “complexity” of the generated model by GP, the presence

of noise in the data is another possible cause of over fitting. Good results with noisy data

are only achievable at the cost of precision on the entire data distribution. The issue of

selecting a model of appropriate complexity to overcome the over fitting problem is,

therefore, always a key concern in any GP application.

One of proposed strategies is the Minimum Description Length (MDL), which

provides a trade-off between the accuracy and the complexity of the model by including a

structure estimation term for the model. The final model (with the minimal MDL) is

optimum in the sense of being a consistent estimate of the complexity of model while

achieving the minimum error.

 28

There are a number of criteria that have been proposed for MDL, which compare

models based on a measure of goodness of fit penalized by model complexity. The most

popular and widely used criteria are Akaike's Information Criterion (AIC) (Eq. (2.12))

and Schwarz Bayesian Information Criterion (BIC) (Eq. (2.13)).

Akaike's information criterion (AIC)

n/2 ln (MSE) + k. (2.12)

Schwarz Bayesian Information Criterion (BIC)

n /2 ln(MSE) + k ln(n)/2. (2.13)

where MSE is the mean squared prediction error, MSE = [1/n] SSE, n is the number of

the data points used for the identification of the model, i.e. the sample size.

Both AIC and BIC take the form of a penalized maximized likelihood, and their

first term can be interpreted as the evaluation on model’s accuracy, the second term is the

penalty term, which can be interpreted as the complexity of the model, which is a

function of the number of parameters and the depth of the tree structure that represents

the model. These two criteria utilize different penalties: AIC adds 1 for each additional

variable included in a model, while BIC adds ln (n)/2.

2.3.2.2.2 Parsimony pressure

A variety of practical techniques have been proposed to control complexity bloat.

Among these techniques, parsimony pressure method is a simple and frequently used

 29

method to control bloat in genetic programming [Zhang et al. 1993, Zhang et al. 1995]. In

this method, the parsimony pressure is applied to the original fitness function:

)()()(xlcxfxf p ⋅−= (2.14)

)(xf p
 is the new fitness function with parsimony pressure term.)(xf is the original

fitness of model x, as mentioned above. c is a constant, known as the parsimony

coefficient.)(xl is the size of model x, counted as the number of intermediate nodes in

the tree representation, i.e., the number of mathematical operators appeared in the model.

This new fitness function)(xf p
 minimizes model size by using the penalty term as a

mild constraint. The penalty is simply proportional to model size. The fitness of models

will decrease with the increase on model size. The strength of control over bloat is

determined by the parsimony coefficient c. The value of this coefficient is very important:

if “c” has a small value, GP runs will still bloat wildly; if the value is too large, GP will

take the size of the minimization model as its main target and will almost ignore fitness,

which incurs the loss of model accuracy, consequently, weaken the prediction ability of

model. However, the proper values of parsimony coefficient highly depend on specific

problem being solved, the choice of functions and terminals, and various GP parameter

settings. Very few theories have been proposed to help setting the parsimony coefficient,

and trial and error method was widely used before Poli [2008] introduced a simple,

effective, and theoretically sound solution to this problem.

The strategies introduced above are ones focusing on the fitness against

complexity bloat, and here-upon, over fitting problem. Other than those anti-bloat

selection rules, numerous empirical techniques have also been proposed to control

 30

complexity bloat, which are based on GP algorithm’s improvements. Briefly, these

techniques can be summarized into two major categories: size and depth limits [Koza

1992, and anti-bloat genetic operators [Kinnear 1993, Langdon 1998, Langdon 2000, and

Crawford-Marks et al. 2002].

2.3.2.3 Fitness function using external validation

Section 2.3.2.2 introduces two of the well-accepted strategies on the complexity

control. Although based on different theories, they both combine multiple objectives into

a scalar fitness function. A different strategy for choosing models is sometimes used, not

based on adding a penalty term, but instead based on external validation of the model.

The basic idea is to randomly split the data into two parts, a training set and a validation

set. The training set is used to construct the models and estimate the parameters. Then,

the fitness function is recalculated using the validation set. These validation scores are

used to select models. In the validation context, since the training set and validation data

set are independently and randomly selected, for a given model the validation score

provides an unbiased estimate of the fitness value of that model for new data points,

therefore, the difference in validation scores can be used to choose between models. This

general idea of validation has been extended to the notion of cross-validation. This

external validation method will be discussed further in section 3.5.1.3.

 31

2.3.3 Genetic operators

 In this section, three genetic operators will be described in detail. In the first

section, reproduction and crossover will be introduced as two primary operations, and the

mutation, including its two different types, will be introduced as a secondary operation.

2.3.3.1 Reproduction and crossover

The two primary genetic operations in GP for modifying the structures are fitness

proportionate reproduction, as shown in Figure 2.9, and crossover, as shown in Figure

2.10.

The operation of fitness proportionate reproduction for the genetic programming

is an asexual operation in that it operates on only one parental individual (model). The

result of this operation is one offspring individual (model). In this operation, if f (i, t) is

the fitness of an individual i in the population M at generation t, the individual i will be

copied into the next generation with probability

∑
=

M

j

tjf

tif

1

),(

),(
 (2.15)

The operation of fitness proportionate reproduction does not create anything new

in the population. It increases or decreases the number of occurrences of individuals

already in the population, and improves the average fitness of the population (at the

expense of the genetic diversity of the population). To the extent, it increases the number

 32

of occurrences of more fit individuals and decreases the number of occurrences of less fit

individuals.

The crossover (recombination) operation for the genetic programming starts with

two parental individuals (models). Both parents are selected from the population with a

probability equal to its normalized fitness. The result of the crossover operation is two

offspring individuals (models). Unlike fitness proportionate reproduction, the crossover

operation creates new individuals in the populations.

Parent: bTa +⋅ Offspring: bTa +⋅

Figure 2.9 An Example of Reproduction Operator

The operation begins by randomly and independently selecting one point in each

parent using a specified probability distribution (discussed below). The number of points

in two parental individuals typically is not equal to each other. As will be seen, the

crossover operation is well-defined for any two individuals. That is, for any two

individuals and any two crossover points, the resulting offspring are always valid

individuals in the population. Each offspring contains some traits from its parent.

+

*

a T

b

+

*

a T

b

 33

The crossover fragment for a particular parent is the rooted sub-tree whose root is

the crossover point for that parent and where the sub-tree consists of the entire sub-tree

lying below the crossover point (i.e., more distant from the root of the original tree).

The first offspring is produced by deleting the crossover fragment of the first

parent and then impregnating the crossover fragment of the second parent at the

crossover point of the first parent. The second offspring is produced in a symmetric

manner. Since entire sub-trees are swapped, this genetic crossover (recombination)

operation produces syntactically and semantically valid individuals as offspring

regardless of which point is selected in either parent. For example, consider the parental

individuals, i.e., algebraic equation bTa +⋅ and baT ⋅+2 . These two models can be

depicted graphically as rooted, point-labeled trees with ordered branches.

The two parental models are shown in Figure 2.10. Suppose that the crossover

points are randomly selected for each parent individual. The crossover points are

therefore the * in the first parent and the + in the second parent. The places from which

the crossover fragments were removed are identified with dash line.

2.3.3.2 Mutation

Mutation is another important feature of genetic programming. Two types of

mutations are possible. In the first type, a function can only replace a function or a

terminal can only replace a terminal. In the second type, an entire sub-tree can replace

another sub-tree. Figures 2.11 and 2.12 explain the concept of mutation:

 34

 Crossover point

Crossover point

Parent1: bTa +⋅ Parent2: baT ⋅+2

Offspring1: bTa +⋅ 2 Offspring2: baT ⋅+

Figure 2.10 Crossover Operation for an Algebraic Equation Manipulation

Parent: bTa +⋅ 2 Offspring: aaT +⋅+)2(

Figure 2.11 An Example of Mutation Operation, Type I

+

*

a T

b

+

^

2 T

*

b a

+

T *

b a

+

*

a ^

2 T

b

+

*

a ^

2 T

b

+

*

a +

2 T

a

 35

Parent: bTa +⋅ 2 Offspring: bTa +⋅

Figure 2.12 An Example of Mutation Operation, Type II

2.3.4 Selection strategy

There are many different selection methods based on fitness. The most popular is

fitness-proportionate selection. If f (i, t) is the fitness of individual i in the population at

generation t, then, under fitness-proportionate selection, the probability that individual i

will be selected to process genetic operation is:

∑
=

M

j

tjf

tif

1

),(

),(
 (2.16)

where M is the population size. Among the alternative selection methods are tournament

selection and rank selection [Goldberg 1989]. In rank selection, selection is based on the

rank (not the numerical value) of the fitness values of the individuals in the population.

Rank selection reduces the potentially dominating effects of comparatively high-fitness

individuals in the population by establishing a predictable, limited amount of selection

pressure in favor of such individuals. At the same time, rank selection exaggerates the

+

*

a T

b

+

*

a ^

2 T

b

 36

difference between closely clustered fitness values so that the better ones can be sampled

more.

In tournament selection, a specified group of individuals (typically two) are

chosen at random from the population and the one with the better fitness (i.e., the lower

standardized fitness) is then selected.

2.4 Parametric regression: review of objective functions and optimization methods

Optimization techniques are used to find a set of values for design variables that

best meet an objective. In parameter estimation, the optimum parameter values are

searched with the aid of a selected optimization method, to minimize or maximize a well-

defined objective function that depends on the parameters, measurements and the model.

The objective function is a suitable measure of the overall departure of the model

performance from the observed measurements. A widely used objective function in

parameter estimation is the least squares formulation.

For the model equation),(bxfY = , b is denoted as a vector that is an estimate of

the parameter vector β , x is a vector of independent variables, the sum of squared

residuals is:

)()'(' ** YYYY −−==Φ εε (2.17)

where Y
*

is vector of experimental observations of the dependent variables. The least

squares method is used to evaluate the unknown vector b by minimizing the sum of

squared residuals .Φ

 37

In linear regression analysis, the equation is a linear function of the parameters,

which is in the form of:

µβ += XY * (2.18)

Eq. (2.17) can be:

)()'(' ** XbYXbY −−==Φ εε (2.19)

In order to calculate the vectorb , which minimizes Φ , the partial derivative of

Φ with respect to b is taken, and set equal to zero:

0)()'()()'(** =−−+−−=
∂

Φ∂
XXbYXbYX

b
 (2.20)

Eq. (2.20) can be simplified and rearranged to yield:

*'1
)'(YXXXb

−= (2.21)

Therefore, the value of the parameter vector b can be obtained directly from the

Eq. (2.21) given above.

In nonlinear regression analysis, the model equation),(bxfY = is a relation that

is nonlinear with respect to the parameters. There are several techniques for minimization

of the sum of squared residuals described by Eq. (2.17). These techniques are broadly

classified into two categories: gradient methods and direct search methods. The gradient

search methods require derivatives of the objective functions whereas the direct methods

are derivative-free and rely solely on function evaluations. The gradient search methods

are efficient for smooth functions, and still efficient if there are some discontinuities in

the derivatives. Direct search techniques, which use function values, are more efficient

for highly discontinuous functions.

 38

The major gradient search methods include: Gauss-Newton, steepest descent,

Marquardt and Newton’s. All of these methods are local methods that provide global

solution only for convex models.

Gauss-Newton method can be used to convert nonlinear problem into a linear one

by approximating the function Y by a Taylor series expansion around an estimated value

of the parameter vector b:

bJYb
b

Y
bxYbbxYbxY

mb

mm ∆+=∆
∂

∂
+=∆+=),(),(),((2.22)

where the Taylor series has been truncated after the second term. Eq. (2.22) is linear

in b∆ .

Therefore, the problem has been transformed from finding b to that of finding the

correction to b, that is b∆ , which must be added to an estimate of b to minimize the sum

of squared residuals.

,

......

..................

......

1

1

1

1























∂

∂

∂

∂

∂

∂

∂

∂

=

k

nn

k

b

Y

b

Y

b

Y

b

Y

J (2.23)

and)(')'(
*1

YYJJJb −=∆ −
 (2.24)

bbb
mm ∆+=+1 (2.25)

where m is the iteration counter.

In Gauss-Newton method, the drawback is the fact that the incremental changes,

namely the b∆ as described previously, can be estimated very poorly due to computation

 39

of the partial derivative matrix (J’J)
-1

 when it is close to singular. The result is that the

convergence may be very slow with a large number of iterations being required. Even

wrong signs may occur on the b∆ s, and then the procedure will move in the wrong

direction. The method may not converge at all with the residual sum of squares

continuing to increase. Also, the closer a model is to behaving like a linear model, the

more likely it is to converge in a small number of iterations from a reasonable starting

point and, more important, the zone of ability of converge is greater for a close-to-linear

model than a far-from-linear one. Since this objective function is a quadratic one in

nature, Gauss-Newton method is susceptible.

In the steepest descent method, the gradient of a scalar objective function gives

the direction of the greatest objective function decrease at any. Therefore, the initial

vector of parameters estimates are corrected in the direction of the negative gradient of

Φ :










∂

Φ∂
−=∆

b
Kb (2.26)

where Φ is the sum of squared residuals and K is a suitable constant factor and b∆ is the

correction vector to be applied to the estimated value of b to obtain a new estimate of the

parameter vector, same as before:

bbb
mm ∆+=+1 (2.27)

where m is the iteration counter.

Then, b∆ can be calculated from:

)('2
*

YYKJb −=∆ (2.28)

 40

where J is the Jacobian matrix of partial derivatives of Y with respect to b evaluated at all

n points where experimental observations are available, as shown in Gauss-Newton

method.

The steepest descent method moves toward the minimum sum of squares without

diverging, provided that the value of K, which determines the step size, is small enough.

The value of K may be a constant throughout the calculations, which may change at

calculation step. However, the rate of convergence to the minimum decreases as the

search approaches this minimum.

Marquardt method is a compromise between the Gauss-Newton and the steepest

descent methods. This interpolation is achieved by adding the diagonal matrix)(Iλ to the

matrix (J’J) in the function of b∆ in Gauss-Newton method above:

)(')'(
*1

YYJIJJb −+=∆ −λ (2.29)

The value of λ is chosen, at each iteration, so that the corrected parameter vector

will result in a lower sum of squares in the following iteration. We can see from

b∆ equation above, as 0→λ , Marquardt method approaches the Gauss-Newton method;

while as ∞→λ , this method is identical to steepest descent, with the exception of a

scale factor that does not affect the direction of the parameter correction vector but that

gives a small step size. From this aspect, by selecting appropriate value of λ , an

indicator of compromising between Gauss-Newton and Steepest Descent method,

Marquardt method can combine the best feature of those two methods: almost always

converges and does not “slow down” [Draper et al. 1981].

 41

In Newton’s method, similar to Gauss-Newton method that approximates the

function Y by a Taylor series expansion to the second term, the sum of squared residuals

Φ is also expanded by Taylor series up to the third term:

b
b

bb
b

bxbx

mm

m ∆








∂

Φ∂
∆+∆









∂

Φ∂
+Φ=Φ

)(

2

2)(

)('
2

1
),(),((2.30)

Taking the partial derivative of both sides of Eq. (2.30) with respect to b gives

bHYYJb
bbb

mm

∆+−−=∆








∂

Φ∂
+









∂

Φ∂
=









∂

Φ∂
)('2 *

)(

2

2)(

 (2.31)

where H is Hessian matrix of the second-order partial derivative of Φ with respect to b

evaluated at all n points where experimental observations are available:

,

...................

...............

...................

2

2

1

2

2

2

12

2

1

2

2

1

2



























∂

Φ∂

∂∂

Φ∂

∂∂

Φ∂

∂∂

Φ∂

∂∂

Φ∂

∂

Φ∂

=

kk

k

k

bbb

bbbb

bbb

H (2.32)

The above description of optimization methods is based on least squares as the

objective function. Other than least squares, maximum likelihood estimation is also

popularly used as an objective function for parameter estimation purpose, which is based

on statistical principles and account of data quality.

In general, statistically based parameter estimation reduces the problem of the

determination of parameters in the mechanistic model to assessing the correspondence

between the residuals generated by a particular set of parameter values and the

assumptions made about the residual distribution.

 42

It is assumed that every vector of residuals ε for an experiment is a random vector

following a probability density function of specified form),(bp ii ε , where b is the

unknown vector of parameters. The experimental outcome of a
iε vector is regarded as a

random sample out of the distribution defined by
ip . The combination of all

ip for all

iε results in the likelihood function:

,...),,;(321 εεεbL

which, for correct specification of the joint probability density function for allε ’s and

known true b values, represents the probability density of getting just that set of

iε vectors obtained experimentally.

 In the parameter estimation situation, b is not known. So in Maximum Likelihood

Estimation, those unknown values are searched with the aid of an optimization method,

which maximize this function L. This means that the “optimal” values b obtained are

those parameter values which generate the residual pattern for which the probability

density is highest.

 Maximum Likelihood (ML) method can be used with any joint probability density

functional form of residuals, while one specific distribution properties of residuals has to

be assumed before ML method is applied. In most of applications, the normal distribution

is used. However, often these assumptions are not fulfilled at optimal parameter values

determined due to random measurement errors, systematic measurement errors, such as

drift, calibration, measurement technique, deterministic model inadequacies, errors in

values assumed to be precisely known dependent variable.

 43

Other than these measurement errors, there are three types of computation related

errors: the truncation error, the round off error, and the propagation error. The truncation

error is a function of the number of terms that are retained in the approximation of the

solution from the infinite series expansion. Since computers carry number using a finite

number of significant figures, a round off error is introduced in the calculation when the

computer rounds up or down (or just chops) the number to n significant figures.

Meanwhile, the truncation and round off errors may accumulate and propagate, creating

the propagation error, which may grow in exponential or oscillatory pattern. Thus, these

errors may cause the calculated solution to deviate drastically from the correct solution.

 All errors explained above may affect the distribution properties of residuals, in

other words, the assumptions made on the probability density function of the residuals

may be violated. In this case, the optimal parameter values may be not trustable.

2.5 Applications of intelligent system in chemical engineering

Development of intelligent systems in process engineering has been mainly

focused in the following six areas [Stephanopoulos 1987, 1994]:

• Process design: Select thermodynamic models and estimate physical

properties: select the best thermodynamic model(s) for the problem

[Fredenslund 1980, Banares-Alcantara et al. 1985, and Gani 1989]. If no

explicit models are available, the system could select a method and estimate

the value of the physical property [Friese 1998]. Use process data with

 44

engineering heuristics to recommend the optimal processing method for the

task at hand [Bamicki 1990].

• Fault diagnosis: process troubleshooting, i.e., determining the origins of

process problems and recommending solutions [Frank 1997, Ozyurt 1998,

Ruiz et al. 2000].

• Process control: improving process control through utilization of qualitative

process information, trend analysis, neural networks, etc.

• Planning and operations: scheduling, developing procedures, assessing safety

concerns, executing complex inter-related procedures, and aiding maintenance

[Csukas 1998].

• Modeling and simulation: using qualitative reasoning and symbolic computing

to model and simulate chemical processes [Cao et al. 1999, McKay et al.

1997, Csukas 1998, Greeff 1998, Gao et al. 2001, Hinchliffe 2003, Grosman

et al. 2004].

• Product design, development, and selection: recommending chemical

formulations, compositions, materials, process procedures, etc., required to

design, develop, or select a new or existing product that achieves specified

objectives [Xu 2005].

The foundation of accurate chemical process design and simulation is a correct

estimate of physical and thermodynamic properties. In this exploratory project, an

automatic procedure will be developed to identify a thermo-physical model from a set of

 45

given data. This model is expected to be used in further investigation of the physical

system or to validate the structure of an existing model developed in some other way.

 46

CHAPTER THREE

A HYBRID SYSTEM FOR STRUCTURAL AND PARAMETRIC

OPTIMIZATION

In this chapter, the structure of hybrid system and its implementation is

introduced. The structure of hybrid system is presented in the first section. The data used

throughout this research and its preparation are given in the second section. In the third

section, the regression strategies applied in this research is introduced. The fourth section

describes the determination of genetic programming (GP) controlling parameters. In the

last section, the model verification strategies are summarized.

3.1 The system structure

The purpose of this research is to investigate the feasibility of designing a

general-purpose machine function identification system which can automatically build a

function model to fit the given experimental data. The approach is to solve the function

identification problems is through coupling the symbolic computing method (Genetic

Programming) and a parameter regression method. The parameter regression process

involves either linear or nonlinear depending on the problem definition. The two-layer

structure is shown in Figure 3.1. The parameter regression is embedded in the genetic

 47

programming as an inner layer. For the given data set, the structural regression system

searches the space of mathematical models, dynamically creates new generation of

mathematical models using genetic programming, and optimizes the parameters of the

generated models using the linear or nonlinear regression algorithm in an effort to

develop best model and associated parameter that represent (fit) the data. The complete

procedure ends with a statistical analysis which is used to evaluate the model and its

performance.

Raw Data Final Model

 Candidate Parameter
 Structure Value &

 Outer Layer: Structure

 Inner Layer:

 Function Identification

Figure 3.1 A Hybrid System Structure for Structural and Parametric Optimization

Model

Structure

Identification

Model
Testing &

Statistical

Analysis

Parameter Estimation

Data Pre-
Processing

Outlier
Detection

PCA

 48

3.2 Data and data preparation

Generally, the data to be mined is voluminous, incomplete or imprecise, noisy,

has missing values, redundant or insignificant. To get a better mining result, the data will

be preprocessed to eliminate those data points. In other words, pre-processing is a

sequence of operations converting raw data into data representation suitable for

processing tasks. Data preparation is one of the most important steps in the model

development process. From the simplest analysis to the most complex model, the quality

of the data used is vital to the success of the modeling. Once the data is cleaned, then, the

data set is worthy of modeling.

The widely applied data pre-processing approaches include data integration, data

cleaning and feature selection [Freitas 2002]. Data integration is necessary if the data to

be mined comes from several different sources. This step involves, for instance,

removing inconsistencies in variable names or variable value names between data sets of

different sources. For data cleaning, it is important to make sure that the data to be mined

is as accurate as possible. This step may involve detecting and correcting errors in the

data, filling in missing values, etc. Feature selection (select the variable) consists of

selecting a subset of features (variables) relevant for mining the data among all original

features.

Data on vapor-liquid equilibrium can be obtained from various sources. In this

research, the equilibrium data for propylene-propane and acetone-water systems are taken

from DECHEMA. Since the linear regression method is sensitive to outliers, outliers are

 49

particularly need to be detected, and deleted if there is any. Outliers can be detected from

studentized residuals that are defined for the ith observation with:

)1(ii

ii
i

hMSE

yy
r

−

−
=

∧

 (3.1)

where iih is the ith diagonal element of the “hat” matrix H that is defined as:

')'(1 XXXXH nn

−
× = . MSE is the mean square error. When working with a sufficient

number of observations, e.g. (n-p-1)>20, where n is the number of observations, and p is

the number of parameters, a
i

r >2.0 indicates that the ith observation might be an outlier.

Similarly, a
i

r >2.5 is a strong indicator of a likely outlier.

3.3 The regression strategy

The developed GP package includes both linear regression and nonlinear

regressions options for parameter estimation. The regression procedure in this package is

shown in Figure 3.2. Regression strategy can be selected depending on the definition of

the problem. All individuals in the population will be checked for their linearity

automatically. Depending on the characteristics of the problem, user needs to assign a

value to the indicator of model’s type before running the program. The assigned values

can be -1 for linear model only, 0 for both linear and nonlinear models, and 1 for

nonlinear model only. If the final model is expected to be linear, and the indicator’s value

is set to -1, then, the program will delete the nonlinear models and apply the linear

 50

regression. If the final model is expected to be nonlinear, the indicator’s value is set to 1,

then, the program will delete the linear models, and get into the nonlinear regression

procedure. If the final model could be either linear or nonlinear, user predefines the

indicator’s value as 0, then, after checking the linearity of individual model, the program

will apply the corresponding regression strategy considering both types of models.

 To identify the linearity of model, the first order derivative of individual model

with respect to each parameter is taken. If all derivatives of model with respect to

parameters are constant, the model is linear on parameters. For example:

xbay ⋅+= (3.2)

xbay ⋅+= 2
 (3.3)

Eq. (3.2) is linear, while Eq. (3.3) is nonlinear.

For Eq. (3.2), since 1=
∂

∂

a

y
, ,x

b

y
=

∂

∂
and there are no parameters a and b that

appears in the derivative terms, Eq. (3.2) is linear with respect to parameters a and b.

Similarly for Eq. (3.3), 1=
∂

∂

a

y
, and bx

b

y
2=

∂

∂
, and although the derivative of

parameter a is constant, the partial derivative with respect to b is a function of b.

Therefore, Eq. (3.3) is not linear with respect to parameter b.

In identification of linearity, MATLAB symbolic math toolbox is used.

Linear least squares regression is a very popular tool for empirical process

modeling because of its effectiveness and completeness. The estimates of the unknown

parameters obtained from linear least squares regression are unique and are regarded as

the global optimal values. Furthermore, linear least squares makes very efficient use of

 51

data and is easy to implement. Good results can be obtained with relatively small data

sets.

 Start

 Linear w.r.t. Nonlinear w.r.t.
 Parameters Parameters

 Yes No Yes No

 Yes

 No

Figure 3.2 The Structure for Linear-Nonlinear Regression Strategy

Nonlinear Regression

*x0�initial value

*i=1

*old_resnorm=0

*Call MATLAB function ‘lsqnonlin’,

 to get resnorm and x.

Calculate the fitness

and return parameter

value to main function

i=i+1, x0�x

Call lsqnonlin, to get new resnorm and x

If:

001.0
_

_
<

−

resnormold

resnormoldresnorm

or: i > 200

Linear Regression

Estimate parameter using Linear Least Square

Check Model’s Linearity

Indicator of Model’s Type = 1?

(Has to be Nonlinear Model?)

Delete the
Individual Model

Indicator of Model’s Type = -1?

(Has to be Linear Model?)

Delete the
Individual Model

Return to Main
Function

 52

note: ‘i’ is the iteration number; ‘x0’is the initial value for parameters; ‘x’ is the

parameter values obtained from Marquardt method; ‘resnorm’ is sum of the least square

at (i+1)th iteration; ‘old_resnorm’ is sum of least square at ith iteration; ‘lsqnonlin’ is

MATLAB nonlinear regression function “Marquardt”.

The evolution of the model is an automatic process. The individual models

generated in the process can be very complicated and its structure is neither predicted nor

easily simplified. This increases the difficulty in convergence during parameter

regression stage, if the nonlinear regression strategy is applied. Nonlinear least squares

regression may involve iterative computation to estimate the parameters. With functions

that are linear in the parameters, the least squares estimates of the parameters can always

be obtained analytically, while that is generally not the case with nonlinear models. The

use of iterative numerical procedures for nonlinear regression requires the user to provide

initial values for the unknown parameters before the optimization process starts. The

initial values should generally be reasonably close to the real parameter values or the

optimization procedure may not converge. Different initial values will result in

convergence to a local minimum rather than the global minimum unless the problem is

convex.

To ensure convergence of parameter regression robustly and more precisely, an

automated re-start operation and two stop criteria are implemented. These enforce the

algorithm to repeat the regression process before it stops.

The automated re-start operation initializes the parameter value with the regressed

parameter values in last run.

 53

Two termination criteria are: the relative change of sum of the least square is less

than a setup value, i.e.,

001.0
_

_
<

−

resnormold

resnormoldresnorm
 (3.4)

or the number of iterations i exceeds a pre-defined number, as shown in Figure 3.2.

3.4 Implementation with MATLAB based genetic search toolbox

The Genetic Search Toolbox provides an integrated environment for performing a

genetic search, including a collection of genetic operations used to implement genetic

search methods.

A schematic representation of the genetic search process is shown in Figure 3.3.

Important functional elements of a genetic search are: a population with an associated

fitness evaluation methodology, one or more selection and creation strategies, and a

decimation strategy. The core component of every genetic search is the population. In a

genetic search, each member of a population needs to be evaluated and assigned a fitness.

Members of a population can be selected for genetic operations through a variety of

criteria. In order to manage the size of the population in a genetic search, members of a

population also can be selected for deletion through different decimation criteria.

Genetic programming is controlled by several parameters for its components. In

the following sections, several tests for different population sizes, mutation and crossover

probabilities, fitness functions, tournament sizes, and deletion strategies will be analyzed.

 54

The sensitivity is analyzed when the values of the controlling parameters are changed

within a range, one at a time with all other parameters being fixed. Thus, although the

resulting parameters, population size etc. are not optimal for a given specific problem, the

analysis provides a good feasible set and is robust for most systems.

 Initial Population

 Out

Figure 3.3 A Schematic Diagram of the Genetic Search Methodology

3.4.1 The population architecture

The genetic search process can be implemented in two distinct ways. In the first,

the genetic search uses a “steady state” population, i.e., one or two individuals are

selected and manipulated at a time, and one or two new offspring are generated, as shown

in Figure 3.4. The term "generation" will refer to a single iteration of creating one or two

new off-spring. The second, as shown in Figure 3.5, is the generational approach,

individuals are selected and entire population is manipulated, many new offspring are

Population

Creation of
Offspring

Selection

Decimation

Fitness

Evaluation

 55

created at each generation; one generation may represent almost complete population

turnover (some members may be retained unmodified through the "reproduction").

 Yes

 No

 No

Figure 3.4 A Flowchart of Genetic Search, Steady State Population

Evaluate Fitness

Create Initial Population

Select Parent Chromosomes

Evaluate Fitness

Perform genetic operation

Select genetic operation

Population

Reduction ?

Subroutine: regression

Select chromosomes
and delete from

population

Subroutine: regression

Terminate ?

 56

 No

 Yes

 Yes

 No

Figure 3.5 A Flowchart of Genetic Search, Generational Population

Create Initial Population

Evaluate Fitness

Select Parent Chromosomes

Evaluate Fitness

Perform genetic operation

Select genetic operation

Go to next
Generation?

Subroutine: regression

Subroutine: regression

= population
 size?

 57

In this research, the “steady state” population is used. Specifically, the following

occurs, as shown in Figure 3.4: An individual is first selected according to some selection

strategy, and then the genetic operator is selected. According to the selected genetic

operator, a second individual may be selected and perform the genetic operation to create

one or two off-spring. Finally, the decimation strategy allows selection of the individual

which is going to be deleted from the population, and then the new child replaces the

individual deleted.

As a steady state optimizer, when GP operates on just one individual at a time, the

number of cycles within a given run can be high, perhaps 25,000 or more. In order to

make results more comparable to a generational optimizer, the number of cycles is

divided by the size of the population to give the approximate number of generations. The

theoretical understanding of the relationship between steady state and generation

optimizers is not strong. In order to generate reliable statistics, we ran each test multiple

times; typically ten times. From these runs, we then calculated the average performance

for each selection scheme.

3.4.2 The population size

Genetic programming is an optimization technique that uses a population of

candidate individuals to search the solution space. Since a population consists of multiple

individuals, several locations in the solution space are examined in parallel. The use of a

large population has several advantages. First, this allows the evolutionary algorithm to

examine a large number of positions in the solution space simultaneously. Second, a large

 58

population is more resistant to the loss of diversity in the population. Diversity can be lost

in a population when, due to evolutionary pressure, a large number of individuals become

similar to the best individuals of the population. When this happens, the search will be

restricted to the small area of the solution space containing these similar individuals.

Consequently, finding new solutions becomes more difficult. When using a large

population, the diversity of the population will persist longer. The disadvantage of using

a large population is that more individuals have to be evaluated every generation. Often,

the fitness evaluation is the most time-consuming step in genetic programming, and

reducing the number of fitness evaluations can significantly speed up the search.

Since the population size is one of the major control parameters, some analytic

methods are available for suggesting optimal population sizes for runs of the genetic

algorithm on particular problems. However, the practical reality is that researchers

generally do not use any such analytic method to choose the population size. Instead,

researchers determine the population size such that genetic programming can execute a

reasonably large number of generations within the amount of computer time people are

willing to devote to the problem [Koza et al. 2003]. Therefore, in this research, a group of

tests on the speed of GP convergence are run for different population sizes of 250 (P250),

500 (P500) and 1000 (P1000). As shown in Figure 3.6, the GP runs with the population

of 1000 and 500 display a similar behavior, both of which reach the approximately

optimal solution at about eighteenth generation, while the population of 250 needs about

twenty-five generations to find an approximate solution. Compared with P250, P1000

and P500 have better fitness than P250 does. A larger population size does help to speed

 59

up the searching, but also has impact on improving the accuracy level. The population

size was set to 500 based on the results.

Figure 3.6 Fitness vs. Generation Using Different Population Sizes

3.4.3 The principal component analysis and the selection of terminal & function sets

 The complexity of the mathematical model evolved by genetic programming

depends on the choice of the function set and terminal set. The chance of discovering a

specific formula in a finite number of generations is a decreasing function of its model

complexity [Chen 1997]. A larger function set and terminal set will help reduce the

complexity of a mathematical model. From this perspective, it seems that a larger

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70 80
Generation

F
it
n
e
s
s

P1000 P500 P250

 60

terminal set and function set can enhance search efficiency. In fact, there are empirical

evidences that suggest that this is indeed the case [Johnson 2000]. The influence of

search space and population size has to be taken into the consideration.

The search space includes all potential individuals and its size grows

exponentially with the size of terminal and function sets. The probability of finding the

solution in a finite number of generations depends on population size ratio s , i.e.
S

G
s = ,

where, G is population size, and S is the size of search space. If population size doesn’t

grow exponentially with the size of function and terminal set, then the population size

ratio will be close to zero, i.e., the probability of finding the specific formula in a finite

number of generations is nearly impossible.

Since in practice the population size cannot grow in proportion to the size of

function and terminal set, reducing the complexity of a mathematical function by

enlarging terminal and function set may help gain little efficiency. Therefore, constrained

by the population size ratio, the size of function and terminal set has to be optimized.

There are several strategies to optimize the size of function and terminal set.

Principal Component Analysis (PCA) is one way to help optimize the size of terminal set.

PCA is a multivariate procedure where the data is transformed such that the

maximum variabilities are projected onto the axes. Essentially, a set of correlated

variables are transformed into a set of uncorrelated variables which are ordered by

reduced variability. The uncorrelated variables are linear combinations of the original

variables. The first principal component is the combination of variables that explains the

greatest amount of variation. The second principal component defines the next largest

 61

amount of variation and is independent to the first principal component and so on, with

the last of these variables can be removed with minimum loss of real data. The main use

of PCA is to reduce the dimensionality of a data set, i.e. the size of the terminal set, while

retaining as much information as is possible. PCA computes a compact and optimal

description of the data set.

The method, proposed by Jolliffe [1986], uses the principal components as the

basis for the feature selection. A high absolute value of the i’th coefficient of one of the

principal components (PC) implies that the i’th original variable is very dominant in that

PC. By choosing the variables corresponding to the highest coefficients of each of the

first several selected PC’s, the same projection as that computed by PCA is approximated.

This method is a very intuitive and computationally feasible method.

Due to the low dimensionality of the vapor-liquid equilibrium data set, where the

degrees of freedom is only two, application of PCA is not necessary in this case.

However, the developed GP package aims to be more general. Therefore, PCA is

included in the package as an option to aid selection of terminal set. A more practical

way than PCA, which is also popular among GP users, is to incorporate some physically

meaningful variables and their parameters into the function and the terminal set. In this

research, according to the pre-knowledge on thermodynamics, we believe that some

composition of the functions and terminals supplied here can yield a solution to the

problem. The algorithm performs symbolic regression on the experimental data to extract

functional representation of the data. The genetic programming module starts with a set

of primitive functions, including +, -, *, /, exp, square root (sqrt), log, power (^) and so

 62

on. Temperature, pressure, the vapor and liquid composition are selected to be the

elements of terminal set.

3.4.4 Genetic operator

The genetic programming paradigm is controlled by two major numerical

parameters, i.e., the population size and the maximum number of generations. These two

parameters depend on the difficulty of the problem involved. The population size has

been addressed in section 3.4.2. Throughout this research, unless the specific declaration

is made, the maximum number of generations is set to seventy-five. As shown in Figure

3.6, seventy-five generations is enough for GP to converge to an approximate solution in

this research. Other minor numerical parameters include the probability of crossover,

mutation, which will be defined in this section.

Since the population is steady state, the individual will be preserved in the

population until it is selected for deletion by the decimation strategy. Therefore, genetic

operator “reproduction” is wasteful, only crossover and mutation are applied.

Good values for the mutation and crossover probabilities depend on the problem

and must be manually tuned based on experience as there are few theoretical guidelines

on how to do this. For some problems performance can be quite sensitive to these values

while in others their values do not make much difference.

Different mutation and crossover probabilities are tested. The ratio between

mutation and crossover is set to 0.5:0.5, 0.4:0.6 and 0.2:0.8 respectively. Figure 3.7 is the

 63

fitness plot over different mutation and crossover probabilities, and Figure 3.8 is the plot

of the standard deviation of fitness value. The standard deviation of fitness value is an

index of the diversity of individuals in the population. Figure 3.7 shows that, different

mutation and crossover probabilities can reach equivalent accuracy levels. Meanwhile,

the diversity in population follows a similar trend. These results show that, in this

research, GP is robust and not sensitive to the mutation and crossover probabilities.

Figure 3.7 Fitness vs. Generation Using Different Mutation and Crossover Probabilities

0

50

100

150

200

250

0 10 20 30 40 50 60 70 80

Generation

F
it
n
e
s
s

0.5:0.5 0.4:0.6 0.2:0.8

 64

0

500

1000

1500

2000

2500

3000

3500

4000

0 10 20 30 40 50 60 70 80

Generation

S
td

D
e

v
 o

f
F

it
n

e
s

s

0.5:0.5 0.4:0.6 0.2:0.8

Figure 3.8 The Standard Deviation of Fitness Using Different Mutation and Crossover

Probabilities

3.4.5 Fitness evaluation

The fitness function is the driving force of GP, which should reflects the goodness

of a potential solution which is proportional to the probability of the selection of the

individual. Usually, the fitness function is based on the sum of square error (SSE)

between the calculated and the measured output values:

[]∑
=

−=
eN

j

jCjiSSSE
1

2
)(),((3.5)

 65

where S (i, j) is the value returned by equation i for fitness case j (of Ne fitness cases) and

C (j) is the correct value for fitness case j. The closer this sum of distances is to zero, the

better the program.

 A good model is not only accurate but simple, transparent and interpretable. In

addition, a complex over-parameterized model decreases the general estimation

performance of the model. Since GP is self-evolving process and can result in overly

complex models, there is a need for a fitness function that ensures a trade-off between

complexity and model accuracy.

To evaluate the efficiency of different fitness functions, including the least square,

Akaike’s Information Criterion (AIC) and Schwarz Bayesian Information Criteria (BIC),

several GP tests are run for the propylene-propane system as an example, and the

generated model’s accuracy and complexity are compared, as shown in Figure 3.9 and

Figure 3.10.

In Figure 3.9, it shows that, compared with the least square, both AIC and BIC

keep a relatively comparable accuracy level in this case. Figure 3.10 is the comparison of

the model’s complexity. It shows that, without applying the parsimony rule, GP tends to

increase the complexity of generated model consistently with the generations. Between

two parsimony rules, i.e., AIC and BIC, BIC has a better control on the generated

model’s complexity, and tends to select more parsimonious models, because the BIC

places a larger penalty on the number of predictors. Theoretical and simulation studies

done by another researcher [Hansen 2001] also concludes that, mostly in the regression

 66

case, when the underlying model is finite-dimensional (specified by finite number of

parameters), BIC should be preferred.

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 10 20 30 40 50 60 70 80

Generation

A
c
c
u

ra
c
y

LS BIC AIC

Figure 3.9 Model’s Accuracy vs. Generation Using Different Fitness Functions

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80

Generation

C
o

m
p

le
x
it

y

LS BIC AIC

Figure 3.10 Model’s Complexity vs. Generation Using Different Fitness Functions

 67

3.4.6 Selection strategy

One practical difficulty in symbolic regression is the problem of crowding.

Crowding is a phenomenon where some individuals that are more fit than others in the

population are quickly reproduced. Then, copies of these individuals and similar

individuals take over a large fraction of the population. The crowding reduces the

diversity of the population, thereby slowing further progress by the GP. Several strategies

have been explored for reducing crowding. One approach is to change the selection

function, using criteria such as tournament selection or rank selection instead of fitness

proportionate selection.

For the selection strategy, the commonly used tournament selection is applied.

Under tournament selection, a group of individuals is randomly selected from the

population, then, the individual with the highest fitness in this subset is returned. The size

of the group is called the tournament size. It is clear that, the larger this group is, the

more likely a highly fit individual from the population is selected. In the tests, tournament

sizes ranging from 3 to 6 are used, in order to examine a range of selection intensities.

When reporting test results, the following notation is applied: TOUR3 means

tournament selection with a tournament size of 3. Similar notations are used for TOUR4,

TOUR6 and so on.

 68

40

60

80

100

120

140

160

180

0 10 20 30 40 50 60 70 80

Generation

F
it

n
e

s
s

TOUR3 TOUR4 TOUR6

Figure 3.11 Model Fitness vs. Generation Using Different Tournament Sizes

0

500

1000

1500

2000

2500

3000

3500

0 10 20 30 40 50 60 70 80

Generation

S
td

D
e

v
 o

f
F

it
n

e
s

s

TOUR3 TOUR4 TOUR6

Figure 3.12 The Standard Deviation of Fitness vs. Generation Using Different

Tournament Sizes

 69

 Figure 3.11 is the comparison of model’s fitness using different tournament sizes.

Figure 3.12 shows the impact of tournament size on preserving the diversity in population.

 In Figure 3.11, it shows that, compared to TOUR4 and TOUR6, TOUR3

converges relatively slowly. It takes sixty-six generations for TOUR3 to find an

approximate solution, while TOUR4 takes fifty-three generations, and TOUR6 needs 34

generations to reach the approximate solution. From TOUR3 to TOUR6, with the

tournament size increasing, the slope of convergence curve sets steeper. For a given

number of generations, the tournament size is larger, i.e., the intensity of selections are

increased, the possibility of fittest solution to be chosen will be increased; the number of

generations needed to find an approximate solution is less. However, too fast or too slow

convergence is not the case expected. If the algorithm converges too fast, it may imply

premature termination and the solution may be a local optimal solution, as shown for

TOUR6. TOUR6 converges the fastest, but its fitness is the worst one among those of

three different tournament sizes.

 TOUR3 converged a little bit slowly while TOUR6 converged prematurely and

became stuck. TOUR4 appears to be about the correct tournament size for this problem.

TOUR3 could be an alternative size for this problem.

3.4.7 Decimation strategy

In order to manage the size of the population in a genetic search, as well as to

keep the better individuals in the population, the decimation strategy for deleting excess

 70

individuals in the population need to be decided. As analogous to the selection strategies

described and compared in the section 3.4.6, different decimation strategies are also

compared in this section, as shown in Figure 3.13 and Figure 3.14. The maximum

population size is set to 500, if the population size is bigger than this limit, then, the

individuals chosen by the decimation strategy will be deleted from the population.

A common problem experienced with population based optimization methods is

the gradual decline in population diversity that tends to occur over time. This can slow a

search progress or even halt it completely, if the population converges on a local

optimum from which it cannot escape.

With steady state population optimizers, the standard decimation strategy used is

simply random deletion. The reason for this is that it is neutral in the sense that it does

not skew the distribution of the population in any way. Thus, whether the population

tends toward high or low fitness etc. is solely a function of the selection scheme and its

parameters, in particular the selection intensity. This issue was discussed in the previous

section.

 The other option for decimation strategy is that the individuals are deleted from

the population based on their fitness. The worse the fitness is, the higher the probability

of the particular individual being selected for deletion. Figure 3.13 depicts the

comparison between two different decimation strategies in terms of model accuracy.

Figure 3.14 shows the standard deviation of fitness. As mentioned earlier, the standard

deviation of fitness value in the population is an index of the diversity of individuals in

this population. As shown in Figure 3.13, fitness- proportional decimation strategy allows

 71

GP algorithm to converge at the fifteenth generation while random deletion strategy

result in convergence at the twenty-seventh generation. On the other hand, fitness-

proportional deletion strategy allows GP run converge faster than random deletion.

However, the fitness- proportional deletion strategy leads to less diversity in the

population. As shown in Figure 3.14, using the same selection strategy (tournament

selection with size 4), the diversity of population using random deletion is maintained

well over the generations, however, the diversity of population using fitness-proportional

deletion is decreased tremendously after the second generation. From this group of tests,

we conclude that, the diversity of population with random deletion is best for the whole

process.

0

50

100

150

200

250

0 10 20 30 40 50 60 70 80

Generation

F
it

n
e

s
s

SELR SELR-HIFIT

Figure 3.13 Model’s Accuracy vs. Generation Using Different Deletion Strategies

 72

0

500

1000

1500

2000

2500

3000

3500

0 10 20 30 40 50 60 70 80

Generation

S
td

D
e

v
 o

f
F

it
n

e
s

s

SELR SELR-HIFIT

Figure 3.14 The Standard Deviation of Fitness vs. Generation Using Different Deletion

Strategies

3.4.8 Result designation and termination criteria

Each computer experiment is terminated when the maximum number of GP

generation is reached. To have a better evaluation of the number of maximum GP

generations, computational experiments with different population sizes, mutation and

crossover probabilities, fitness evaluation functions, selection strategies and decimation

strategies are performed. The results were shown in the sections from 3.4.2 to 3.4.7.

Model’s accuracy vs. generation using different population sizes is shown in Figure 3.6.

Figure 3.7 depicts model’s accuracy vs. generation using different mutation and

 73

crossover probabilities. Figure 3.9 is the same plot using different fitness functions,

Figure 3.11 depicts model’s accuracy vs. generation using different selection intensities,

and Figure 3.13 is using different deletion strategies. All these plots of model’s accuracy

using different GP controlling parameters show that GP program will reach its

approximate solution before forty generations. The accuracy doesn’t improve as the

number of generations is increased beyond that point. To ensure that GP program has

enough run time and the generated model fits the data at a satisfied level, the maximum

number of generation is set to 75 throughout this research. In each generation, the best

so-far model is designated.

3.4.9 Summary

Based on the theoretical analysis and experimental tests shown in previous

sections, the input values for the GP controlling parameters used throughout the research

are summarized as follows:

• Population Size: 500

• Terminal Set: temperature, pressure, liquid phase composition (xi), parameters

(maximum eight parameters)

• Function Set: +, -, ×, ÷, ^, exponential, log

• Mutation and Crossover Probability: 0.5:0.5

• Fitness Function: Schwarz Bayesian Information Criteria (BIC)

• Selection Strategy: Tournament, Size 4.

 74

• Maximum Generations: 75

• Deletion Strategy: Random

3.5 Model evaluation

Genetic Programming (GP) is inherently probabilistic in nature, and thus for

symbolic regression problems, each time the algorithm is used, it’s expected that one will

arrive at different approximate solutions. Therefore, one should perform multiple

experiments to develop alternate models, employ a statistical analysis to further prune the

list of model candidates, and evaluate model performance through steady state and

dynamic simulation of columns that utilize these models.

3.5.1 Statistical analysis

The GP generated models with optimized parameters were evaluated using

graphical and numerical statistical methods.

3.5.1.1 Graphical methods

A scatter plot of the predicted response versus the observed response provides

simple and visual depiction of model performance. Any model that can explain most of

the variation in the observed responses will produce a plot with points clustered around a

 75

45° line. Better models yield less scatter about this yy =
^

 line. Moreover, the scatter of

points about the
^

y = y line should remain roughly constant with magnitude. That is, a

poor model that is less accurate at larger values of
^

y will produce increasing scatter with

larger values of y. A scatter plot of the residuals is also useful in evaluating a regression

model. Here, the model residuals or errors (
^

yyr −=) are plotted against the model

predictions (
^

y). Residual plots are used to visually verify some of the basic assumptions

underlying regression analysis and observe model data mismatch in term of bias and

accuracy. The residuals (errors) between the model predictions and observed responses

should have a mean of zero and a constant variance. Hence, the scatter in the residuals

should be fairly uniform and centered about 0=ε . A good regression model will produce

a scatter in the residuals that is roughly constant with
^

y . Unsatisfactory models yield a

scatter in these residuals that change with
^

y .

All of the information on lack of fit is contained in the residuals. Assuming the

model you fit to the data is correct, the residuals approximate the random errors.

Therefore, if the residuals appear to behave randomly, it suggests that the model fits the

data well. However, if the residuals display a systematic pattern, it is a clear sign that the

model has a bias in representing data.

If the residuals appear randomly scattered around zero, the model describes the

data accurately and without systematic bias.

 76

3.5.1.2 Goodness of fit statistics

To express the quality of fit between a regression model and the sample data, the

coefficient of multiple determination (
2R) is typically used. However, adding any

regressor variable to a multiple regression model, even an irrelevant regressor, yields a

smaller SSE and greater
2R . For this reason,

2R by itself is not a good measure of the

quality of fit. To overcome this deficiency in
2R , and adjusted value is used. The adjusted

coefficient of multiple determinations (
2

R) is defined as:

)1(
1

1 22

R
pn

n
R −









−

−
−= (3.6)

Since a number of model coefficients (p) is used in computing
2

R , the value will not

necessarily increase with the addition of any regressor. Hence,
2

R is a more reliable

indicator of model quality.

3.5.1.3 Cross validation and prediction

 Finally, it’s often important to evaluate the ability of a fitted regression model to

predict future events. The best way to do this is to gather additional, new data and

compare these observed responses with predictions from the model. However, when this

is not possible, the data used to fit the model can be split and a cross validation is

performed. A good regression model can be fit to part of the original data set and still

accurately predict the other observations. To perform a double cross-validation:

 77

• Partition the data into two subsets (say, A and B) with an equal number of

observations in each. Assigning individual observations to subset A or B must

be done randomly.

• Using the same model form, fit the model using the data from subset A. use

this model to predict the observations in subset B.

• Compute the predicted R
2

p,A for the model that fits to subset A, as defined in

Eq. (3.8) below.

• Similarly, fit the model to data in subset B and use this to predict the

observations in subset A.

• Compute the predicted R
2

p,B for the model fit to subset B.

A good model will produce high values of R
2

p for both subsets and these values

will be approximately equal (2

,

2

, BpAp
RR ≅). The predicted R

2
p for a model fit to subset A

(R
2

p,A) is computed with:

∑

∑

=

=

∧

−

−

−=
B

B

n

i

BiB

n

i

iAiB

Ap

yy

yy

R

1

2

1

2

2

,

)(

)(

1 (3.7)

where nB and yB are the number and mean of the observed responses (yiB) in the random

subset B. Using the model fit to subset A, predictions of the observations in subset B are

made to give
^

y iA. The predicted R
2

p for a model that fits to data in subset B (R
2

p,B) is

computed the same way, with the use of subsets A and B reversed.

 78

3.5.2 Steady state and dynamic simulation using local models

To have a further evaluation on the model’s stability and accuracy, the generated

model is integrated with chemical engineering process simulation package CHEMCAD.

In CHEMCAD, users are allowed to supply their own K-values in three major ways:

users may input tabular K-values that CHEMCAD will then interpolate for use during the

calculations. The second option is that, the K-values are assumed to be a function of

temperature in the following polynomial forms:

43
)(dTcTbTaKf +++= (3.8)

Users need to provide the coefficient a, b, c and d. The third option allows users to create

their own added modules. The User Added Modules (UAM) gives users the ability to

create new thermodynamic routines. The evolved K-value model by GP can be linked

with CHEMCAD as a UAM, and then evaluated by process simulation. UAM’s are

programmed in Visual C++ and have access to a large number of internal CHEMCAD

routines.

 79

CHAPTER FOUR

RESULTS AND DISCUSSION

 The structure and implementation of the GP package for symbolic regression was

addressed in Chapter Three. In this chapter, the application of the GP package for

development of local K value models for propylene-propane (ideal or near ideal solution)

and acetone-water systems (non-ideal solution) is presented. The results and their

discussion are given in sections 4.1 and 4.2 respectively. In section 4.1, generated K

value models with associated regressed parameter values, the phase equilibrium plots,

distillation column simulation profiles (steady state, or dynamic simulation) are presented

along with residual plots. In section 4.2, the performance of the models for ideal and non-

ideal solutions is discussed. The approach is applied to both propylene-propane and

acetone-water systems, using different terminal sets and for different pressure ranges of

data. Furthermore, the results will be discussed and the performance of models will be

compared to rigorous models as well as data.

4.1 Local composition models and their impact

 Macroscopic vapor-liquid equilibrium coefficient “K value” is a function of

temperature, pressure and compositions of liquid as well as vapor phase. However,

 80

simple composition independent models are very popular due to reduced computation

burden, since iterative procedures with composition dependent models are avoided. These

models work well for ideal solutions. In this section, the equilibrium K value models

developed using GP for ideal (or near ideal) propylene-propane binary system and

strongly non-ideal acetone-water binary system are studied respectively. The data for

propylene-propane system ranges from low to higher pressures for different temperatures,

and for acetone-water system, the data ranges from low temperatures to higher

temperature for different pressures. For each binary system, the final K value model and

its parameter are summarized, and the fit of the models are evaluated statistically while

the model performance is evaluated with process simulation package CHEMCAD.

4.1.1 Developed models for mixtures that form ideal or near-ideal solutions and

their statistical analysis

In Table 4.1, the final structure of K model for propylene-propane solution are

summarized.

 81

Table 4.1 Result Summary for Propylene (1) –Propane (2)

Result for K1:

Evolutionary Model:

T

xv

T

xPv

T

xv
K

)1()1()1(
log 13

2

12

2

2

11
1

−⋅
+

−⋅⋅
+

−⋅
=

Adjusted R
2
: 0.997

Result for K2:

Evolutionary Model:

)1(
)1()1()1()1(

log 2
24

3

2

23

2

2221
2 x

PT

xv

T

xv

T

xv

T

xv
K −+

⋅

−⋅
+

−⋅
+

−⋅
+

−⋅
=

Adjusted R
2
: 0.996

 The
∧

= yy plot for generated K1 and K2 models are given in Figures 4.1 and 4.3

respectively. The points are distributed along 45° line. No significant deviation from 45°

line is observed. The residual plots for K1 and K2 model are given in Figures 4.2 and 4.4.

The mean value for both residual plots are close to zero.

 82

0.98

1.03

1.08

1.13

1.18

1.23

1.28

1.33

1.38

1.43

1.48

0.98 1.03 1.08 1.13 1.18 1.23 1.28 1.33 1.38 1.43 1.48

Predicted K1

K
1

,
D

a
ta

Figure 4.1 K1 Model vs. Experimental Data for Propylene (1)-Propane (2)

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.98 1.03 1.08 1.13 1.18 1.23 1.28 1.33 1.38 1.43

Predicted K1

R
e

s
id

u
a

l

StdDev=2.24E-3

Mean=3.18E-5

Figure 4.2 Residual Plot of K1 for Propylene (1)-Propane (2)

 83

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

Predicted K2

K
2
,
D

a
ta

Figure 4.3 K2 Model vs. Experimental Data for Propylene (1)-Propane (2)

-0.005

-0.004

-0.003

-0.002

-0.001

0

0.001

0.002

0.003

0.004

0.005

0.006

0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

Predicted K2

R
e

s
id

u
a
l

StdDev=2.04E-3

Mean=5.21E-5

Figure 4.4 Residual Plot of K2 for Propylene (1)-Propane (2)

 84

 |∆K| and |∆K|/K (%) for K1 and K2 at five different temperatures are list in Table

4.2. Maximum and average values of |∆K|/K (%) for K1 and K2 are small, which indicate

the models for K1 and K2 fit experimental data well.

Table 4.2 Standard Error Analysis for Generated K1 and K2 Model

|∆K|/K, %

K1(K2)

|∆K|

K1(K2)

T, K

Max. Avg. Max. Avg.

223.75 0.614

(0.255)

0.292

(0.168)

0.00734

(0.00235)

0.00351

(0.00150)

239.35 0.484

(0.417)

0.158

(0.269)

0.00659

(0.00367)

0.00186

(0.00242)

310.93 0.315

(0.534)

0.101

(0.232)

0.00372

(0.00495)

0.00112

(0.00239)

327.59 0.121

(0.130)

0.0659

(0.0679)

0.00138

(0.00121)

0.000716

(0.000648)

344.26 0.286

(0.106)

0.147

(0.0557)

0.00316

(0.00101)

0.00156

(0.000533)

4.1.2 Performance of models for separation of ideal and near ideal mixtures

The generated K1 and K2 models are integrated with CHEMCAD as user added

modules. P-x-y for five different temperatures 223.75K, 239.35K, 310.93K, 327.59K and

344.26K are plotted and compared with those from Peng-Robinson (PR) EOS, as shown

in Figures 4.5 and 4.6. As observed, the generated local models fit the entire data range

well. They also perform as well as the PR EOS that is usually the default model for these

tasks.

 85

0.65

0.85

1.05

1.25

1.45

1.65

1.85

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X1/Y1, Mole Fraction

P
re

s
s

u
re

,
b

a
r

Model Data PR

223.75K

239.35K

Figure 4.5 P-X1-Y1 at Low Pressures for Propylene (1)-Propane (2)

12.5

14.5

16.5

18.5

20.5

22.5

24.5

26.5

28.5

30.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X1/Y1, Mole Fraction

P
re

s
s

u
re

,
b

a
r

P-X1, Model, 310.93K P-X1, Data, 310.93K PR

310.93K

327.59K

344.26K

Figure 4.6 P-X1-Y1 at Medium to High Pressures for Propylene (1)-Propane (2)

 86

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X1, Mole Fraction

K
1

Model Data PR

223.75

K

239.35

K

310.93K

327.59

K

344.26

K

Figure 4.7 K1 vs. Liquid Composition for Different Temperatures for Propylene (1)-

Propane(2) System

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

0 5 10 15 20 25 30 35

Pressure, bar

K
1

Model Data PR

223.75

K

239.35K

310.93K

327.59K

344.26K

Figure 4.8, K1 vs. Pressure for Different Temperatures for Propylene (1)-Propane (2)

 87

The results show that the generated K models are a function of pressure,

composition and temperature, therefore, the K-composition and K-pressure analysis of

models are given in Figures 4.7 and 4.8. K1-composition plot in Figure 4.7 shows the

local model has a better fit over composition than rigorous model PR does at whole data

range. In K1-pressure plot, local model show slight deviation at high pressure range.

Propylene is the most important building block in any petrochemical industry.

The cost of producing propylene is much associated with the propylene-propane

separation step, conventionally performed by low temperature or high-pressure

distillation. This step is energy intensive, therefore costly, because of the low relative

volatility; the separation process requires large distillation columns with more than 210

trays and high reflux ratios. This makes the propylene-propane system one of the most

energy-expensive separations.

To test local model’s reliability further, steady state simulation is run. A 210-plate

distillation column is simulated. The feed stream containing 800 lbmol/hr propylene and

200 lbmol/hr propane is fed to tray 125 at pressure 19 bar as saturated liquid. The column

is operated under 17.5 bar on the top with 1.8 bar pressure drop, the mole fraction of

propylene on the top and at the bottom is 0.95 and 0.05 respectively. The tower

temperature profile is presented in Figure 4.9 and relative volatility is presented in Figure

4.10. The vapor and liquid flow rate at different tray is given in Table 4.3.

 88

Table 4.3 Propane-Propylene Distillation Column Profile

 Model Data PR

Vapor, lbmol/h 8481.52 8092.83 8534.49 Stage 10

Liquid, lbmol/h 7650.25 7261.44 7703.27

Vapor, lbmol/h 8634.44 8227.33 8688.34 Stage 100

Liquid, lbmol/h 7802.67 7395.33 7856.68

Vapor, lbmol/h 8861.79 8438.48 8918.01 Stage 200

Liquid, lbmol/h 9031.94 8608.7 9088.10

Condenser, MMBtu/h -46.03 -44.02 -46.43

Reboiler, MMBtu/h 45.86 43.84 46.27

314

316

318

320

322

324

326

328

330

0 50 100 150 200 250

Stage Number

T
e
m

p
e
ra

tu
re

,
K

Model Data PR

Figure 4.9 Temperature Profile of Propylene-Propane Distillation Column

 89

1.07

1.08

1.09

1.1

1.11

1.12

1.13

1.14

1.15

1.16

1.17

1.18

0 50 100 150 200 250

Stage Number

R
e
la

ti
v
e

 V
o

la
ti

li
ty

Model Data PR

Figure 4.10 Relative Volatility Profile for Propylene-Propane Distillation Column

4.1.3 Developed models for mixtures that form non-ideal solutions and their

statistical analysis

Table 4.4 Result Summary for Acetone (1) -Water (2)

Result for K1:

Evolutionary Model:

)log()1()1()1(log 4

)1(

11312111

1

PvxxTvxTvxvK T

x

⋅+⋅−⋅⋅+−⋅⋅+−⋅=
−

Adjusted R
2
: 0.994

Result for K2:

Evolutionary Model:

1)log(]1)log()1[(
)1(

log
3

4

2

33

22

2

21
2 ++++++−⋅+

−⋅
= T

T

v

T

v
Pxv

T

xv
K

Adjusted R
2
: 0.990

 90

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40

Predicted K1

K
1

,
D

a
ta

Figure 4.11 K1 Model vs. Experimental Data for Acetone (1)-Water (2)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40

Predicted K1

R
e

s
id

u
a
l

StdDev=0.2206

Mean=-0.05209

Figure 4.12 Residual Plot of K1 for Acetone (1)-Water (2)

 91

0.1

0.3

0.5

0.7

0.9

1.1

1.3

0.1 0.3 0.5 0.7 0.9 1.1 1.3

Predicted K2

K
2

,
D

a
ta

Figure 4.13 K2 Model vs. Experimental Data for Acetone (1)-Water (2)

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.1 0.3 0.5 0.7 0.9 1.1 1.3

Predicted K2

R
e
s
id

u
a
l

StdDev=0.02763

Mean=-0.001994

Figure 4.14 Residual Plot of K2 for Acetone (1)-Water (2)

 92

 The
∧

= yy plot for generated K1 and K2 models for acetone-water system are

given in Figures 4.11 and 4.13 respectively. The points are distributed along 45° line. No

significant deviation from 45° line is observed. The residual plots for K1 and K2 models

are given in Figures 4.12 and 4.14. The mean values for both residual plots are very close

to zero.

 |∆K| and |∆K|/K (%) for K1 and K2 at three different pressures are listed in Table

4.5. Maximum and average values of |∆K|/K (%) for K1 and K2 are small, which indicate

that the models for K1 and K2 fit the experimental data well. It’s also observed that the

model’s deviation at medium (17.24 bar) and high (34.47 bar) pressure are larger than

those at low pressure, 1.013 bar.

Table 4.5 Standard Error Analysis for Local Model for Acetone-Water System

|D_K|/K, %

K1 (K2)

|D_K|

K1 (K2)

P, bar

Max. Avg. Max. Avg.

1.013 1.92

 (4.0)

0.962

 (2.78)

0.374

 (0.0325)

0.0564

(0.0147)

17.24 4.99

 (4.32)

2.61

 (2.26)

0.643

 (0.0273)

0.102

 (0.0173)

34.47 4.97

(5.20)

3.01

(2.89)

0.245

(0.0625)

0.0661

(0.0298)

 93

 4.1.4 Performance of models for separation of non-ideal solutions

The generated K1 and K2 models for acetone-water solution are integrated with

CHEMCAD as an user added module. T-x-y for three different pressure levels of

1.013bar, 17.24 bar and 34.47 bar are plotted and compared with activity coefficient

model NRTL, as shown in Figure 4.15. As shown, the generated local models fit the

entire range of data set relatively well. It also shows that the generated local models have

larger deviations as the pressure increases.

320

370

420

470

520

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X1/Y1, Mole Frac

T
,

K

Model Data NRTL

34.47 bar

17.24 bar

1.013 bar

Figure 4.15 T-X1-Y1 at Different Temperatures for Acetone (1)-Water (2)

The K-composition and K-pressure analysis of models are given in Figures 4.16

and 4.17. K1-composition plot in Figure 4.16 shows that the local model has a slightly

better fit over composition than NRTL does at the entire data range. In K1-pressure plot,

 94

0

2

4

6

8

10

12

14

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X1, Mole Fraction

K
1

model data NRTL

1.013 bar

17.24

 bar

34.47 bar

Figure 4.16 K1 vs. Liquid Composition at Different Pressures for Acetone (1)-Water(2)

0

5

10

15

20

25

320 340 360 380 400 420 440 460 480 500 520

Temperature, K

K
1

model data nrtl

1.013 bar

17.24 bar

34.47 bar

Figure 4.17 K1 vs. Temperature at Different Pressures for Acetone (1)-Water (2)

 95

the local model shows a larger deviation at high pressure due to the azeotropy. As can be

seen from Figures 4.16 and 4.17, the dependency of the K-values on temperature and

composition are different. Figure 4.17 shows that the relative deviation of temperature

dependency is increased with the pressure increased, but still within the acceptable level.

In the examples given here, the local models were used at pressures up to 34.47

bar with reliable results. From our experience with mixtures that we have examined, the

general conclusions are that, for non-ideal mixtures, the generated model is capable of

correlating the equilibrium ratios to a relative acceptable accuracy over a wide range of

compositions, temperature and pressure.

To test local model’s reliability further, steady state simulation is run. A 56-plate

acetone-water distillation column is simulated. The feed stream containing 400 lbmol/hr

acetone and 600 lbmol/hr water is fed to the bottom of the column (tray 55) at pressure of

2 bar as saturated liquid. The column is operated under 1.013 bar on the top with 0.5 bar

pressure drop, the mole fraction of acetone on the top and at the bottom is 0.95 and 0.05

respectively. The tower temperature profile is presented in Figure 4.18 and relative

volatility is presented in Figure 4.19. Figures 4.18 and 4.19 show that, compared with the

data and NRTL model, the generated local model’s performance is excellent under the

specified operating conditions.

 96

325

330

335

340

345

350

355

360

365

0 10 20 30 40 50 60

Stage Number

T
e

m
p

e
ra

tu
re

,
K

Model Data NRTL

Figure 4.18 Temperature Profile of Acetone-Water Distillation Column

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60

Stage Number

R
e
la

ti
v
e
 V

o
la

ti
li
ty

Model Data NRTL

Figure 4.19 Relative Volatility Profile of Acetone-Water Distillation Column

 97

In dynamic simulation, the process starts at steady state, a disturbance of 10%

feed flow rate is introduced at the 50th minute of the simulation. The resulting tower

vapor and liquid flow rate profiles at different simulation times are given in Table 4.6.

The distillation flow rate fluctuation due to the 10% feed flow rate increase is shown in

Figure 4.20. The pressure response to the disturbance over time is shown in Figure 4.21.

All figures for dynamic simulation show that the generated model gives a reliable result

in the simulation.

320

340

360

380

400

420

440

460

0 50 100 150 200 250

Time, mins

F
lo

w
ra

te
,
lb

m
o

l/
h
r

Model Datal NRTL

Figure 4.20 Distillation Total Flow Rate

 98

1.01

1.011

1.012

1.013

1.014

1.015

1.016

1.017

1.018

0 20 40 60 80 100 120 140

Time, mins

P
re

s
s
u
re

,
b

a
r

Model Data NRTL

Figure 4.21 Distillation Column Pressure

Table 4.6 Tower Profile at Different Runtime

0 (min.) 200 (min.)

Feed: 1000 lbmol/h Feed: 1100 lbmol/h

Model Data NRTL Model Data NRTL

Vapor lbmol/h 1630.8 1611.3 1523.6 1793.9 1772.4 1686.0 Stage

5 Liquid lbmol/h 1257.8 1238.3 1150.2 1383.6 1362.2 1275.3

Vapor lbmol/h 1621.4 1602.0 1507.8 1783.6 1762.3 1668.6 Stage

25 Liquid lbmol/h 1248.7 1229.3 1134.8 1373.6 1352.3 1258.3

Vapor lbmol/h 1598.2 1578.7 1485.1 1758.0 1736.5 1643.6 Stage

50 Liquid lbmol/h 1220.9 1201.5 1109.5 1343.0 1321.6 1230.4

Condenser, MMBtu/h -21.03 -20.78 -19.64 -23.13 -22.86 -21.76

Reboiler, MMBtu/h 21.51 21.25 20.06 23.66 23.37 22.26

 99

4.2 Discussion

The linear models of vapor-liquid partition coefficient K for propane-propylene

and acetone-water systems presented in Section 4.1 evolved from full data set that covers

the entire pressure range. For acetone-water system, as shown in Figures 4.15 to 4.17, the

T-X-Y diagram at 1.013 bar, 17.34 bar and 34.47 bar respectively, the deviation of the

models increases with the pressure.

Table 4.7 R
2
 of Different Models for K1 in Group Tests

Propylene-Propane Acetone-Water Data Pressure (P)

Range for Linear and

Non-linear Models

PT

PTX

PTXY

PT

PTX

PTXY

Linear 0.995 0.996 0.996 0.85 0.995 0.996 Low P

Nonlinear 0.995 0.996 0.996 0.87 0.995 0.996

Linear 0.992 0.995 0.996 0.82 0.991 0.995 High P

Nonlinear 0.994 0.996 0.996 0.87 0.993 0.997

Linear 0.993 0.994 0.995 0.82 0.991 0.996 Full

Data Nonlinear 0.994 0.995 0.995 0.87 0.993 0.996

In an effort to study pressure induced effects, the full data set was divided into

low pressure and high pressure sets and additional tests were performed. The model was

forced to be linear and nonlinear respectively, for both low and high pressures, as

discussed in the next section.

 100

4.2.1 Ideal gaseous and liquid mixture

Low pressure models developed for propylene-propane system with different

terminal sets provide very good data representation. Models with PT, PTX and PTXY

terminal sets have R
2
 values of 0.995, 0.996 and 0.996 respectively. Including

composition term in evolved local model doesn’t improve model’s goodness of fit since

PT models represent the data very well. This result is expected as can be seen from the

discussion to follow in this section.

The basic vapor-liquid equilibrium relation can be expressed as:

),,(),,(),,(),,(
−

−

−

−

−

−

−

−

=== yPTfyPTPyxPTPxxPTf v

i

v

ii

l

ii

l

i φφ (4.1)

The description of vapor-liquid equilibrium using an equation of state for both

liquid and vapor phase is referred to as the φφ − method, then,

),,(

),,(

−

−
−

−

=≡

yPT

xPT

x

y
K

v

i

l

i

i

i
i

φ

φ
 (4.2)

The other alternative is to use an activity coefficient model for the liquid phase

and an equation of state for the vapor phase, i.e, φγ − method. Eq. (4.1) can be rewritten

in the form of:

),,(),(),,(
,

−

−−

−
= yPTPyPTPxPTx

v

ii

satl

i

sat

iii φφγ (4.3)

 101

),,(

),(),,(
,

−

−

−

−=

yPTP

PTPxPT
K

v

i

satl

i

sat

ii

i

φ

φγ
 (4.4)

At low pressures, the vapor phase can be treated as an ideal gas, and all fugacity

coefficient corrections are negligible. Thus, Eq. (4.4) can be simplified to:

P

PxPT
K

sat

ii

i

),,(
−=

γ
 (4.5)

Furthermore, propylene-propane mixture forms an ideal solution in the liquid

phase, i.e. 1=iγ for both propylene and propane. Then, eq. (4.5) can be further simplified

to:

P

TP
K

sat

i
i

)(
= (4.6)

Eq. (4.6) depicts that the vapor-liquid partition coefficient K for propylene-

propane system at low pressure is only the function of temperature and pressure, not

composition. Therefore, the models with terminal sets of PTX and PTXY don’t improve

the models’ accuracy significantly.

4.2.2 Non-ideal gaseous mixture and ideal liquid mixture

For propylene-propane system at high pressure, as shown in Table 4.7, R
2
for the

local models using different terminal sets of PT, PTX and PTXY are 0.992, 0.995 and

0.996 respectively. Compared with the local model using the terminal set of PT, the one

with PTX has better accuracy, whereas the model using PTXY has about same R
2
 value.

 102

At higher pressures, the behavior of propylene-propane vapor phase deviates from

ideal gas state and thus fugacity coefficient cannot be negligible. The liquid phase is not

affected by pressure much so it still can be treated as ideal solution. The Eq. (4.4) can be

reduced to:

),,(

),(
,

−

−

−

=

yPTP

PTP
K

v

i

satl

i

sat

i
i

φ

φ
 (4.7)

Due to the composition dependent characteristic of fugacity coefficient correction,

the introduced composition term of the evolved local model can and do improve model’s

accuracy.

4.2.3 Ideal gaseous and non-ideal liquid mixture

As can be seen In Table 4.7, the local models developed for acetone-water system

at low pressure improve significantly the goodness of fit after the liquid composition is

introduced to the model, R
2
 is 0.85 for the terminal set of PT and R

2
 is 0.995 for the

terminal set of PTX. There is no significant improvement for the terminal set of PTXY

where R
2
 is 0.996. At low pressures, the vapor phase of acetone-water system approaches

ideal gas state, and fugacity coefficient corrections can be omitted.

However, in liquid phase, acetone-water forms a polar solution which displays a

strong non-ideal behavior. Therefore, the effect of activity coefficient needs to be taken

into account. Eq. (4.5) can be used to describe the vapor-liquid equilibrium for acetone-

water system at low pressure.

 103

Since activity coefficient is composition dependent, the evolved local model with

composition term improves the goodness of fit.

4.2.4 Non-ideal gaseous mixture and non-ideal liquid mixture

At high pressures, R
2
 s’ for local models with different terminal set of PT, PTX

and PTXY are 0.82, 0.991 and 0.995 respectively for acetone-water system. The models

with terminal set of PTX and PTXY have better data fit than the model with the terminal

set of only PT. The model with PTXY also has better accuracy than the model with PTX.

At higher pressures, both vapor and liquid phase display non-ideal behavior, and

therefore fugacity coefficient and activity coefficient are necessary for description of the

mixture. The composition has relatively larger impact on the system, in both vapor phase

and liquid phase. The rigorous form of K model Eq. (4.4) can be used to describe this

binary system at high pressure. From Eq. (4.4), we can see K value is vapor and liquid

composition- dependent, therefore, the local models with the terms of composition in

vapor and liquid phase can significantly improve the goodness of fit.

It’s also observed that, in acetone-water system at low pressure, the model’s

accuracy with PTX is close to that of the model with PTXY, however, at high pressure,

the difference of accuracy between PTX and PTXY is larger. This is because at higher

pressures, the non-ideal gas behavior has more impact in vapor phase; therefore,

including the composition in the vapor phase can improve the model’s accuracy.

 104

4.2.5 Linear model vs. nonlinear model

 Using each low and high pressure group data, linear and nonlinear models were

developed. The linear models that evolved from low pressure data for both propane-

propylene and acetone-water systems were given in Table 4.7. As can be seen in the

Table 4.7, nonlinear models for low pressure do not exhibit significant improvement on

goodness of fit for propylene-propane system. At low pressure, the propane-propylene

system is an ideal or nearly ideal system. The linear model is good enough to describe the

characteristics of solution. For the acetone-water system, the nonlinear model improves

the prediction accuracy for the one with terminal set of PT, which R
2

is 0.87 compared to

0.85 for linear model, but there is no significant improvement for the linear models that

have terminal set of PTX and PTXY. It indicates that composition is a necessary term for

the evolved local model to have adequate capability to describe non-ideal system. Once

the composition term is included in the model, linear model is also good enough to

describe the non-ideal behavior.

For higher pressures, the scenario got changed. When the linear model and the

nonlinear model are compared, for propane-propylene system, the nonlinear model has

slight improvement on accuracy for the PT model, where R
2

is 0.994 for the nonlinear

model compared with 0.992 for the linear model. For models with terminal sets of PTX

and PTXY, the nonlinear ones don’t show significant improvement on models’ accuracy.

For the acetone-water system at higher pressures, the nonlinear model shows some

improvement for PT, PTX and PTXY terminal sets. The acetone-water system exhibits

 105

strong nonlinearity with high pressure. Therefore, a nonlinear model may describe this

behavior better. It also can be further demonstrated in Figures 4.16 and 4.17, with K1 vs.

composition and K1 vs. pressure plots respectively. At low pressures, with no azeotropy

present, the linear local model with PTX terminal set has a good fit to the data. At higher

pressures, with an azeotropic behavior, K value exhibits a strong nonlinearity. Therefore,

the nonlinear model can fit the data better.

Acetone-water is a non-ideal system with an azeotropic point, which displays a

nonlinear behavior with increasing pressure. The vapor-liquid partition coefficient K also

displays a stronger nonlinearity than that of propane-propylene system. However, the

model that evolved from the data is a linear model, with respective to its parameters. This

limits model performance for the acetone-water system.

This group of tests displays that, the models with different terminal sets are

consistent with the thermo-physical behavior of ideal (or nearly ideal) and non-ideal

systems.

4.2.6 Extrapolation

 In an effort to explore the extrapolation capability and validity of the models,

models generated utilizing only low pressure data, including both the linear and the

nonlinear models, were tested with the high pressure data. Similarly, models generated

using high pressure data were used to test model at lower pressure.

 106

The R
2

s for each case are shown in Table 4.8. “***” in Table 4.8 indicates the

correspondingly redundant result presented in Table 4.7.

Table 4.8 R
2
 of Extrapolation Test

Propylene-Propane Acetone-Water

fit to low
pressure

data

fit to high
pressure data

fit to low
pressure data

fit to high
pressure data

linear *** 0.848

*** 0.528 model (PTX)

generated from
low pressure

data
nonlinear *** 0.976 *** 0.720

linear 0.946 *** 0.919 *** model (PTX)

generated from
high pressure

data
nonlinear 0.966 *** 0.977 ***

As can be seen in Table 4.8, the models generated from low pressure data do not

represent high pressure data well. This is true whether the model is linear or nonlinear,

particularly for acetone-water system since azeotropy information is missing in low

pressure. Also one can observe that the nonlinear models have better generalization

capability than the linear models which is not surprising giving the non-linear nature of

the phenomena particularly as transitions from ideal gas to real or azeotropy occurs.

Similarly, the models generated from high pressure data have better generalization

capability than those generated from low pressure data. These results prove again that

genetic programming method is a fully data-driven method and is reliable in capturing

phenomena when applied judiciously.

 107

CHAPTER FIVE

CONCLUSIONS AND RECOMMENDATIONS

This research proposes a hybrid evolutionary modeling algorithm to build the

vapor-liquid equilibrium K-factor models automatically. The developed system may also

serve as a general-purpose machine function identification package which can

automatically build a function model to fit the given experimental data. The main idea of

the algorithm is to embed linear or nonlinear regression into GP, where GP is employed

to optimize the structure of a model, while linear or nonlinear regression method is

employed to optimize its parameters. A distinct advantage of this method is that no a-

priori assumptions have to be made about the actual model form: the structure and

complexity of the model evolve as part of the problem solution. It may reduce the

limitations on function structure that insufficient descriptions on studied system

introduced by proposed initial structure, or over-simplified structure introduced by

inappropriate assumptions made for function simplification procedure. The developed K

model can be inserted in process simulation programs to save computation time, without

affecting the accuracy of the simulation.

The results clearly prove that the hybrid system is able to find the explicit form of

models that closely approximate the data in a relatively wide range while the accuracy

can be tailored to a desired level. The models have also been shown to accurately

 108

represent ideal mixture equilibrium ratios for a binary vapor-liquid system. The greater

the accuracy and region of validity of the models, the less frequently the parameters have

to be updated. This in turn will require less use of the rigorous thermodynamic-physical

property programs for computationally expensive property evaluations. For a non-ideal

system with azeotropic point, GP seems to be capable for the whole pressure range at an

acceptable level, and if necessary, one can adjust the parameter of the generated model to

fit the data well.

 The experimental data was obtained from literature, which may contain error. The

results revealed that the hybrid system is able to find the explicit model that closely

approximated the data. It shows GP’s robustness on data.

In some cases, parsimony principle was incorporated through the fitness function.

The results show that a simpler structure, but less accuracy can be obtained.

 In conclusion, the results presented in this research indicate the potential of GP

for developing thermo-physical model and other general purpose function identification.

Genetic programming is a robust and efficient paradigm for discovering model structure

using the expressiveness of symbolic representation.

In this developed package, Marquardt regression method is used to get the

parameter values for a nonlinear model structure. This method results in local as opposed

to global solutions. The GP, as well as other evolutionary methods, will terminate early

or converge to incorrect solution when the parameters regressed using local solvers are

not adequate. Therefore, a global optimization method will resolve the local optimization

problem, as well as ensuring a robust hybrid symbolic regression scheme.

 109

As stated before, a primary classification used for property and process models in

chemical engineering is algebraic versus differential equation models. K model is an

algebraic equation that has multiple dependent variables and a single independent

variable. The extended application of the developed package to differential equation can

be studied further, which may enable the functionality of the package to be completed.

 110

REFERENCES

Bamicki, S. D. and Fair, J. R. (1990). Separation synthesis: a knowledge-based
approach. 1. Liquid Mixture separations. Ind. Eng. Chem. Res., 29: 421-435.

Banares-Alcantara, R., Westerberg, A. W. and Rychener, M. D. (1985).
Development of an expert system for physical property predictions. Computers Chem.

Engng, 9:127-142.

Cao, H. Yu, J., Kang, L. and Chen, Y. (1999). The Kinetic evolutionary modeling

of complex systems of chemical reactions. Computers & Chemistry, 23:143-151.

Chen S.-H. and Yeh C.-H. (1997). Toward a computable approach to the efficient

market hypothesis: an application of genetic programming. Journal of Economic

Dynamics and Control, 21(4): 1043-1063.

Csukas, B. and Balogh, S. (1998). Combining genetic programming with generic
simulation models in evolutionary synthesis. Computers in Industry, 36:181-197.

Draper, N. R. and Smith H. (1981). Applied regression analysis. John Wiley, NY.

Englezos, P. and Kalogerakis, N. (2001). Applied parameter estimation for

chemical engineers. Marcel Dekker, NY.

Fogel, L. J., Owens, A. J. and Walsh, M. J. (1966). Artificial intelligence through

simulated evolution. John Wiley, NY.

Frank, P. and Köppen-Seliger, B. (1997). New developments using AI in fault

diagnosis. Engineering Applications of Artificial Intelligence, 10: 3-14.

 111

Franks, R. G. (1967). Mathematical modeling in chemical engineering, Wiley,
New York.

Fredenslund, A., Rasmussen, O. and Mollerup, J. (1980). Thermo physical and
transport properties for chemical process design. In Foundations of Computer-aided

Process Design.

Freitas, A.A. (2002). A survey of evolutionary algorithms for data mining and

knowledge discovery. To appear in: A. Ghosh and S. Tsutsui. (Eds.) Advances in
Evolutionary Computation. Springer-Verlag.

Friese, T. Ulbig, P. and Schulz, S. (1998). Use of evolutionary algorithms for the
calculation of group contribution parameters in order to predict thermodynamic

properties. Part I: Genetic Algorithms. Computers Chem. Engng, 22:1559-1572.

Gani R. and O’Connell, J. P. (1989). A knowledge-based system for the selection

of thermodynamic models. Computers Chem. Engng, 13:397-404.

Gao, L. and Loney, N. W. (2001). Evolutionary polymorphic neural network in

chemical process modeling. Computers Chem. Engng, 25:1403-1410.

Goldberg, D. E. (1989). Genetic algorithms in search optimization and machine

learning. Addison Wesley, Reading, MA.

Greeff, D. J. and Aldrich, C. (1998). Empirical modelling of chemical process

systems with evolutionary programming, Computers Chem. Engng, 22:995-1005.

Grosman, B. and Lewin, R. D. (2004). Adaptive genetic programming for steady-

state process modeling, Computers Chem. Engng, 28:2779-2790.

Hand, D., Mannila, H. and Smyth, P. (2001). Principles of data mining. MIT

Press, Cambridge, MA.

 112

Hansen, M. and Yu, B. (2001). Model selection and the principle of minimum
description length. Journal of the American Statistical Association, 96(454): 746--774.

Holland, J. H. (1975). Adaptation in natural and artificial system, University of
Michigan Press, Ann Arbor, MI.

Hutter, M. (2002). Fitness uniform selection to preserve genetic diversity. In

Proc. 2002 congress on evolutionary computation. 783-788.

Johnson, H. E., Gilbert, R. J., and Winson, K. (2000). Explanatory analysis of the
metabolome using genetic programming of simple, interpretable rules. Genetic

Programming and Evolable Machines. 1(3):243-258.

Jolliffe, I. T (1986). Principal component analysis, Springer-Verlag, New York.

King, R. A. (1986). Expert systems for materials selection and corrosion. The

Chemical Engineer, December, 42-57.

Kinnear, K. E. Jr. (editor) (1999). Advances in genetic programming III. The MIT

Press, Cambridge, MA.

Kinnear, K. E. Jr. (editor) (1994). Advances in genetic programming. The MIT

Press, Cambridge, MA.

Kirkwood, R. L., Locke, M. H. and Douglas, J. M. (1988). A prototype expert

system for synthesizing chemical process flowsheet. Computers Chem. Engng, 12:329-
341.

Koza, J. R., Bennett III. F. H., Andre, D. and Keane, M. A. (1999). Genetic
programming III: darwinian invention and problem solving. Morgan Kaufmann, San

Francisco, CA.

Koza, J. R. (1994). Genetic programming II: automatic discovery of reusable

programs. MIT press, Cambridge, MA.

 113

Koza, J. R., Keane, M. A., Streeter, M. J. Mydlowec, W., Yu, J. and Lanza, G.
(2003). Genetic programming IV: routine human-competitive machine intelligence.

Springer.

Legg, S., Hutter, M., and Kumar, A. (2004). Tournament versus fitness uniform

selection. In Proceeding of the 2004 congress on evolutionary computation.

McKay, B., Willis, M. and Barton, G. (1997). Steady-state modeling of chemical

process systems using genetic programming. Computers Chem. Engng, 21:981-996.

Miettinen, K. (editor) (1999). Evolutionary algorithms in engineering and

computer science: recent advances in genetic algorithms, evolution strategies,
evolutionary programming, genetic programming, and industrial applications, Wiley,

NY.

Mitchell, M. (1996). An introduction to genetic algorithms, MIT Press,
Cambridge, MA.

Mitchell, T. (1997). Machine Learning. McGraw Hill, NY.

 Ozyurt, B. (1998). Chemical process fault diagnosis using pattern recognition and

semi-quantitative model based methods. Ph.D. dissertation, University of South Florida.

Poli, R. (2008). Covariant Parsimony Pressure for Genetic Programming.

Computers Chem. Engng, 21:981-996.

Pöyhönen, H.O. and Savic, D. A. (1996). Symbolic Regression Using Object-

Oriented Genetic Programming (in C++), Centre For Systems And Control Engineering,

Report No. 96/04, School of Engineering, University of Exeter, Exeter, United Kingdom,
72-84.

Quagliarella, D. (editor) (1998). Genetic algorithms and evolution strategy in
engineering and computer science: recent advances and industrial applications, John

Wiley & Sons, New York.

Quantrille, T. E. and Liu, Y. A. (1991). Artificial Intelligence in chemical
engineering. Academic Press, Inc. San Diego.

 114

Ramirez F. (1989). Computational methods for process simulation, Butterworths,
MA.

Ruiz, D., Nougués, J., Calderón, Z., Espuña, A. and Puigjaner. L. (2000). Neural
network based framework for fault diagnosis in batch chemical plants. Computers &

Chemical Engineering.24:777-784.

Stephanopoulos, G. (1987). The future of expert systems in chemical engineering.

Chem. Engng. Prog, 83:44-51.

Stephanopoulos, G. and Han, C. (1994). Intelligent systems in process

engineering: a review. In Proc. 5
th

 Intl. Symp. on Process Systems Engineering, Kyongju,

Korea.

Stephanopoulos, G., Johnston, J. and Kriticos, T. (1987). Design-kit: an object-
oriented environment for process engineering. Computers Chem. Engng 11(6): 655-678.

Thuraisingham, B. (1999). Data mining technologies, techniques, tools and
trends. CRC Press, NY.

Xu, W. (2005). Improved genetic algorithms for deterministic optimization and
optimization under uncertainty, Ind. Eng. Chem. Res, 44: 7132-7146.

Zhang, B-T. and Muhlenbein, H. (1993). Evolving optimal neural networks using
genetic algorithm with Occam’s razor, Complex Systems, 7:199-220.

Zhang, B-T. and Muhlenbein, H. (1995). Balancing accuracy and parsimony in
genetic programming, Evolutionary Computation, 3(1):17-38.

Zhang, B-T. (2000). Bayesian methods for efficient GP, Genetic Programming

and evolvable machine learning, 1, 217-242.

 115

APPENDICES

 116

Appendix A. User Manual for GP Package

A.1 MATLAB files

 In the developed GP package, the MATLAB files (.m files) include:

• gp_ main.m: the main code that completes GP operations.

• marquardt.m: the subroutine that performs nonlinear parameter regression

using Marquardt method, and calculates the fitness for an individual.

• linear.m: the subroutine that performs linear parameter regression using least

square, and calculates the fitness for an individual.

A.2 Architecture

 The relationship between the .m files described above is given in the Figure A.1.

The expanded structure for main code (gp_main.m) is on left side, and the subroutine is

shown on the right hand side.

 117

Appendix A (Continued)

Main Subroutine

 Yes

 No

 No Yes

Figure A.1 Architecture of MATLAB Code

Create Initial Population

Evaluate Fitness

Select Parent Chromosomes

Evaluate Fitness

Perform genetic operation

Select genetic operation

Population

Reduction ?

Subroutine:

linear or
marquardt

regression

Select chromosomes

and delete from

population

Subroutine:

linear.m or

marquardt .m

Terminated? End
Solution

is

assigned

 118

Appendix A (Continued)

A.3 How to use the GP package

 In this section, we will follow the Figure A.1, and give a detail explanation on

how to specify the parameter in the code.

• Step 1: load data set and assign the value to the variables of terminal set.

Command: DATA = LOAD (‘FILENAME’)

• Step 2: create initial population. Command: CHROM_ID = GS_NEW

(POPULATION, CHROMOSOME), POPULATION is a character string

designating the chromosome population in which the new chromosome is

created. CHROMOSOME is a character string defining the gene structure of

the new chromosome. CHROM_ID is an integer identifying the newly created

chromosome. Example: mem_id = gs_new ('Pop1', 'v2/T'); The initial

population defined with GS_NEW command needs to include the complete

terminal set and function set.

• Step 3: define regression strategy. Command: REGRESSION_TYPE =

‘TYPE_VALUE’. TYPE_VALUE is set to 0 for linear regression, 1 for

nonlinear regression, or 1 for both. Default value is set to 0. This command is

to define the regression strategy going to be used in the GP.

 119

Appendix A (Continued)

• Step 4: define stop criteria (Maximum Generation). Command: MAXGEN =

‘MAXIMUM NUMBER OF GENERATION’. This command defines the

maximum generation of GP. The stop criterion is controlled by a while loop.

• Step 5: select parent chromosomes. The selection strategies provided in GP

toolbox are:

o GS_SEL_HIFIT (or GS_SEL_LOFIT): select two chromosomes with

the highest (lowest) fitness values and return their ID

o GS_SEL_LOTRN (or GS_SEL_HITRN): choose chromosomes using

tournament selection and return their IDs, with chromosomes with

higher (lower) fitness winning the tournament.

o GS_SELR: select two chromosomes randomly.

o GS_SELR_HIFIT (or GS_SELR_LOFIT): select two chromosomes

randomly, with the probabilities of selection being proportional to their

fitness value.

o GS_SELR_HIRANK (or GS_SELR_LORANK): select two high (low)

fitness chromosomes randomly, with the probabilities of selection

being based on fitness rank. In this research, tournament method is

used. Example: mem_ids = gs_sel_lotrn ('Pop1',4,2).

 120

Appendix A (Continued)

• Step 6: define and perform genetic operators. Command: OP_NAME =

GS_SEL_OP (OP_LIST, OP_PROB). Choose a random genetic operation from a

list according to specified probabilities. OP_LIST is a cell array containing the

names of the operations among which to select, OP_PROB is a corresponding list

of probabilities, OP_NAME returns a string identifying the chosen operation, or

null (‘ ’) if an error occurs.

Then run genetic operations using: Command: CHROM_IDS = GS_OP

(POPULATION, OPERATION, CHROM_ID1, [CHROM_ID2, MUTPROB]).

GS_OP implements a specified genetic operation on specified chromosome(s).

POPULATION is a string designating the population from which the

chromosomes to be operated. OPERATION is a string identifying the genetic

operation. CHROM_ID1 is the first chromosome to be operated on.

CHROM_ID2 is the second chromosome to be operated on, and is only required

for crossover operations. MUTPROB is the mutation probability, required only

for binary mutation. CHROM_IDS returns a vector of identification numbers of

the one or two new chromosomes created by the genetic operation. Example:

op_name = gs_sel_op ({'mut', 'xovr'}, [0.5, 0.5]); off_ids = gs_op ('Pop1',

op_name, 12, 22).

 121

Appendix A (Continued)

• Step 7: define deletion strategy. The commands are same as the ones used for the

selection strategies. Command: OUTCOME = GS_DEL (POPULATION,

CHROM_ID). POPULATION is a character string designating the chromosome

population from which the chromosome is to be deleted. CHROM_ID is an

integer identifying the chromosome to be deleted. OUTCOME returns the

specified CHROM_ID if the deletion is successful; otherwise, a value 0 is

returned. Example: gs_del ('Pop1', off_ids(off)).

 122

Appendix B. Statistical Analysis

B.1 Tests for outliers

Outlier can be detected from student residuals.The MATLAB code is given in

Table B.1.

Table B.1 MATLAB Code for Outlier Test

nn=length(x1data);

residual=k1_calc1-k1data;

avg_k1=sum(k1data)/nn;

sst=sum((k1data-avg_k1).^2);
sse=sum(residual.^2);

ssr=sum((k1_calc1-avg_k1).^2)

counter=length(param);

mse=sse/(nn-counter)
msr=ssr/(counter-1)

chr1=char('(1+3*x1+x1*log(x1))-v1*T+v2*x1/T-v3*(1-log(x1))-v4*(1-x1)')

term1=char('T');

term2=char('x1./T')
term3=char('1-log(x1)')
term4=char('1-x1')

r=0;

X=[eval(term1) eval(term2) eval(term3) eval(term4)];
H=X*inv(X'*X)*X';

for ii=1:length(k1data)
 r(ii)=abs((k1data(ii)-k1_calc1(ii))/sqrt(mse*(1-H(ii,ii))));

end

 123

Appendix B (Continued)

Table B.2 The Result for Outlier Test

 r r r r r

1 1.667 26 0.014 51 0.848 76 0.446 101 0.1719

2 0.694 27 0.341 52 0.224 77 0.275 102 0.0758

3 1.594 28 0.106 53 0.0003 78 0.022 103 0.0657

4 0.978 29 0.154 54 0.091 79 0.003 104 0.0673

5 0.437 30 0.030 55 0.156 80 0.062 105 0.1176

6 0.087 31 0.005 56 0.201 81 0.113 106 0.1549

7 0.054 32 0.009 57 0.215 82 0.100

8 0.165 33 0.026 58 0.182 83 0.125

9 0.259 34 0.081 59 0.129 84 0.090

10 0.334 35 0.124 60 0.094 85 1.540

11 1.979 36 0.592 61 2.647 86 1.265

12 0.099 37 0.491 62 1.371 87 0.963

13 0.846 38 1.389 63 0.968 88 0.529

14 0.457 39 0.216 64 0.428 89 0.288

15 0.598 40 0.170 65 0.106 90 0.046

16 0.389 41 0.150 66 0.026 91 0.042

17 0.380 42 0.060 67 0.157 92 0.072

18 0.119 43 0.058 68 0.194 93 0.085

 124

Appendix B (Continued)

Table B.2 (Continued)

 r r r r

19 0.021 44 0.057 69 0.213 94 0.108

20 0.028 45 0.061 70 0.172 95 0.039

21 0.088 46 0.040 71 0.141 96 0.022

22 0.155 47 0.006 72 4.143 97 6.162

23 1.001 48 0.013 73 0.828 98 0.056

24 2.510 49 2.592 74 0.803 99 0.268

25 0.520 50 2.276 75 0.530 100 0.206

0.3>
i

r is a strong indicator that this data point is a likely outlier. The table shows that,

data point #72 and #97 could be an outlier. Looking into the data, it is found that, both

#72 and #97 are the equilibrium data points of dilute solution, which cannot be deleted,

therefore, in this data set, no outlier was deleted.

B.2 Evaluation of final model: cross-validation

When it’s not possible to gather additional new data, and compare these observed

data with the predicted value from the model, a cross validation is an alternative

evaluation method.

 125

Appendix B (Continued)

The original data set can be divided into two subsets A and B randomly, which is

double cross-validation. A good model should be fit to both parts. The MATLAB code

for data set partition is given in Table B.3.

Table B.3 MATLAB Code for Data Set Partition

r = ceil(106.*rand(53,1))
r=sort(r,1)

alarm=2;

for ivv=1:20
for iii=2:53

if r(iii)==r(iii-1)
 r(iii) = ceil(106.*rand(1,1))

end
end

r=sort(r,1);

end
r=sort(r,1);

A_index=r;

B_index=0;
counter_Bset=0;

for iqq=1:106
alarm0=0;

for imm=1:53
if A_index(imm)==iqq

alarm0=1;
break;

end
end

if alarm0 ==0
counter_Bset=counter_Bset+1;

B_index(counter_Bset)=iqq;
end

end

 126

Appendix B (Continued)

 Table B.4 The Result for Data Set Partition

Set A (Datapoint_indext_setA)

2 3 7 15 16 19 21 22 25 29 31 33 37 38 41 44 45 46 48

49 50 52 53 54 56 57 58 63 65 66 69 70 72 73 74 76 78
79 80 81 84 87 88 89 90 91 92 95 96 98 99 100 101

Set B (Datapoint_indext_setB)

1 4 5 6 8 9 10 11 12 13 14 17 18 20 23 24 26 27 28
30 32 34 35 36 39 40 42 43 47 51 55 59 60 61 62 64 67

68 71 75 77 82 83 85 86 93 94 97 102 103 104 105 106

Result:

∑

∑

=

=

∧

−

−

−=
B

B

n

i

BiB

n

i

iAiB

Ap

yy

yy

R

1

2

1

2

2

,

)(

)(

1 =0.9952

∑

∑

=

=

∧

−

−

−=
B

B

n

i

AiA

n

i

iBiA

Bp

yy

yy

R

1

2

1

2

2

,

)(

)(

1 =0.9948

2

, Ap
R and 2

,Bp
R have a high value, and close enough to each other. It concludes that,

the evolved regression model is good.

ABOUT THE AUTHOR

 Ying Zhang received a Bachelor’s Degree in Chemical Engineering from Beijing

Union University, Beijing, China in 1995 and a M.S. in Chemical Engineering from

University of South Florida in 2004, and continued her Ph.D. program at the University

of South Florida until 2008.

	Synthesis of Local Thermo-Physical Models Using Genetic Programming
	Scholar Commons Citation

	Microsoft Word - Ying's dissertation-revised2.doc

