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SYNTHESIS OF LOCAL THERMO-PHYSICAL MODELS USING GENETIC 

PROGRAMMING 

                                                Ying Zhang 

 

                                               ABSTRACT 

 

 

Local thermodynamic models are practical alternatives to computationally 

expensive rigorous models that involve implicit computational procedures and often 

complement them to accelerate computation for real-time optimization and control. 

Human-centered strategies for development of these models are based on approximation 

of theoretical models. Genetic Programming (GP) system can extract knowledge from the 

given data in the form of symbolic expressions. This research describes a fully data 

driven automatic self-evolving algorithm that builds appropriate approximating formulae 

for local models using genetic programming. No a-priori information on the type of 

mixture (ideal/non ideal etc.) or assumptions are necessary.  

The approach involves synthesis of models for a given set of variables and 

mathematical operators that may relate them. The selection of variables is automated 

through principal component analysis and heuristics. For each candidate model, the 

model parameters are optimized in the inner integrated nested loop. The trade-off 

between accuracy and model complexity is addressed through incorporation of the 

Minimum Description Length (MDL) into the fitness (objective) function.  
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Statistical tools including residual analysis are used to evaluate performance of 

models. Adjusted R-square is used to test model’s accuracy, and F-test is used to test if 

the terms in the model are necessary. The analysis of the performance of the models 

generated with the data driven approach depicts theoretically expected range of 

compositional dependence of partition coefficients and limits of ideal gas as well as ideal 

solution behavior. Finally, the model built by GP integrated into a steady state and 

dynamic flow sheet simulator to show the benefits of using such models in simulation. 

The test systems were propane-propylene for ideal solutions and acetone-water for non-

ideal. The result shows that, the generated models are accurate for the whole range of 

data and the performance is tunable. The generated local models can indeed be used as 

empirical models go beyond elimination of the local model updating procedures to 

further enhance the utility of the approach for deployment of real-time applications.  
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CHAPTER ONE 

INTRODUCTION 

 

Approaches to modeling of chemical processes have changed significantly in the 

past three decades. In general, these approaches are divided into two generic categories. 

One is mechanistic modeling, which is mainly based on first principles and fundamental 

knowledge. The other is empirical modeling, which is data driven. In the latter, the model 

structure and its associated parameters are selected to represent the process data 

accurately for a given range and aim to bring ease through simplified model development 

stage as well as reduced computational load.  

Data driven modeling techniques have been popular for many decades. They are 

easier to develop than the mechanistic models, particularly for practitioners. This is 

especially true when mechanistic first principles models and their associated thermo-

physical properties are not adequate in representing the real world problems. 

Furthermore, these mechanistic models are highly nonlinear and complex, which makes 

them difficult to identify [Ramirez 1989] and implement particularly on-real-time 

applications. Currently, the most of the data driven modeling methods fall under 

statistical methods and artificial neural networks headings [Pöyhönen, 1996]. Neural 

networks usually provide models that are accurate in representing the data, but they don't 

provide any insight into represented phenomena. Usually, neural networks are black 
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boxes, and one cannot abstract the underlying physical relationships between input and 

output data. It is often desirable to gain some insight into the underlying structures, as 

well as make accurate numeric predictions. Application of Genetic Programming (GP) 

based approaches are known to produce input-output models with relatively simple and 

transparent structures and the associated procedures are coined with “symbolic 

regression” terminology.  

Genetic Programming allows synthesis of data driven models when model 

elements are represented as a tree structure. This tree structure is of variable length and 

consists of nodes. The terminal nodes can be input variables, parameters or constants 

while thee non-terminal nodes are standard library functions, like addition, subtraction, 

multiplication and division. Each tree structure may possibly describe an equation.  

Genetic programming works by emulating natural evolution to generate an 

optimum model structure that best maximizes some fitness function. Model structures 

evolve through the action of operators known as reproduction, crossover and mutation. 

Crossover involves interchange of the branches from two parent structures. Mutation is 

random creation of a completely new branch. At each generation, a population of model 

structures undergoes crossover, mutation and selection and then a fitness function is 

evaluated. These operators improve the general fitness of the population. Based on 

fitness, the next generation is selected from the pool of old and new structures. The 

process repeats itself until some convergence criterion is satisfied and a model is 

generated. 
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One primary classification used for property and process models in Chemical 

Engineering is based on algebraic versus differential equation models [Franks 1967]. The 

mathematical models are either comprised of a set of algebraic equations for steady-state 

operation or by a set of ordinary differential equations (ODE) coupled with algebraic 

equations for dynamic (time-dependent) models, or partial differential equations (PDE) 

for distributed models. The majority of algebraic mathematical models for physical or 

engineered systems can be classified in one of the following three types [Englezos 2001]: 

• Type I: A model with a single dependent variable and a single independent 

variable. For example, heat capacity model for ideal gas is a function of 

temperature.  

• Type II: A model with a dependent variable and several independent 

variables, for example, a pressure-explicit equation of states (EOS) which is 

enable the calculation of fluid phase equilibrium and thermo-physical 

properties such as enthalpy, entropy, and density necessary in the design of 

chemical processes. Mathematically, a pressure-explicit EOS expresses the 

relationship among pressure, volume, temperature, and composition for a fluid 

mixture. 

• Type III: A model with multiple dependent variables and several independent 

variables. A typical group of applications is modeling of reaction kinetics 

where possible mechanism is depicted as multiple reactions that are coupled 

through concentration of species. 
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The objective of this dissertation is to develop a methodology, which uses genetic 

operations in order to find a symbolic relationship between a single dependent variable 

and multiple independent variables, i.e., Type II. The approach was demonstrated for 

Type I problems by Zhang [ 2004] earlier.  

The structure and hence the complexity of the model or the equation is not 

specified like in the conventional regression, which seeks to find the best set of 

parameters for a pre-specified model. The goal is to seek a mathematical expression, in 

symbolic form, which fits or approximates a given sample of data using genetic 

programming (GP). The approach is called “Symbolic Regression”. 

The nested two tier approach is proposed in this research where parameter 

regression method is embedded within GP. The GP is employed to optimize the structure 

of a model, while classical numerical regression is employed to optimize its parameters 

for each proposed structure. The model structure and its parameters are unknown, and 

determined for each step through the algorithm. Model’s adequacy is tested through post 

analysis. 

The approach is tested for a practical and significant problem: development of 

local and/or empirical partition coefficient models for vapor liquid separation. 

For accurate chemical process design and effective operation, a correct estimate 

of physical and thermodynamic properties is a prerequisite. The estimation of these 

properties through first principle but complex implicit models for pure components and 

mixtures is computationally costly. The computational time is critical particularly in real 

time applications. The phase equilibrium calculations are the most computationally 
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intensive of these properties due to implicit nature of procedures with more complex 

property models, especially when used with rigorous separation models [Leesley 1977].  

Local thermodynamic models are explicit functions that approximate more 

rigorous models that involve implicit computational procedures in equilibrium 

calculations. Computations with these functions are fast and non-iterative at times, but 

are only valid in a limited region where the functions are accurate. Therefore, local 

models need to be updated as the simulation moves into new regions in the state spaces. 

Since the late seventies, many functional forms with differing independent variable sets 

for these models were suggested and some have been implemented within flow sheet 

simulator packages [Perregaard 1992, Storen 1994, and Storen 1997].  

This introductory chapter is followed by Chapter Two, where local models, data 

mining applications and technologies, evolutionary algorithms and their applications in 

chemical engineering, and optimization methods and their objective functions are 

reviewed. Chapter Three describes the proposed system structure, guidelines for 

determination of GP controlling parameters, and the details of implementing the 

approach. Results and discussion are given in Chapter Four. Finally, in Chapter Five, 

conclusion and recommendations are presented.  
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CHAPTER TWO 

LITERATURE REVIEW 

 

This chapter includes the review of local models for vapor-liquid partition 

coefficient (K value), data mining tasks and techniques, evolutionary algorithms and 

optimization methods.  In the first section, the development of local models is 

summarized. The review on data mining technologies is given in the second section. The 

third section describes the development of evolutionary algorithms and the comparison of 

different algorithms. More emphasis is given to genetic programming. A brief summary 

of applications of intelligent system in chemical engineering is also given at the end of 

this section. In the fourth section, some popular optimization methods and pertinent 

objective functions (criteria) are reviewed.  

 

2.1 Review of local models for phase partition coefficients 

 

A correct estimate of physical and thermodynamic properties is a prerequisite for 

the accurate chemical process design and operation. The calculation of those properties of 

pure components and mixtures contributes the major cost in computer time. Local 

thermodynamic models are practical alternatives to computationally expensive, more 

rigorous macroscopic or molecular models that involve implicit computational 
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procedures, and often complement them to accelerate computation for run time 

optimization and control. Since vapor-liquid equilibrium constant K is among the most 

computationally expensive one [Leesley 1977], the research efforts on developing local 

models focus on the vapor-liquid equilibrium constant K.   

Since the late seventies, several research groups developed local thermodynamic 

models and accompanying procedures to be implemented within flow sheet simulator 

packages. The objective is to replace, or assist more rigorous thermodynamic models 

with local alternatives to reduce the computer time while maintaining the thermodynamic 

accuracy at an acceptable level. Local thermodynamic models have been used to 

accelerate steady state calculation [Leesley et al. 1977, Chimowitz et al. 1983, Perregaard 

1993], dynamic simulation [Chimowitz et al. 1984, Perregaard 1993], and dynamic 

optimization [Storen 1997]. The more rigorous thermodynamic models are nonlinear 

equation sets which involve iterative calculations for vapor-liquid equilibrium constant 

(K) model. The local models are in explicit form, and linear with respect to its parameters. 

Their calculation procedures are shown in Figure 2.1 while the flowchart of isothermal, 

isobaric flash calculation using an equation of state is shown in Figure 2.2. As can be 

seen, the explicit local models are much easier and faster to evaluate, but they are only 

valid locally. The local models must be updated, if the simulation proceeds out of the 

region where the local model is valid.  

The implementation of the idea involves three major components: local model 

formulation, error monitor and parameter update, as shown in Figure 2.3.  
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                                                                       Converged 

Figure 2.1 Flowchart for an Algorithm for Isothermal Flash Calculation Algorithm 

that Uses Composition Dependent Local Models 
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Figure 2.2 Flowchart for an Algorithm for Isothermal Flash Calculation Algorithm                                    

that Uses Equation of State 
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Figure 2.3 Architecture of Local Model Strategy 

 

The first component of local model based system development is to formulate the 

approximate local function. Leesley [1977] developed several local models for ideal 

solutions, which didn’t include composition dependence. He derived the local K model 

from the complete form: 
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After simplification, through ideal solution assumption and avoiding complex 

functional forms, an approximation to Eq. (2.1) can be developed for low pressure. 
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Eq. (2.2) reproduces the temperature dependence of K-values fairly well over the 

range of 50-100 °C. However, the relation is too approximate to be useful above the 

pressures of 2-3 bars. Thus, a third adjustable coefficient has been introduced in the 

approximation formula for high pressure applications: 

PAA
T

A
K ii

i

i lnln ,3,2

,1
−+=                       (2.3) 

Chimowitz [1983] extended the local models to non-ideal solutions for multi-

component vapor-liquid system. One of the essential ideas has been to treat multi-

component mixtures as pseudo-binary solutions. The functional form used to model the K 

values, which is composition-dependent for each pseudo-binary, has been also derived 

from basic thermodynamic considerations. In Chimowitz’s work, he presented a local 

model for non-ideal solutions: 

PPx
RT

A
K s

iii
lnln)1(ln 2 −+−=             (2.4) 

Lender [1994] used a sequential least squares procedure to build approximating 

formulae from a general model that contains all the terms necessary to represent any 

particular mixture: 
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The problem with this formula is that it has too many parameters (5+2n) to be 

efficient. To eliminate the unnecessary terms, Eq. (2.5) is rewritten in the form of: 

FQQQA
TT 1

)(
−=              (2.6) 
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Eq. (2.6) is the least squares solution of the Eq. (2.5), where A is the vector of 

local model parameters, F is the vector of ln(K) obtained from experimental data, Q is the 

matrix of terms. If one lets
1

)(
−= QQC

T
, then,  

jjii

ij

ij
CC

C
Corr =             (2.7) 

If this correlation is found to be higher than a specified tolerance, one of the two 

parameters will be eliminated from the corresponding line and column in matrix C. 

Stepwise regression strategy is applied. For each parameter introduction, the parameters 

are re-computed and the residuals are examined. If they are satisfactory, the local model 

is accepted. If not, the parameter is eliminated before introducing the next one. When all 

parameters have been examined, the ones that gave the lowest residuals are accented. 

The second component is the error monitor to estimate the range of validity of the 

local models for a set of parameters and identify when to update the local model.  Leesley 

and Heyen [1977] fixed upper and lower values of the two independent variables, T and P. 

The bounds defined an interval, which included the two data points used in calculating 

the parameters. Hillestad et al. [1989] and Storen [1994] developed different error models 

for predicting the deviation between local and rigorous thermodynamic property models.  

The third component is parameter estimation for updating models as the range of 

model have to change. Macchietto [1986] and Hillestad et al. [1989] applied recursive 

least-squares methods. The objective here is to preserve information from past data in the 

covariance matrix for the parameters. When a new data point is introduced, the 

covariance matrix can be updated and new values for the parameters can be obtained. 
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Storen [1994] used a simplified scheme with correction factors. Ledent [1994] presented 

a sequential least squares procedure.  

In summary, two major approaches were developed to synthesize local 

thermodynamic models. One method is to derive a relationship based on a 

thermodynamic insight. Assumptions are made to simplify the relationship [Leesley 1977, 

Chimowitz 1983]. Each formula is suitable for a particular type of solutions (ideal/non 

ideal etc.). The final structure of formula mostly includes one constant term, one term 

that accounts for the temperature influence, and one term accounts for the pressure 

influence. In the case of non-ideal solutions, one or more terms may be added, to account 

for the composition influence. The other approach to the empirical formulation is on 

evaluated statistical basis, i.e. provide a general form of local model, which includes all 

the terms described above and their combinations, and then eliminate the redundant terms 

by examining the correlation for every pair of parameters [Ledent 1994].  

Both approaches are human-centered strategies, and they share a common task of 

developing local models. An initial function structure is proposed first, and then the 

function structure is simplified and reduced by applying different strategies. The human-

centered approaches may bring some limitations to the final structure of local models due 

to the over-simplified structure introduced by inappropriate assumptions made for the 

procedure of simplification, or, the insufficient description of the studied system 

introduced by proposed initial structure.  

The form of local model is important because it is closely related to the 

correlation capabilities of the local model. It’s also very important that the local model 
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ensures a fast, robust and consistent evaluation of the parameters. For this study, we are 

interested in a fully automatic algorithm, which can develop formula sufficiently and 

flexibly to all solution mixture types and functional forms. This can be obtained with 

symbolic regression through genetic programming.  

 

2.2 Review of data mining techniques in the knowledge discovery process 

 

In this study, genetic programming is used as a data mining tool for knowledge 

discovery in data.  

Knowledge discovery in database (KDD) is the nontrivial process of searching 

valid, novel, potentially useful and ultimately understandable patterns or models in data. 

It involves a number of steps [Thuraisingham 1999]. For the sake of simplicity, these 

steps can be grouped as three major stages: data pre-processing, data mining, and post-

processing. The simplified flowchart is shown in Figure 2.4. 

Data mining, here, refers to a particular step in overall knowledge discovery 

process. As the core stage of KDD process, it focuses on applying discovery algorithms 

to find understandable and useful relationships from observed data. The data mining tasks 

can be divided into three major categories [Hand et al. 2001]: model building, 

discovering pattern and rules, and retrieval by content. 

The tasks of model building can be categorized further based on objectives. The 

first is descriptive modeling. The goal of a descriptive model is to describe all of the data. 

Examples of such descriptions include models for the overall probability distribution of 
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the data (density estimation), partitioning of the n-dimensional space into groups (cluster 

analysis), and models describing the relationship between variables (dependency 

modeling). The second one is predictive modeling. The aim of predictive modeling is to 

build a model that will allow the value of one variable to be predicted from the known 

values of other variables. The key distinction between prediction and description is that 

prediction has, as its objective, one or more than one specifically targeted variables, while 

in descriptive problems no single variable is central to the model. Classification and 

regression are two of the most popular applications in predictive modeling. In 

classification, the variable being predicted is categorical, while in regression the variable 

is quantitative.  

From a data mining viewpoint, this study can be set in the category of predictive 

modeling, which involves both model structure and parameter regression to build a local 

model for vapor-liquid equilibrium coefficient K.  

  

Raw Data                                                                                                                                                 Model    

 

 

 

                    

        Objectives 

 

 

Figure 2.4 Knowledge Discovery Process 
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There are many different data mining techniques. In this section, only a few of 

techniques that are applicable for predictive modeling are summarized and compared. 

These include linear regression, regression tree, neural network, genetic algorithm and 

genetic programming. 

Since the structure of the linear model is simple, easy to interpret, and estimation 

of parameters for linear models is straightforward, linear regression holds a special place 

among data-driven data analysis methods.  

A linear regression model can be represented as: 

i

n

i

i Xaay ∑
=

∧

+=
1

0             (2.8) 

where the ai s are parameters that need to be estimated by fitting the model to the given 

data set. Xi  can simply be original predictor variables xi, or more generalized form of 

f(xi), i.e., transformations of the original x variables. f(xi) could be smooth function, such 

as log, square-root, or cross-product terms of  xis for polynomial models which allows 

interaction among the xis in the model.  

The parameter estimation for linear regression model is straightforward through 

least square fitting. However, selecting a proper model structure to fit the data is a 

challenge. This is because the selected model is generally empirical, rather than first 

principle. The model may not include all of the predictor variables, or certain functions of 

the predictor variables, that are needed for correct prediction. 
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Regression tree (RT) can be viewed as a variant of decision trees. It’s designed 

for approximating real-valued functions, instead of being used for classification as what 

traditional decision tree does. Regression tree has representation as Figure 2.5: 

 

Figure 2.5 Example of a Regression Tree 

 

Regression tree is built through a process known as binary recursive partitioning. 

This is an iterative process that splits the data into partitions, and then splitting it up 

further on each of the branches. In the structure of regression tree, each intermediate node 

is decision node that contains a test on one predictor variable's value. The terminal nodes 

of the tree contain the predicted output variable values.  

The objective function for building an optimum tree structure, i.e. the minimized 

function, is the mean absolute. The process of regression tree induction usually has two 

phases: building a tree structure that covers the training data, and pruning the tree to the 

best size using validation data set. In training process, at each node, the best split that 
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minimizes the mean absolute distance is selected. Partitioning continues until a pre-

specified minimum number of training data are covered by a node, or until the mean 

absolute distance within a node is zero. "Pruning" involves chopping off nodes from the 

bottom up so that there are fewer and fewer branches in the tree, so, the regression tree is 

pruned to avoid the over-fitting. 

In terms of performance, regression tree is extremely effective in finding the key 

attributes in high dimensional applications. In most applications, these key features are 

only a small subset of the original feature set. On the negative side, regression trees 

cannot represent compactly many simple functions, for example linear functions. A 

second weakness is that the regression tree model is discrete, yet predicts a continuous 

variable. For function approximation, the expectation is a smooth continuous function, 

but a decision tree provides discrete regions that are discontinuous at the boundaries. For 

its explanatory capability, regression tree cannot describe the relationship between output 

variable and predictor variables in a form of functions. 

 

Figure 2.6 A Simple Multilayer Neural Network Model with Two Hidden Nodes 
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Neural networks have been found to be useful because of their learning and 

generalization abilities. Model structure presented by neural network is multiple layers of 

nonlinear transformations of weighted sums of the input variables. In a single hidden 

layer network as shown in Figure 2.6, wi and vi are weight factors, hi is nonlinear 

transformation of sum of weighted input variables x. The output variable y is sum of 

weighted hi. Therefore, in general, output variable y is a nonlinear function of the input 

variables x. As a result, neural network can be used as a nonlinear model for regression. 

If there is more than one hidden layers, the outputs from one layer, which is the 

transformed linear combinations of nodes in previous layer, serve as inputs to the next 

layer. In this next layer, the inputs are combined in exactly the same way, i.e., each node 

forms a weighted sum that is then nonlinearly transformed. The number of layers and the 

number of nodes per layer are important decisions. There is no limit to the number of 

layers that can be used, though it can be proven that a single hidden layer (with enough 

nodes in that layer) is sufficient to model any continuous functions [Hand 2001]. Once a 

network has been structured for a particular application, this network is ready to be 

trained. The weights wi and vi are the parameters of this model and must be determined 

from the data in training process.  

The fact that neural network is highly parameterized makes it very flexible, so 

that it can accurately model relatively small irregularities in functions. On the other hand, 

such flexibility means that there is a serious danger of over fitting.  In recent years, 

strategies have been developed for overcoming this problem. Due to the multiple layers 

of nonlinear transformation of weighted sum, the relationship between output variable y 
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and input variables x is hard to be presented in a single explicit form of mathematical 

model, the neural network is usually used as a black box for predictive modeling.  

Evolutionary algorithms (EAs) provide an effective avenue for structural and 

parametric regression. EAs are originally divided into three major categories, namely 

evolutionary programming (EP) [Fogel et al. 1966], evolution strategy [Rechenberg 

1973] and genetic algorithms (GAs) [Holland 1975]. In the 1990s, a new branch called 

genetic programming (GP) was added to the group which was introduced by John Koza 

[Koza 1992, 1994]. GP is an extension of John Holland’s GA in which the genetic 

population consists of models of varying complexities and structures.   

GA uses binary string to represent possible solutions to a problem, whereas GP 

uses tree structure as knowledge representation. Both GA and GP guide the search by 

using some genetic operators and the principle of “survival of the fittest”. The major 

difference between GA and GP is their coding used to represent possible solutions for a 

problem. In GA, the solution is presented in a form of fixed length binary string, and its 

output is a quantity. The aim of such coding is to allow the possible solutions to be 

manipulated with those genetic operators in evolutionary process. Sometimes, it’s a 

challenge to encode the possible solutions in a structure of binary string. GP uses tree 

structure with variable sizes, which allows the solution to be manipulated in their current 

form. Therefore, GP can be used as a tool for symbolic regression, i.e. structural 

regression. The details of GP will be explained in the next section. 
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2.3 Elements of structural regression using genetic programming 

 

The objective of this research is to find the approximate function for K, which 

includes parametric and structural regression. As mentioned earlier, Genetic 

programming (GP) is an extension of the genetic algorithm in which the genetic 

population consists of possible solutions (that is, compositions of primitive functions and 

terminals).  

Koza [1992] demonstrated a surprising result that, genetic programming is 

capable of symbolic regression. To accomplish this, genetic programming starts with a 

pool of randomly generated mathematical models and genetically breeds the population 

using the Darwinian principle of survival of the fittest and an analog of naturally 

occurring genetic crossover (sexual recombination) operation. In other words, genetic 

programming provides a way to search the space of possible model structures to find a 

solution that fits, or approximately fits, a given data set.  

Genetic programming is a domain independent method that genetically breeds 

populations of models to fit the given data set by executing the following three steps that 

are also shown in Figure 2.7: 

• Generate an initial population of random individuals (mathematical models) 

composed of the primitive functions and terminals of the problem. 

• Iteratively perform the following intermediate-steps until the termination 

criterion has been satisfied: 
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o Execute each individual in the population and assign it a fitness value 

according to how well it solves the problem. 

o Create a new population of individuals by applying the following three 

primary operations. The operations are applied to individual(s) in the 

population selected with a probability based on fitness (i.e., the fitter 

the individual, the more likely it is to be selected). 

� Reproduction: Copy an existing individual to the new 

population. 

� Crossover: Create two new offspring individuals for the new 

population by genetically recombining randomly chosen parts 

of two existing individuals. The genetic crossover (sexual 

recombination) operation (described below) operates on two 

parental individuals and produces two offspring individuals 

using parts of each parent. 

� Mutation: randomly alteration in existing individuals, and 

produces one offspring individuals. 

• The single best individual in the population produced during the run is 

designated as the result of the run of genetic programming. This result may be 

the solution (or approximate solution) fitted to the given data set. 

The description on GP’s components will be given in the following subsections, 

which includes terminal set, function set, fitness function, genetic operators and selection 

strategies. 
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Figure 2.7 A Flowchart for Computation through Genetic Programming 

 

2.3.1 Terminal set, function set and initial representation 

 

In genetic programming, any explicit mathematical equations can be represented 

by a tree that intermediate nodes are mathematical operators (functions), and terminal 

nodes (leaves) are input variables and parameters.  
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As shown in Figure 2.8, the tree corresponding to the equation of ideal heat 

capacity 2TcTbaC
p

⋅+⋅+=  can be represented as: 

                                                           

 

 

 

 

 

Figure 2.8 Functional Representation of )(2

p
CTcTba ⋅+⋅+ Using a Tree Structure 

 

In this graphical depiction, the function set consists of intermediate nodes of the 

tree that are labeled with several mathematical operators, such as +,* and ^. The terminal 

set consists of terminal nodes (leaves) of the tree that are labeled with input variables T, 

parameters a, b, c and constant “2”. 

The terminal and function sets are important components of genetic 

programming. The terminal and function sets contain the primitive elements of the 

mathematical model to be composed. The sufficiency property requires that the set of 

terminals and the set of primitive functions should be capable of expressing a solution to 

the problem.  
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2.3.2 Fitness measures for models of varying complexity 

 

The most difficult and most important concept of genetic programming is the 

fitness function. The fitness function determines how well a generated model is fit to the 

data. Fitness is the driving force of genetic programming. In genetic programming, each 

individual model in a population is assigned a fitness value.  

 

2.3.2.1 Fitness function with no penalty for the model complexity 

 

The basic fitness function is a function of the difference between the model 

predicted value and the data. Widely used basic fitness functions include the raw fitness, 

adjusted fitness and normalized fitness. The raw fitness is the sum of squared errors. In 

particular, the raw fitness r (i, t) of an individual model i in the population of size M at 

any generation t is 

[ ]∑
=

−=
eN

j

jCjiStir
1

2
)(),(),(                                                                    (2.9) 

where S (i, j) is the value returned by individual model i for data case j (of Ne data cases) 

and C (j) is the data value for data case j. The closer this sum of squared errors is to zero, 

the better the model.  

 Another popular raw fitness is absolute error. Since squared error gives greater 

weight to extreme differences between the predicted value and the data than absolute 

error does, the quality of the model is perhaps more appropriately reflected in absolute 
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error for some cases. Each raw fitness value can be adjusted (scaled) to produce an 

adjusted fitness measure a (i, t). The adjusted fitness value is 

)),(1(

1
),(

tir
tia

+
=                                                                               (2.10) 

where r (i, t) is the raw fitness for individual model i at generation t. Unlike raw fitness, 

the adjusted fitness is larger for better individuals in the population. Moreover, the 

adjusted fitness lies between 0 and 1. 

Each such adjusted fitness value a (i, t) is then normalized. The normalized fitness 

value n (i, t) is 

∑
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),(                                                                                (2.11) 

The normalized fitness not only ranges between 0 and 1 and is larger for better 

individuals in the population, but the sum of the normalized fitness values is 1. Thus, 

normalized fitness is a probability value. 

 

2.3.2.2 Fitness function with model complexity control 

 

It was noted that, after a certain number of generations, the average size of the 

mathematical models in a population would start growing at a rapid pace. However, the 

increase in complexity of model doesn’t show significant improvement on fitness. This 

behavior displayed by GP is called bloat. Bloat often occurs in symbolic regression 

problems where GP runs start from a population of small size individuals, and then grows 
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in complexity to be able to comply with all data. In practice, bloat affects the efficiency 

of GP significantly. The over-complicated model structures are computationally 

expensive to evolve or use, it also can be hard to interpret, and may display poor ability 

of generalization, i.e. overfitting problem. Over the years, many theories have been 

proposed to explain bloat from different aspects, but none of them is universally accepted 

as a unified theory to explain the various observations on bloat. Therefore, several 

strategies for control of complexity were proposed with different theoretical foundations.   

 

2.3.2.2.1 Minimum description length  

 

As described earlier, the problem of over fitting is a common problem to every 

application in GP. Besides the “complexity” of the generated model by GP, the presence 

of noise in the data is another possible cause of over fitting. Good results with noisy data 

are only achievable at the cost of precision on the entire data distribution. The issue of 

selecting a model of appropriate complexity to overcome the over fitting problem is, 

therefore, always a key concern in any GP application. 

One of proposed strategies is the Minimum Description Length (MDL), which 

provides a trade-off between the accuracy and the complexity of the model by including a 

structure estimation term for the model. The final model (with the minimal MDL) is 

optimum in the sense of being a consistent estimate of the complexity of model while 

achieving the minimum error.  
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There are a number of criteria that have been proposed for MDL, which compare 

models based on a measure of goodness of fit penalized by model complexity. The most 

popular and widely used criteria are Akaike's Information Criterion (AIC) (Eq. (2.12)) 

and Schwarz Bayesian Information Criterion (BIC) (Eq. (2.13)).   

Akaike's information criterion (AIC)  

n/2  ln (MSE) +  k.                     (2.12)  

Schwarz Bayesian Information Criterion (BIC)  

n /2 ln( MSE ) + k  ln( n )/2.                      (2.13) 

where MSE is the mean squared prediction error, MSE = [1/n] SSE, n is the number of 

the data points used for the identification of the model, i.e. the sample size. 

Both AIC and BIC take the form of a penalized maximized likelihood, and their 

first term can be interpreted as the evaluation on model’s accuracy, the second term is the 

penalty term, which can be interpreted as the complexity of the model, which is a 

function of the number of parameters and the depth of the tree structure that represents 

the model. These two criteria utilize different penalties: AIC adds 1 for each additional 

variable included in a model, while BIC adds ln (n)/2.  

 

2.3.2.2.2 Parsimony pressure 

 

A variety of practical techniques have been proposed to control complexity bloat. 

Among these techniques, parsimony pressure method is a simple and frequently used 
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method to control bloat in genetic programming [Zhang et al. 1993, Zhang et al. 1995]. In 

this method, the parsimony pressure is applied to the original fitness function: 

)()()( xlcxfxf p ⋅−=                      (2.14) 

)(xf p
 is the new fitness function with parsimony pressure term. )(xf is the original 

fitness of model x, as mentioned above. c is a constant, known as the parsimony 

coefficient. )(xl  is the size of model x, counted as the number of intermediate nodes in 

the tree representation, i.e., the number of mathematical operators appeared in the model.  

This new fitness function )(xf p
 minimizes model size by using the penalty term as a 

mild constraint. The penalty is simply proportional to model size. The fitness of models 

will decrease with the increase on model size. The strength of control over bloat is 

determined by the parsimony coefficient c. The value of this coefficient is very important: 

if “c” has a small value, GP runs will still bloat wildly; if the value is too large, GP will 

take the size of the minimization model as its main target and will almost ignore fitness, 

which incurs the loss of model accuracy, consequently, weaken the prediction ability of 

model. However, the proper values of parsimony coefficient highly depend on specific 

problem being solved, the choice of functions and terminals, and various GP parameter 

settings. Very few theories have been proposed to help setting the parsimony coefficient, 

and trial and error method was widely used before Poli [2008] introduced a simple, 

effective, and theoretically sound solution to this problem. 

The strategies introduced above are ones focusing on the fitness against 

complexity bloat, and here-upon, over fitting problem. Other than those anti-bloat 

selection rules, numerous empirical techniques have also been proposed to control 
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complexity bloat, which are based on GP algorithm’s improvements. Briefly, these 

techniques can be summarized into two major categories: size and depth limits [Koza 

1992, and anti-bloat genetic operators [Kinnear 1993, Langdon 1998, Langdon 2000, and 

Crawford-Marks et al. 2002]. 

 

2.3.2.3 Fitness function using external validation 

 

Section 2.3.2.2 introduces two of the well-accepted strategies on the complexity 

control. Although based on different theories, they both combine multiple objectives into 

a scalar fitness function. A different strategy for choosing models is sometimes used, not 

based on adding a penalty term, but instead based on external validation of the model. 

The basic idea is to randomly split the data into two parts, a training set and a validation 

set. The training set is used to construct the models and estimate the parameters. Then, 

the fitness function is recalculated using the validation set. These validation scores are 

used to select models. In the validation context, since the training set and validation data 

set are independently and randomly selected, for a given model the validation score 

provides an unbiased estimate of the fitness value of that model for new data points, 

therefore, the difference in validation scores can be used to choose between models. This 

general idea of validation has been extended to the notion of cross-validation. This 

external validation method will be discussed further in section 3.5.1.3. 
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2.3.3 Genetic operators 

 

 In this section, three genetic operators will be described in detail. In the first 

section, reproduction and crossover will be introduced as two primary operations, and the 

mutation, including its two different types, will be introduced as a secondary operation. 

 

2.3.3.1 Reproduction and crossover 

 

The two primary genetic operations in GP for modifying the structures are fitness 

proportionate reproduction, as shown in Figure 2.9, and crossover, as shown in Figure 

2.10.  

The operation of fitness proportionate reproduction for the genetic programming 

is an asexual operation in that it operates on only one parental individual (model). The 

result of this operation is one offspring individual (model). In this operation, if f (i, t) is 

the fitness of an individual i in the population M at generation t, the individual i will be 

copied into the next generation with probability 
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The operation of fitness proportionate reproduction does not create anything new 

in the population. It increases or decreases the number of occurrences of individuals 

already in the population, and improves the average fitness of the population (at the 

expense of the genetic diversity of the population). To the extent, it increases the number 
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of occurrences of more fit individuals and decreases the number of occurrences of less fit 

individuals. 

The crossover (recombination) operation for the genetic programming starts with 

two parental individuals (models). Both parents are selected from the population with a 

probability equal to its normalized fitness. The result of the crossover operation is two 

offspring individuals (models). Unlike fitness proportionate reproduction, the crossover 

operation creates new individuals in the populations. 

 

Parent: bTa +⋅           Offspring: bTa +⋅  

 

 

 

 

 

    

Figure 2.9 An Example of Reproduction Operator 

 

The operation begins by randomly and independently selecting one point in each 

parent using a specified probability distribution (discussed below). The number of points 

in two parental individuals typically is not equal to each other. As will be seen, the 

crossover operation is well-defined for any two individuals. That is, for any two 

individuals and any two crossover points, the resulting offspring are always valid 

individuals in the population. Each offspring contains some traits from its parent. 
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The crossover fragment for a particular parent is the rooted sub-tree whose root is 

the crossover point for that parent and where the sub-tree consists of the entire sub-tree 

lying below the crossover point (i.e., more distant from the root of the original tree). 

The first offspring is produced by deleting the crossover fragment of the first 

parent and then impregnating the crossover fragment of the second parent at the 

crossover point of the first parent. The second offspring is produced in a symmetric 

manner. Since entire sub-trees are swapped, this genetic crossover (recombination) 

operation produces syntactically and semantically valid individuals as offspring 

regardless of which point is selected in either parent. For example, consider the parental 

individuals, i.e., algebraic equation bTa +⋅  and baT ⋅+2 .  These two models can be 

depicted graphically as rooted, point-labeled trees with ordered branches. 

The two parental models are shown in Figure 2.10. Suppose that the crossover 

points are randomly selected for each parent individual. The crossover points are 

therefore the * in the first parent and the + in the second parent. The places from which 

the crossover fragments were removed are identified with dash line. 

 

2.3.3.2 Mutation 

 

Mutation is another important feature of genetic programming. Two types of 

mutations are possible. In the first type, a function can only replace a function or a 

terminal can only replace a terminal. In the second type, an entire sub-tree can replace 

another sub-tree. Figures 2.11 and 2.12 explain the concept of mutation: 
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                                                               Crossover point 

Crossover point 

 

 

 

Parent1: bTa +⋅      Parent2: baT ⋅+2  

 

 

 

 

 

 

Offspring1: bTa +⋅ 2                                                                Offspring2: baT ⋅+  

 

Figure 2.10 Crossover Operation for an Algebraic Equation Manipulation 

 

 

 

 

 

 

Parent: bTa +⋅ 2                     Offspring: aaT +⋅+ )2(   

Figure 2.11 An Example of Mutation Operation, Type I  
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Parent: bTa +⋅ 2       Offspring: bTa +⋅  

Figure 2.12 An Example of Mutation Operation, Type II 

 

2.3.4 Selection strategy 

 

There are many different selection methods based on fitness. The most popular is 

fitness-proportionate selection.  If f (i, t) is the fitness of individual i in the population at 

generation t, then, under fitness-proportionate selection, the probability that individual i 

will be selected to process genetic operation is: 
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where M is the population size. Among the alternative selection methods are tournament 

selection and rank selection [Goldberg 1989]. In rank selection, selection is based on the 

rank (not the numerical value) of the fitness values of the individuals in the population. 

Rank selection reduces the potentially dominating effects of comparatively high-fitness 

individuals in the population by establishing a predictable, limited amount of selection 

pressure in favor of such individuals. At the same time, rank selection exaggerates the 
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difference between closely clustered fitness values so that the better ones can be sampled 

more.  

In tournament selection, a specified group of individuals (typically two) are 

chosen at random from the population and the one with the better fitness (i.e., the lower 

standardized fitness) is then selected.  

 

2.4 Parametric regression: review of objective functions and optimization methods 

 

Optimization techniques are used to find a set of values for design variables that 

best meet an objective. In parameter estimation, the optimum parameter values are 

searched with the aid of a selected optimization method, to minimize or maximize a well-

defined objective function that depends on the parameters, measurements and the model. 

The objective function is a suitable measure of the overall departure of the model 

performance from the observed measurements. A widely used objective function in 

parameter estimation is the least squares formulation. 

For the model equation ),( bxfY = , b is denoted as a vector that is an estimate of 

the parameter vector β , x is a vector of independent variables, the sum of squared 

residuals is: 

)()'(' ** YYYY −−==Φ εε          (2.17) 

where Y
* 

is vector of experimental observations of the dependent variables. The least 

squares method is used to evaluate the unknown vector b  by minimizing the sum of 

squared residuals .Φ  
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In linear regression analysis, the equation is a linear function of the parameters, 

which is in the form of: 

µβ += XY *            (2.18) 

Eq. (2.17) can be: 

)()'(' ** XbYXbY −−==Φ εε                    (2.19) 

In order to calculate the vectorb , which minimizes Φ , the partial derivative of 

Φ with respect to b is taken, and set equal to zero: 

0)()'()()'( ** =−−+−−=
∂

Φ∂
XXbYXbYX

b
                                                  (2.20) 

Eq. (2.20) can be simplified and rearranged to yield: 

*'1
)'( YXXXb

−=          (2.21) 

Therefore, the value of the parameter vector b can be obtained directly from the 

Eq. (2.21) given above.  

In nonlinear regression analysis, the model equation ),( bxfY =  is a relation that 

is nonlinear with respect to the parameters. There are several techniques for minimization 

of the sum of squared residuals described by Eq. (2.17). These techniques are broadly 

classified into two categories: gradient methods and direct search methods. The gradient 

search methods require derivatives of the objective functions whereas the direct methods 

are derivative-free and rely solely on function evaluations. The gradient search methods 

are efficient for smooth functions, and still efficient if there are some discontinuities in 

the derivatives. Direct search techniques, which use function values, are more efficient 

for highly discontinuous functions.  
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The major gradient search methods include: Gauss-Newton, steepest descent, 

Marquardt and Newton’s. All of these methods are local methods that provide global 

solution only for convex models.  

Gauss-Newton method can be used to convert nonlinear problem into a linear one 

by approximating the function Y by a Taylor series expansion around an estimated value 

of the parameter vector b: 

bJYb
b

Y
bxYbbxYbxY

mb

mm ∆+=∆
∂

∂
+=∆+= ),(),(),(                                (2.22)  

where the Taylor series has been truncated after the second term. Eq. (2.22) is linear 

in b∆ .  

Therefore, the problem has been transformed from finding b to that of finding the 

correction to b, that is b∆ , which must be added to an estimate of b to minimize the sum 

of squared residuals. 

,

......

..................

......

1

1

1

1























∂

∂

∂

∂

∂

∂

∂

∂

=

k

nn

k

b

Y

b

Y

b

Y

b

Y

J           (2.23)  

and )(')'(
*1

YYJJJb −=∆ −
           (2.24) 

bbb
mm ∆+=+1             (2.25) 

where m is the iteration counter. 

In Gauss-Newton method, the drawback is the fact that the incremental changes, 

namely the b∆  as described previously, can be estimated very poorly due to computation 
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of the partial derivative matrix (J’J)
-1

 when it is close to singular. The result is that the 

convergence may be very slow with a large number of iterations being required. Even 

wrong signs may occur on the b∆ s, and then the procedure will move in the wrong 

direction. The method may not converge at all with the residual sum of squares 

continuing to increase. Also, the closer a model is to behaving like a linear model, the 

more likely it is to converge in a small number of iterations from a reasonable starting 

point and, more important, the zone of ability of converge is greater for a close-to-linear 

model than a far-from-linear one. Since this objective function is a quadratic one in 

nature, Gauss-Newton method is susceptible. 

In the steepest descent method, the gradient of a scalar objective function gives 

the direction of the greatest objective function decrease at any. Therefore, the initial 

vector of parameters estimates are corrected in the direction of the negative gradient of 

Φ : 










∂

Φ∂
−=∆

b
Kb         (2.26) 

where Φ is the sum of squared residuals and K is a suitable constant factor and b∆ is the 

correction vector to be applied to the estimated value of b to obtain a new estimate of the 

parameter vector, same as before: 

bbb
mm ∆+=+1          (2.27) 

where m is the iteration counter.  

Then, b∆ can be calculated from: 

)('2
*

YYKJb −=∆         (2.28) 
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where J is the Jacobian matrix of partial derivatives of Y with respect to b evaluated at all 

n points where experimental observations are available, as shown in Gauss-Newton 

method. 

The steepest descent method moves toward the minimum sum of squares without 

diverging, provided that the value of K, which determines the step size, is small enough. 

The value of K may be a constant throughout the calculations, which may change at 

calculation step. However, the rate of convergence to the minimum decreases as the 

search approaches this minimum. 

Marquardt method is a compromise between the Gauss-Newton and the steepest 

descent methods. This interpolation is achieved by adding the diagonal matrix )( Iλ to the 

matrix (J’J) in the function of b∆ in Gauss-Newton method above: 

)(')'(
*1

YYJIJJb −+=∆ −λ         (2.29) 

The value of λ is chosen, at each iteration, so that the corrected parameter vector 

will result in a lower sum of squares in the following iteration. We can see from 

b∆ equation above, as 0→λ , Marquardt method approaches the Gauss-Newton method; 

while as ∞→λ , this method is identical to steepest descent, with the exception of a 

scale factor that does not affect the direction of the parameter correction vector but that 

gives a small step size. From this aspect, by selecting appropriate value of λ , an 

indicator of compromising between Gauss-Newton and Steepest Descent method, 

Marquardt method can combine the best feature of those two methods: almost always 

converges and does not “slow down” [Draper et al. 1981]. 
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In Newton’s method, similar to Gauss-Newton method that approximates the 

function Y by a Taylor series expansion to the second term, the sum of squared residuals 

Φ is also expanded by Taylor series up to the third term: 

b
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Taking the partial derivative of both sides of Eq. (2.30) with respect to b gives 
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where H is Hessian matrix of the second-order partial derivative of Φ  with respect to b  

evaluated at all n points where experimental observations are available:  
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The above description of optimization methods is based on least squares as the 

objective function. Other than least squares, maximum likelihood estimation is also 

popularly used as an objective function for parameter estimation purpose, which is based 

on statistical principles and account of data quality. 

In general, statistically based parameter estimation reduces the problem of the 

determination of parameters in the mechanistic model to assessing the correspondence 

between the residuals generated by a particular set of parameter values and the 

assumptions made about the residual distribution. 
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It is assumed that every vector of residuals ε for an experiment is a random vector 

following a probability density function of specified form ),( bp ii ε , where b is the 

unknown vector of parameters. The experimental outcome of a 
iε vector is regarded as a 

random sample out of the distribution defined by
ip . The combination of all 

ip for all 

iε results in the likelihood function: 

,...),,;( 321 εεεbL   

which, for correct specification of the joint probability density function for allε ’s and 

known true b values, represents the probability density of getting just that set of 

iε vectors obtained experimentally. 

 In the parameter estimation situation, b is not known. So in Maximum Likelihood 

Estimation, those unknown values are searched with the aid of an optimization method, 

which maximize this function L. This means that the “optimal” values b obtained are 

those parameter values which generate the residual pattern for which the probability 

density is highest. 

 Maximum Likelihood (ML) method can be used with any joint probability density 

functional form of residuals, while one specific distribution properties of residuals has to 

be assumed before ML method is applied. In most of applications, the normal distribution 

is used. However, often these assumptions are not fulfilled at optimal parameter values 

determined due to random measurement errors, systematic measurement errors, such as 

drift, calibration, measurement technique, deterministic model inadequacies, errors in 

values assumed to be precisely known dependent variable. 
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Other than these measurement errors, there are three types of computation related 

errors: the truncation error, the round off error, and the propagation error. The truncation 

error is a function of the number of terms that are retained in the approximation of the 

solution from the infinite series expansion. Since computers carry number using a finite 

number of significant figures, a round off error is introduced in the calculation when the 

computer rounds up or down (or just chops) the number to n significant figures. 

Meanwhile, the truncation and round off errors may accumulate and propagate, creating 

the propagation error, which may grow in exponential or oscillatory pattern. Thus, these 

errors may cause the calculated solution to deviate drastically from the correct solution. 

 All errors explained above may affect the distribution properties of residuals, in 

other words, the assumptions made on the probability density function of the residuals 

may be violated. In this case, the optimal parameter values may be not trustable. 

 

2.5 Applications of intelligent system in chemical engineering 

 

Development of intelligent systems in process engineering has been mainly 

focused in the following six areas [Stephanopoulos 1987, 1994]: 

• Process design: Select thermodynamic models and estimate physical 

properties: select the best thermodynamic model(s) for the problem 

[Fredenslund 1980, Banares-Alcantara et al. 1985, and Gani 1989]. If no 

explicit models are available, the system could select a method and estimate 

the value of the physical property [Friese 1998]. Use process data with 
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engineering heuristics to recommend the optimal processing method for the 

task at hand [Bamicki 1990]. 

• Fault diagnosis: process troubleshooting, i.e., determining the origins of 

process problems and recommending solutions [Frank 1997, Ozyurt 1998, 

Ruiz et al. 2000]. 

• Process control: improving process control through utilization of qualitative 

process information, trend analysis, neural networks, etc. 

• Planning and operations: scheduling, developing procedures, assessing safety 

concerns, executing complex inter-related procedures, and aiding maintenance 

[Csukas 1998]. 

• Modeling and simulation: using qualitative reasoning and symbolic computing 

to model and simulate chemical processes [Cao et al. 1999, McKay et al. 

1997, Csukas 1998, Greeff 1998, Gao et al. 2001, Hinchliffe 2003, Grosman 

et al. 2004]. 

• Product design, development, and selection: recommending chemical 

formulations, compositions, materials, process procedures, etc., required to 

design, develop, or select a new or existing product that achieves specified 

objectives [Xu 2005]. 

 

The foundation of accurate chemical process design and simulation is a correct 

estimate of physical and thermodynamic properties. In this exploratory project, an 

automatic procedure will be developed to identify a thermo-physical model from a set of 
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given data. This model is expected to be used in further investigation of the physical 

system or to validate the structure of an existing model developed in some other way. 
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CHAPTER THREE 

A HYBRID SYSTEM FOR STRUCTURAL AND PARAMETRIC 

OPTIMIZATION 

 

In this chapter, the structure of hybrid system and its implementation is 

introduced. The structure of hybrid system is presented in the first section. The data used 

throughout this research and its preparation are given in the second section. In the third 

section, the regression strategies applied in this research is introduced. The fourth section 

describes the determination of genetic programming (GP) controlling parameters. In the 

last section, the model verification strategies are summarized. 

 

3.1 The system structure 

 

The purpose of this research is to investigate the feasibility of designing a 

general-purpose machine function identification system which can automatically build a 

function model to fit the given experimental data. The approach is to solve the function 

identification problems is through coupling the symbolic computing method (Genetic 

Programming) and a parameter regression method. The parameter regression process 

involves either linear or nonlinear depending on the problem definition. The two-layer 

structure is shown in Figure 3.1. The parameter regression is embedded in the genetic 
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programming as an inner layer. For the given data set, the structural regression system 

searches the space of mathematical models, dynamically creates new generation of 

mathematical models using genetic programming, and optimizes the parameters of the 

generated models using the linear or nonlinear regression algorithm in an effort to 

develop best model and associated parameter that represent (fit) the data. The complete 

procedure ends with a statistical analysis which is used to evaluate the model and its 

performance. 

 

 

Raw Data                                                                                                  Final Model 

                                                                                      

                                                                                

                                             Candidate          Parameter  
                                              Structure           Value &  

 Outer Layer:                                                  Structure 
            

 
 Inner Layer: 

 

                                                 Function Identification 

 

Figure 3.1   A Hybrid System Structure for Structural and Parametric Optimization 
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3.2 Data and data preparation  

 

Generally, the data to be mined is voluminous, incomplete or imprecise, noisy, 

has missing values, redundant or insignificant. To get a better mining result, the data will 

be preprocessed to eliminate those data points. In other words, pre-processing is a 

sequence of operations converting raw data into data representation suitable for 

processing tasks. Data preparation is one of the most important steps in the model 

development process. From the simplest analysis to the most complex model, the quality 

of the data used is vital to the success of the modeling. Once the data is cleaned, then, the 

data set is worthy of modeling.   

The widely applied data pre-processing approaches include data integration, data 

cleaning and feature selection [Freitas 2002]. Data integration is necessary if the data to 

be mined comes from several different sources. This step involves, for instance, 

removing inconsistencies in variable names or variable value names between data sets of 

different sources. For data cleaning, it is important to make sure that the data to be mined 

is as accurate as possible. This step may involve detecting and correcting errors in the 

data, filling in missing values, etc. Feature selection (select the variable) consists of 

selecting a subset of features (variables) relevant for mining the data among all original 

features.  

Data on vapor-liquid equilibrium can be obtained from various sources. In this 

research, the equilibrium data for propylene-propane and acetone-water systems are taken 

from DECHEMA. Since the linear regression method is sensitive to outliers, outliers are 
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particularly need to be detected, and deleted if there is any. Outliers can be detected from 

studentized residuals that are defined for the ith observation with: 

)1( ii

ii
i

hMSE

yy
r

−

−
=

∧

                        (3.1) 

where iih  is the ith diagonal element of the “hat” matrix H that is defined as: 

')'( 1 XXXXH nn

−
× = . MSE is the mean square error. When working with a sufficient 

number of observations, e.g.  (n-p-1)>20, where n is the number of observations, and p is 

the number of parameters, a 
i

r >2.0 indicates that the ith observation might be an outlier. 

Similarly, a 
i

r >2.5 is a strong indicator of a likely outlier.  

 

3.3 The regression strategy 

 

The developed GP package includes both linear regression and nonlinear 

regressions options for parameter estimation. The regression procedure in this package is 

shown in Figure 3.2. Regression strategy can be selected depending on the definition of 

the problem. All individuals in the population will be checked for their linearity 

automatically. Depending on the characteristics of the problem, user needs to assign a 

value to the indicator of model’s type before running the program. The assigned values 

can be -1 for linear model only, 0 for both linear and nonlinear models, and 1 for 

nonlinear model only. If the final model is expected to be linear, and the indicator’s value 

is set to -1, then, the program will delete the nonlinear models and apply the linear 
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regression. If the final model is expected to be nonlinear, the indicator’s value is set to 1, 

then, the program will delete the linear models, and get into the nonlinear regression 

procedure. If the final model could be either linear or nonlinear, user predefines the 

indicator’s value as 0, then, after checking the linearity of individual model, the program 

will apply the corresponding regression strategy considering both types of models.  

 To identify the linearity of model, the first order derivative of individual model 

with respect to each parameter is taken. If all derivatives of model with respect to 

parameters are constant, the model is linear on parameters. For example:  

xbay ⋅+=                                                                                                         (3.2) 

xbay ⋅+= 2
                                                                                                       (3.3) 

Eq. (3.2) is linear, while Eq. (3.3) is nonlinear.  

For Eq. (3.2), since 1=
∂

∂

a

y
, ,x

b

y
=

∂

∂
and there are no parameters a and b that 

appears in the derivative terms, Eq. (3.2) is linear with respect to parameters a and b. 

Similarly for Eq. (3.3), 1=
∂

∂

a

y
, and bx

b

y
2=

∂

∂
, and although the derivative of 

parameter a is constant, the partial derivative with respect to b is a function of b. 

Therefore, Eq. (3.3) is not linear with respect to parameter b.  

In identification of linearity, MATLAB symbolic math toolbox is used. 

Linear least squares regression is a very popular tool for empirical process 

modeling because of its effectiveness and completeness. The estimates of the unknown 

parameters obtained from linear least squares regression are unique and are regarded as 

the global optimal values. Furthermore, linear least squares makes very efficient use of 
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data and is easy to implement. Good results can be obtained with relatively small data 

sets.  
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note: ‘i’ is the iteration number; ‘x0’is the initial value for parameters; ‘x’ is the 

parameter values obtained from Marquardt method; ‘resnorm’  is sum of the least square 

at (i+1)th iteration; ‘old_resnorm’ is sum of least square at ith iteration; ‘lsqnonlin’ is 

MATLAB nonlinear regression function “Marquardt”. 

The evolution of the model is an automatic process. The individual models 

generated in the process can be very complicated and its structure is neither predicted nor 

easily simplified. This increases the difficulty in convergence during parameter 

regression stage, if the nonlinear regression strategy is applied. Nonlinear least squares 

regression may involve iterative computation to estimate the parameters. With functions 

that are linear in the parameters, the least squares estimates of the parameters can always 

be obtained analytically, while that is generally not the case with nonlinear models. The 

use of iterative numerical procedures for nonlinear regression requires the user to provide 

initial values for the unknown parameters before the optimization process starts. The 

initial values should generally be reasonably close to the real parameter values or the 

optimization procedure may not converge. Different initial values will result in 

convergence to a local minimum rather than the global minimum unless the problem is 

convex.  

To ensure convergence of parameter regression robustly and more precisely, an 

automated re-start operation and two stop criteria are implemented. These enforce the 

algorithm to repeat the regression process before it stops.  

The automated re-start operation initializes the parameter value with the regressed 

parameter values in last run.  
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Two termination criteria are: the relative change of sum of the least square is less 

than a setup value, i.e., 

001.0
_

_
<

−

resnormold

resnormoldresnorm
           (3.4) 

or the number of iterations i exceeds a pre-defined number, as shown in Figure 3.2. 

 

3.4 Implementation with MATLAB based genetic search toolbox 

 

The Genetic Search Toolbox provides an integrated environment for performing a 

genetic search, including a collection of genetic operations used to implement genetic 

search methods.  

A schematic representation of the genetic search process is shown in Figure 3.3. 

Important functional elements of a genetic search are: a population with an associated 

fitness evaluation methodology, one or more selection and creation strategies, and a 

decimation strategy. The core component of every genetic search is the population. In a 

genetic search, each member of a population needs to be evaluated and assigned a fitness. 

Members of a population can be selected for genetic operations through a variety of 

criteria. In order to manage the size of the population in a genetic search, members of a 

population also can be selected for deletion through different decimation criteria.  

Genetic programming is controlled by several parameters for its components. In 

the following sections, several tests for different population sizes, mutation and crossover 

probabilities, fitness functions, tournament sizes, and deletion strategies will be analyzed. 
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The sensitivity is analyzed when the values of the controlling parameters are changed 

within a range, one at a time with all other parameters being fixed. Thus, although the 

resulting parameters, population size etc. are not optimal for a given specific problem, the 

analysis provides a good feasible set and is robust for most systems. 

 

                    Initial Population 

                   

 

 

 

                                                                                  Out  

 

Figure 3.3 A Schematic Diagram of the Genetic Search Methodology 

 

3.4.1 The population architecture 

 

The genetic search process can be implemented in two distinct ways. In the first, 

the genetic search uses a “steady state” population, i.e., one or two individuals are 

selected and manipulated at a time, and one or two new offspring are generated, as shown 

in Figure 3.4. The term "generation" will refer to a single iteration of creating one or two 

new off-spring. The second, as shown in Figure 3.5, is the generational approach, 

individuals are selected and entire population is manipulated, many new offspring are 
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created at each generation; one generation may represent almost complete population 

turnover (some members may be retained unmodified through the "reproduction").  
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Figure 3.4 A Flowchart of Genetic Search, Steady State Population 

Evaluate Fitness 

Create Initial Population 

Select Parent Chromosomes 

Evaluate Fitness 

Perform genetic operation 

Select genetic operation 

Population 

Reduction ? 

Subroutine: regression 

Select chromosomes 
and delete from 

population 

Subroutine: regression  

Terminate ? 



 
 

 56 
 

 
 

 

 

 

 

 

 

 

 

 

 

                          No 

 

                                                             Yes 

                    Yes 

 

                                                             No 

 

 

Figure 3.5 A Flowchart of Genetic Search, Generational Population 
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In this research, the “steady state” population is used. Specifically, the following 

occurs, as shown in Figure 3.4: An individual is first selected according to some selection 

strategy, and then the genetic operator is selected. According to the selected genetic 

operator, a second individual may be selected and perform the genetic operation to create 

one or two off-spring. Finally, the decimation strategy allows selection of the individual 

which is going to be deleted from the population, and then the new child replaces the 

individual deleted. 

As a steady state optimizer, when GP operates on just one individual at a time, the 

number of cycles within a given run can be high, perhaps 25,000 or more. In order to 

make results more comparable to a generational optimizer, the number of cycles is 

divided by the size of the population to give the approximate number of generations. The 

theoretical understanding of the relationship between steady state and generation 

optimizers is not strong. In order to generate reliable statistics, we ran each test multiple 

times; typically ten times. From these runs, we then calculated the average performance 

for each selection scheme.  

 

3.4.2 The population size 

 

Genetic programming is an optimization technique that uses a population of 

candidate individuals to search the solution space. Since a population consists of multiple 

individuals, several locations in the solution space are examined in parallel. The use of a 

large population has several advantages. First, this allows the evolutionary algorithm to 

examine a large number of positions in the solution space simultaneously. Second, a large 
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population is more resistant to the loss of diversity in the population. Diversity can be lost 

in a population when, due to evolutionary pressure, a large number of individuals become 

similar to the best individuals of the population. When this happens, the search will be 

restricted to the small area of the solution space containing these similar individuals. 

Consequently, finding new solutions becomes more difficult. When using a large 

population, the diversity of the population will persist longer. The disadvantage of using 

a large population is that more individuals have to be evaluated every generation. Often, 

the fitness evaluation is the most time-consuming step in genetic programming, and 

reducing the number of fitness evaluations can significantly speed up the search. 

Since the population size is one of the major control parameters, some analytic 

methods are available for suggesting optimal population sizes for runs of the genetic 

algorithm on particular problems. However, the practical reality is that researchers 

generally do not use any such analytic method to choose the population size. Instead, 

researchers determine the population size such that genetic programming can execute a 

reasonably large number of generations within the amount of computer time people are 

willing to devote to the problem [Koza et al. 2003]. Therefore, in this research, a group of 

tests on the speed of GP convergence are run for different population sizes of 250 (P250), 

500 (P500) and 1000 (P1000). As shown in Figure 3.6, the GP runs with the population 

of 1000 and 500 display a similar behavior, both of which reach the approximately 

optimal solution at about eighteenth generation, while the population of 250 needs about 

twenty-five generations to find an approximate solution. Compared with P250, P1000 

and P500 have better fitness than P250 does. A larger population size does help to speed 
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up the searching, but also has impact on improving the accuracy level. The population 

size was set to 500 based on the results. 

 

Figure 3.6 Fitness vs. Generation Using Different Population Sizes 

 

3.4.3 The principal component analysis and the selection of terminal & function sets 

 

 The complexity of the mathematical model evolved by genetic programming 

depends on the choice of the function set and terminal set. The chance of discovering a 

specific formula in a finite number of generations is a decreasing function of its model 

complexity [Chen 1997]. A larger function set and terminal set will help reduce the 

complexity of a mathematical model. From this perspective, it seems that a larger 
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terminal set and function set can enhance search efficiency. In fact, there are empirical 

evidences that suggest that this is indeed the case [Johnson 2000]. The influence of 

search space and population size has to be taken into the consideration.  

The search space includes all potential individuals and its size grows 

exponentially with the size of terminal and function sets. The probability of finding the 

solution in a finite number of generations depends on population size ratio s , i.e.
S

G
s = , 

where, G  is population size, and S  is the size of search space. If population size doesn’t 

grow exponentially with the size of function and terminal set, then the population size 

ratio will be close to zero, i.e., the probability of finding the specific formula in a finite 

number of generations is nearly impossible.  

Since in practice the population size cannot grow in proportion to the size of 

function and terminal set, reducing the complexity of a mathematical function by 

enlarging terminal and function set may help gain little efficiency. Therefore, constrained 

by the population size ratio, the size of function and terminal set has to be optimized.  

There are several strategies to optimize the size of function and terminal set. 

Principal Component Analysis (PCA) is one way to help optimize the size of terminal set.  

PCA is a multivariate procedure where the data is transformed such that the 

maximum variabilities are projected onto the axes. Essentially, a set of correlated 

variables are transformed into a set of uncorrelated variables which are ordered by 

reduced variability. The uncorrelated variables are linear combinations of the original 

variables. The first principal component is the combination of variables that explains the 

greatest amount of variation. The second principal component defines the next largest 
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amount of variation and is independent to the first principal component and so on, with 

the last of these variables can be removed with minimum loss of real data. The main use 

of PCA is to reduce the dimensionality of a data set, i.e. the size of the terminal set, while 

retaining as much information as is possible. PCA computes a compact and optimal 

description of the data set.  

The method, proposed by Jolliffe [1986], uses the principal components as the 

basis for the feature selection. A high absolute value of the i’th coefficient of one of the 

principal components (PC) implies that the i’th original variable is very dominant in that 

PC. By choosing the variables corresponding to the highest coefficients of each of the 

first several selected PC’s, the same projection as that computed by PCA is approximated. 

This method is a very intuitive and computationally feasible method.  

Due to the low dimensionality of the vapor-liquid equilibrium data set, where the 

degrees of freedom is only two, application of PCA is not necessary in this case.  

However, the developed GP package aims to be more general. Therefore, PCA is 

included in the package as an option to aid selection of terminal set. A more practical 

way than PCA, which is also popular among GP users, is to incorporate some physically 

meaningful variables and their parameters into the function and the terminal set. In this 

research, according to the pre-knowledge on thermodynamics, we believe that some 

composition of the functions and terminals supplied here can yield a solution to the 

problem. The algorithm performs symbolic regression on the experimental data to extract 

functional representation of the data. The genetic programming module starts with a set 

of primitive functions, including +, -, *, /, exp, square root (sqrt), log, power (^) and so 
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on. Temperature, pressure, the vapor and liquid composition are selected to be the 

elements of terminal set. 

 

3.4.4 Genetic operator 

 

The genetic programming paradigm is controlled by two major numerical 

parameters, i.e., the population size and the maximum number of generations. These two 

parameters depend on the difficulty of the problem involved. The population size has 

been addressed in section 3.4.2. Throughout this research, unless the specific declaration 

is made, the maximum number of generations is set to seventy-five. As shown in Figure 

3.6, seventy-five generations is enough for GP to converge to an approximate solution in 

this research. Other minor numerical parameters include the probability of crossover, 

mutation, which will be defined in this section. 

Since the population is steady state, the individual will be preserved in the 

population until it is selected for deletion by the decimation strategy. Therefore, genetic 

operator “reproduction” is wasteful, only crossover and mutation are applied.  

Good values for the mutation and crossover probabilities depend on the problem 

and must be manually tuned based on experience as there are few theoretical guidelines 

on how to do this. For some problems performance can be quite sensitive to these values 

while in others their values do not make much difference.  

Different mutation and crossover probabilities are tested. The ratio between 

mutation and crossover is set to 0.5:0.5, 0.4:0.6 and 0.2:0.8 respectively. Figure 3.7 is the 
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fitness plot over different mutation and crossover probabilities, and Figure 3.8 is the plot 

of the standard deviation of fitness value. The standard deviation of fitness value is an 

index of the diversity of individuals in the population. Figure 3.7 shows that, different 

mutation and crossover probabilities can reach equivalent accuracy levels. Meanwhile, 

the diversity in population follows a similar trend. These results show that, in this 

research, GP is robust and not sensitive to the mutation and crossover probabilities. 

 

 

Figure 3.7 Fitness vs. Generation Using Different Mutation and Crossover Probabilities 
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Figure 3.8 The Standard Deviation of Fitness Using Different Mutation and Crossover 

Probabilities 

 

3.4.5 Fitness evaluation 

 

The fitness function is the driving force of GP, which should reflects the goodness 

of a potential solution which is proportional to the probability of the selection of the 

individual. Usually, the fitness function is based on the sum of square error (SSE) 

between the calculated and the measured output values: 

[ ]∑
=

−=
eN

j

jCjiSSSE
1

2
)(),(                                                                   (3.5) 
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where S (i, j) is the value returned by equation i for fitness case j (of Ne fitness cases) and 

C (j) is the correct value for fitness case j. The closer this sum of distances is to zero, the 

better the program. 

 A good model is not only accurate but simple, transparent and interpretable. In 

addition, a complex over-parameterized model decreases the general estimation 

performance of the model. Since GP is self-evolving process and can result in overly 

complex models, there is a need for a fitness function that ensures a trade-off between 

complexity and model accuracy.  

To evaluate the efficiency of different fitness functions, including the least square, 

Akaike’s Information Criterion (AIC) and Schwarz Bayesian Information Criteria (BIC), 

several GP tests are run for the propylene-propane system as an example, and the 

generated model’s accuracy and complexity are compared, as shown in Figure 3.9 and 

Figure 3.10. 

In Figure 3.9, it shows that, compared with the least square, both AIC and BIC 

keep a relatively comparable accuracy level in this case. Figure 3.10 is the comparison of 

the model’s complexity. It shows that, without applying the parsimony rule, GP tends to 

increase the complexity of generated model consistently with the generations. Between 

two parsimony rules, i.e., AIC and BIC, BIC has a better control on the generated 

model’s complexity, and tends to select more parsimonious models, because the BIC 

places a larger penalty on the number of predictors. Theoretical and simulation studies 

done by another researcher [Hansen 2001] also concludes that, mostly in the regression 
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case, when the underlying model is finite-dimensional (specified by finite number of 

parameters), BIC should be preferred.  
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Figure 3.9 Model’s Accuracy vs. Generation Using Different Fitness Functions 
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Figure 3.10 Model’s Complexity vs. Generation Using Different Fitness Functions 
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3.4.6 Selection strategy 

 

One practical difficulty in symbolic regression is the problem of crowding. 

Crowding is a phenomenon where some individuals that are more fit than others in the 

population are quickly reproduced. Then, copies of these individuals and similar 

individuals take over a large fraction of the population. The crowding reduces the 

diversity of the population, thereby slowing further progress by the GP. Several strategies 

have been explored for reducing crowding. One approach is to change the selection 

function, using criteria such as tournament selection or rank selection instead of fitness 

proportionate selection. 

For the selection strategy, the commonly used tournament selection is applied. 

Under tournament selection, a group of individuals is randomly selected from the 

population, then, the individual with the highest fitness in this subset is returned. The size 

of the group is called the tournament size. It is clear that, the larger this group is, the 

more likely a highly fit individual from the population is selected. In the tests, tournament 

sizes ranging from 3 to 6 are used, in order to examine a range of selection intensities. 

When reporting test results, the following notation is applied: TOUR3 means 

tournament selection with a tournament size of 3. Similar notations are used for TOUR4, 

TOUR6 and so on.  
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Figure 3.11 Model Fitness vs. Generation Using Different Tournament Sizes 

0

500

1000

1500

2000

2500

3000

3500

0 10 20 30 40 50 60 70 80

Generation

S
td

D
e

v
 o

f 
F

it
n

e
s

s

TOUR3 TOUR4 TOUR6

 

Figure 3.12 The Standard Deviation of Fitness vs. Generation Using Different 

Tournament Sizes 
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 Figure 3.11 is the comparison of model’s fitness using different tournament sizes. 

Figure 3.12 shows the impact of tournament size on preserving the diversity in population.  

 In Figure 3.11, it shows that, compared to TOUR4 and TOUR6, TOUR3 

converges relatively slowly. It takes sixty-six generations for TOUR3 to find an 

approximate solution, while TOUR4 takes fifty-three generations, and TOUR6 needs 34 

generations to reach the approximate solution. From TOUR3 to TOUR6, with the 

tournament size increasing, the slope of convergence curve sets steeper. For a given 

number of generations, the tournament size is larger, i.e., the intensity of selections are 

increased, the possibility of fittest solution to be chosen will be increased; the number of 

generations needed to find an approximate solution is less. However, too fast or too slow 

convergence is not the case expected. If the algorithm converges too fast, it may imply 

premature termination and the solution may be a local optimal solution, as shown for 

TOUR6. TOUR6 converges the fastest, but its fitness is the worst one among those of 

three different tournament sizes.  

 TOUR3 converged a little bit slowly while TOUR6 converged prematurely and 

became stuck. TOUR4 appears to be about the correct tournament size for this problem. 

TOUR3 could be an alternative size for this problem. 

 

3.4.7 Decimation strategy 

 

In order to manage the size of the population in a genetic search, as well as to 

keep the better individuals in the population, the decimation strategy for deleting excess 
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individuals in the population need to be decided. As analogous to the selection strategies 

described and compared in the section 3.4.6, different decimation strategies are also 

compared in this section, as shown in Figure 3.13 and Figure 3.14. The maximum 

population size is set to 500, if the population size is bigger than this limit, then, the 

individuals chosen by the decimation strategy will be deleted from the population. 

A common problem experienced with population based optimization methods is 

the gradual decline in population diversity that tends to occur over time. This can slow a 

search progress or even halt it completely, if the population converges on a local 

optimum from which it cannot escape.  

With steady state population optimizers, the standard decimation strategy used is 

simply random deletion. The reason for this is that it is neutral in the sense that it does 

not skew the distribution of the population in any way. Thus, whether the population 

tends toward high or low fitness etc. is solely a function of the selection scheme and its 

parameters, in particular the selection intensity. This issue was discussed in the previous 

section. 

 The other option for decimation strategy is that the individuals are deleted from 

the population based on their fitness. The worse the fitness is, the higher the probability 

of the particular individual being selected for deletion. Figure 3.13 depicts the 

comparison between two different decimation strategies in terms of model accuracy. 

Figure 3.14 shows the standard deviation of fitness. As mentioned earlier, the standard 

deviation of fitness value in the population is an index of the diversity of individuals in 

this population. As shown in Figure 3.13, fitness- proportional decimation strategy allows 
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GP algorithm to converge at the fifteenth generation while random deletion strategy 

result in convergence at the twenty-seventh generation. On the other hand, fitness-

proportional deletion strategy allows GP run converge faster than random deletion. 

However, the fitness- proportional deletion strategy leads to less diversity in the 

population. As shown in Figure 3.14, using the same selection strategy (tournament 

selection with size 4), the diversity of population using random deletion is maintained 

well over the generations, however, the diversity of population using fitness-proportional 

deletion is decreased tremendously after the second generation. From this group of tests, 

we conclude that, the diversity of population with random deletion is best for the whole 

process.  
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Figure 3.13 Model’s Accuracy vs. Generation Using Different Deletion Strategies 
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Figure 3.14 The Standard Deviation of Fitness vs. Generation Using Different Deletion   

Strategies 

 

3.4.8 Result designation and termination criteria 

 

Each computer experiment is terminated when the maximum number of GP 

generation is reached. To have a better evaluation of the number of maximum GP 

generations, computational experiments with different population sizes, mutation and 

crossover probabilities, fitness evaluation functions, selection strategies and decimation 

strategies are performed. The results were shown in the sections from 3.4.2 to 3.4.7. 

Model’s accuracy vs. generation using different population sizes is shown in Figure 3.6. 

Figure 3.7 depicts model’s accuracy vs. generation using different mutation and 
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crossover probabilities. Figure 3.9 is the same plot using different fitness functions, 

Figure 3.11 depicts model’s accuracy vs. generation using different selection intensities, 

and Figure 3.13 is using different deletion strategies. All these plots of model’s accuracy 

using different GP controlling parameters show that GP program will reach its 

approximate solution before forty generations. The accuracy doesn’t improve as the 

number of generations is increased beyond that point. To ensure that GP program has 

enough run time and the generated model fits the data at a satisfied level, the maximum 

number of generation is set to 75 throughout this research. In each generation, the best 

so-far model is designated.  

 

3.4.9 Summary 

Based on the theoretical analysis and experimental tests shown in previous 

sections, the input values for the GP controlling parameters used throughout the research 

are summarized as follows: 

• Population Size: 500 

• Terminal Set: temperature, pressure, liquid phase composition (xi), parameters   

(maximum eight parameters) 

• Function Set: +, -, ×, ÷, ^, exponential, log 

• Mutation and Crossover Probability: 0.5:0.5 

• Fitness Function: Schwarz Bayesian Information Criteria (BIC) 

• Selection Strategy: Tournament, Size 4. 
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• Maximum Generations: 75 

• Deletion Strategy: Random 

 

3.5 Model evaluation 

 

Genetic Programming (GP) is inherently probabilistic in nature, and thus for 

symbolic regression problems, each time the algorithm is used, it’s expected that one will 

arrive at different approximate solutions. Therefore, one should perform multiple 

experiments to develop alternate models, employ a statistical analysis to further prune the 

list of model candidates, and evaluate model performance through steady state and 

dynamic simulation of columns that utilize these models. 

 

3.5.1 Statistical analysis 

 

The GP generated models with optimized parameters were evaluated using 

graphical and numerical statistical methods.  

 

3.5.1.1 Graphical methods 

 

A scatter plot of the predicted response versus the observed response provides 

simple and visual depiction of model performance. Any model that can explain most of 

the variation in the observed responses will produce a plot with points clustered around a 
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45° line. Better models yield less scatter about this yy =
^

 line. Moreover, the scatter of 

points about the 
^

y = y line should remain roughly constant with magnitude. That is, a 

poor model that is less accurate at larger values of 
^

y  will produce increasing scatter with 

larger values of y. A scatter plot of the residuals is also useful in evaluating a regression 

model. Here, the model residuals or errors (
^

yyr −= ) are plotted against the model 

predictions (
^

y ). Residual plots are used to visually verify some of the basic assumptions 

underlying regression analysis and observe model data mismatch in term of bias and 

accuracy. The residuals (errors) between the model predictions and observed responses 

should have a mean of zero and a constant variance. Hence, the scatter in the residuals 

should be fairly uniform and centered about 0=ε . A good regression model will produce 

a scatter in the residuals that is roughly constant with 
^

y  . Unsatisfactory models yield a 

scatter in these residuals that change with
^

y .  

All of the information on lack of fit is contained in the residuals. Assuming the 

model you fit to the data is correct, the residuals approximate the random errors. 

Therefore, if the residuals appear to behave randomly, it suggests that the model fits the 

data well. However, if the residuals display a systematic pattern, it is a clear sign that the 

model has a bias in representing data. 

If the residuals appear randomly scattered around zero, the model describes the 

data accurately and without systematic bias. 
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3.5.1.2 Goodness of fit statistics 

 

To express the quality of fit between a regression model and the sample data, the 

coefficient of multiple determination (
2R ) is typically used. However, adding any 

regressor variable to a multiple regression model, even an irrelevant regressor, yields a 

smaller SSE and greater
2R . For this reason, 

2R  by itself is not a good measure of the 

quality of fit. To overcome this deficiency in
2R , and adjusted value is used. The adjusted 

coefficient of multiple determinations (
2

R ) is defined as: 

)1(
1

1 22

R
pn

n
R −









−

−
−=                                                                        (3.6) 

Since a number of model coefficients (p) is used in computing
2

R , the value will not 

necessarily increase with the addition of any regressor. Hence, 
2

R  is a more reliable 

indicator of model quality. 

 

3.5.1.3 Cross validation and prediction 

 

 Finally, it’s often important to evaluate the ability of a fitted regression model to 

predict future events. The best way to do this is to gather additional, new data and 

compare these observed responses with predictions from the model. However, when this 

is not possible, the data used to fit the model can be split and a cross validation is 

performed. A good regression model can be fit to part of the original data set and still 

accurately predict the other observations. To perform a double cross-validation: 



 
 

 77 
 

 
 

• Partition the data into two subsets (say, A and B) with an equal number of 

observations in each. Assigning individual observations to subset A or B must 

be done randomly. 

• Using the same model form, fit the model using the data from subset A. use 

this model to predict the observations in subset B. 

• Compute the predicted R
2

p,A for the model that fits to subset A, as defined in 

Eq. (3.8) below. 

• Similarly, fit the model to data in subset B and use this to predict the 

observations in subset A.  

• Compute the predicted R
2

p,B for the model fit to subset B. 

A good model will produce high values of R
2

p for both subsets and these values 

will be approximately equal ( 2

,

2

, BpAp
RR ≅ ). The predicted R

2
p for a model fit to subset A 

(R
2

p,A) is computed with: 

∑

∑
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=
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1                                                  (3.7) 

where nB and yB are the number and mean of the observed responses (yiB) in the random 

subset B. Using the model fit to subset A, predictions of the observations in subset B are 

made to give 
^

y iA. The predicted R
2

p for a model that fits to data in subset B (R
2

p,B) is 

computed the same way, with the use of subsets A and B reversed. 
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3.5.2 Steady state and dynamic simulation using local models 

 

To have a further evaluation on the model’s stability and accuracy, the generated 

model is integrated with chemical engineering process simulation package CHEMCAD.  

In CHEMCAD, users are allowed to supply their own K-values in three major ways: 

users may input tabular K-values that CHEMCAD will then interpolate for use during the 

calculations.  The second option is that, the K-values are assumed to be a function of 

temperature in the following polynomial forms: 

43
)( dTcTbTaKf +++=                       (3.8) 

Users need to provide the coefficient a, b, c and d. The third option allows users to create 

their own added modules. The User Added Modules (UAM) gives users the ability to 

create new thermodynamic routines. The evolved K-value model by GP can be linked 

with CHEMCAD as a UAM, and then evaluated by process simulation. UAM’s are 

programmed in Visual C++ and have access to a large number of internal CHEMCAD 

routines.   

 

 

 

 

 

 

 



 
 

 79 
 

 
 

 

 

 

CHAPTER FOUR 

RESULTS AND DISCUSSION 

 

  The structure and implementation of the GP package for symbolic regression was 

addressed in Chapter Three. In this chapter, the application of the GP package for 

development of local K value models for propylene-propane (ideal or near ideal solution) 

and acetone-water systems (non-ideal solution) is presented. The results and their 

discussion are given in sections 4.1 and 4.2 respectively. In section 4.1, generated K 

value models with associated regressed parameter values, the phase equilibrium plots, 

distillation column simulation profiles (steady state, or dynamic simulation) are presented 

along with residual plots. In section 4.2, the performance of the models for ideal and non-

ideal solutions is discussed. The approach is applied to both propylene-propane and 

acetone-water systems, using different terminal sets and for different pressure ranges of 

data. Furthermore, the results will be discussed and the performance of models will be 

compared to rigorous models as well as data. 

  

4.1 Local composition models and their impact 

 

 Macroscopic vapor-liquid equilibrium coefficient “K value” is a function of 

temperature, pressure and compositions of liquid as well as vapor phase. However, 
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simple composition independent models are very popular due to reduced computation 

burden, since iterative procedures with composition dependent models are avoided. These 

models work well for ideal solutions. In this section, the equilibrium K value models 

developed using GP for ideal (or near ideal) propylene-propane binary system and 

strongly non-ideal acetone-water binary system are studied respectively. The data for 

propylene-propane system ranges from low to higher pressures for different temperatures, 

and for acetone-water system, the data ranges from low temperatures to higher 

temperature for different pressures. For each binary system, the final K value model and 

its parameter are summarized, and the fit of the models are evaluated statistically while 

the model performance is evaluated with process simulation package CHEMCAD. 

 

4.1.1 Developed models for mixtures that form ideal or near-ideal solutions and 

their statistical analysis 

 

In Table 4.1, the final structure of K model for propylene-propane solution are 

summarized. 
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Table 4.1 Result Summary for Propylene (1) –Propane (2) 

Result for K1: 

Evolutionary Model:    

T

xv

T

xPv

T

xv
K

)1()1()1(
log 13

2

12

2

2

11
1

−⋅
+

−⋅⋅
+

−⋅
=  

Adjusted R
2
: 0.997 

Result for K2: 

Evolutionary Model:    

)1(
)1()1()1()1(

log 2
24

3

2

23

2

2221
2 x

PT

xv

T

xv

T

xv

T

xv
K −+

⋅

−⋅
+

−⋅
+

−⋅
+

−⋅
=  

Adjusted R
2
: 0.996 

 

 The 
∧

= yy  plot for generated K1 and K2 models are given in Figures 4.1 and 4.3 

respectively. The points are distributed along 45° line. No significant deviation from 45° 

line is observed. The residual plots for K1 and K2 model are given in Figures 4.2 and 4.4. 

The mean value for both residual plots are close to zero.  
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Figure 4.1 K1 Model vs. Experimental Data for Propylene (1)-Propane (2) 

 

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.98 1.03 1.08 1.13 1.18 1.23 1.28 1.33 1.38 1.43

Predicted K1

R
e

s
id

u
a

l

StdDev=2.24E-3

Mean=3.18E-5

 

Figure 4.2 Residual Plot of K1 for Propylene (1)-Propane (2) 
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Figure 4.3 K2 Model vs. Experimental Data for Propylene (1)-Propane (2) 
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Figure 4.4 Residual Plot of K2 for Propylene (1)-Propane (2) 
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 |∆K| and |∆K|/K (%) for K1 and K2 at five different temperatures are list in Table 

4.2. Maximum and average values of |∆K|/K (%) for K1 and K2 are small, which indicate 

the models for K1 and K2 fit experimental data well. 

 

Table 4.2 Standard Error Analysis for Generated K1 and K2 Model 

|∆K|/K, % 

K1(K2) 

|∆K| 

K1(K2) 

T, K 

Max. Avg. Max. Avg. 

223.75 0.614 

(0.255) 

0.292 

(0.168) 

0.00734 

(0.00235) 

0.00351 

(0.00150) 

239.35 0.484 

(0.417) 

0.158 

(0.269) 

0.00659 

(0.00367) 

0.00186 

(0.00242) 

310.93 0.315 

(0.534) 

0.101 

(0.232) 

0.00372 

(0.00495) 

0.00112 

(0.00239) 

327.59 0.121 

(0.130) 

0.0659 

(0.0679) 

0.00138 

(0.00121) 

0.000716 

(0.000648) 

344.26 0.286 

(0.106) 

0.147 

(0.0557) 

0.00316 

(0.00101) 

0.00156 

(0.000533) 

 

4.1.2 Performance of models for separation of ideal and near ideal mixtures 

 
 

The generated K1 and K2 models are integrated with CHEMCAD as user added 

modules. P-x-y for five different temperatures 223.75K, 239.35K, 310.93K, 327.59K and 

344.26K are plotted and compared with those from Peng-Robinson (PR) EOS, as shown 

in Figures 4.5 and 4.6. As observed, the generated local models fit the entire data range 

well. They also perform as well as the PR EOS that is usually the default model for these 

tasks. 
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Figure 4.5 P-X1-Y1 at Low Pressures for Propylene (1)-Propane (2) 
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Figure 4.6 P-X1-Y1 at Medium to High Pressures for Propylene (1)-Propane (2) 
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Figure 4.7 K1 vs. Liquid Composition for Different Temperatures for Propylene (1)- 

Propane(2)  System 
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Figure 4.8, K1 vs. Pressure for Different Temperatures for Propylene (1)-Propane (2) 
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The results show that the generated K models are a function of pressure, 

composition and temperature, therefore, the K-composition and K-pressure analysis of 

models are given in Figures 4.7 and 4.8. K1-composition plot in Figure 4.7 shows the 

local model has a better fit over composition than rigorous model PR does at whole data 

range. In K1-pressure plot, local model show slight deviation at high pressure range. 

Propylene is the most important building block in any petrochemical industry. 

The cost of producing propylene is much associated with the propylene-propane 

separation step, conventionally performed by low temperature or high-pressure 

distillation. This step is energy intensive, therefore costly, because of the low relative 

volatility; the separation process requires large distillation columns with more than 210 

trays and high reflux ratios. This makes the propylene-propane system one of the most 

energy-expensive separations.  

To test local model’s reliability further, steady state simulation is run. A 210-plate 

distillation column is simulated. The feed stream containing 800 lbmol/hr propylene and 

200 lbmol/hr propane is fed to tray 125 at pressure 19 bar as saturated liquid. The column 

is operated under 17.5 bar on the top with 1.8 bar pressure drop, the mole fraction of 

propylene on the top and at the bottom is 0.95 and 0.05 respectively. The tower 

temperature profile is presented in Figure 4.9 and relative volatility is presented in Figure 

4.10. The vapor and liquid flow rate at different tray is given in Table 4.3. 
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Table 4.3 Propane-Propylene Distillation Column Profile 

  Model Data PR 

Vapor, lbmol/h 8481.52 8092.83 8534.49 Stage 10 

Liquid, lbmol/h 7650.25     7261.44 7703.27     

Vapor, lbmol/h 8634.44 8227.33 8688.34 Stage 100 

Liquid, lbmol/h 7802.67     7395.33 7856.68     

Vapor, lbmol/h 8861.79 8438.48 8918.01 Stage  200 

Liquid, lbmol/h 9031.94     8608.7 9088.10     

Condenser, MMBtu/h -46.03 -44.02 -46.43 

Reboiler, MMBtu/h 45.86 43.84 46.27 
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Figure 4.9 Temperature Profile of Propylene-Propane Distillation Column 
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Figure 4.10 Relative Volatility Profile for Propylene-Propane Distillation Column 

 

4.1.3 Developed models for mixtures that form non-ideal solutions and their 

statistical analysis 
 

Table 4.4 Result Summary for Acetone (1) -Water (2) 

Result for K1: 

Evolutionary Model:    
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2
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Result for K2: 

Evolutionary Model:    
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Figure 4.11 K1 Model vs. Experimental Data for Acetone (1)-Water (2) 
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Figure 4.12 Residual Plot of K1 for Acetone (1)-Water (2) 
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Figure 4.13 K2 Model vs. Experimental Data for Acetone (1)-Water (2) 
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Figure 4.14 Residual Plot of K2 for Acetone (1)-Water (2) 
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 The 
∧

= yy  plot for generated K1 and K2 models for acetone-water system are 

given in Figures 4.11 and 4.13 respectively. The points are distributed along 45° line. No 

significant deviation from 45° line is observed. The residual plots for K1 and K2 models 

are given in Figures 4.12 and 4.14. The mean values for both residual plots are very close 

to zero.  

 |∆K| and |∆K|/K (%) for K1 and K2 at three different pressures are listed in Table 

4.5. Maximum and average values of |∆K|/K (%) for K1 and K2 are small, which indicate 

that the models for K1 and K2 fit the experimental data well. It’s also observed that the 

model’s deviation at medium (17.24 bar) and high (34.47 bar) pressure are larger than 

those at low pressure, 1.013 bar. 

 

Table 4.5 Standard Error Analysis for Local Model for Acetone-Water System 

|D_K|/K, % 

K1 (K2) 

|D_K| 

K1 (K2) 

P, bar 

Max. Avg. Max. Avg. 

1.013 1.92 

 (4.0) 

0.962 

 (2.78) 

0.374 

 (0.0325) 

0.0564 

(0.0147) 

17.24 4.99 

 (4.32) 
 

2.61 

 (2.26) 

0.643 

 (0.0273) 

0.102 

 (0.0173) 

34.47 4.97 

(5.20) 

3.01 

(2.89) 

0.245 

(0.0625) 

0.0661 

(0.0298) 
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 4.1.4 Performance of models for separation of non-ideal solutions 
 

 
The generated K1 and K2 models for acetone-water solution are integrated with 

CHEMCAD as an user added module. T-x-y for three different pressure levels of 

1.013bar, 17.24 bar and 34.47 bar are plotted and compared with activity coefficient 

model NRTL, as shown in Figure 4.15. As shown, the generated local models fit the 

entire range of data set relatively well. It also shows that the generated local models have 

larger deviations as the pressure increases.  
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Figure 4.15 T-X1-Y1 at Different Temperatures for Acetone (1)-Water (2) 

 
The K-composition and K-pressure analysis of models are given in Figures 4.16 

and 4.17. K1-composition plot in Figure 4.16 shows that the local model has a slightly 

better fit over composition than NRTL does at the entire data range. In K1-pressure plot,  
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Figure 4.16 K1 vs. Liquid Composition at Different Pressures for Acetone (1)-Water(2) 
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Figure 4.17 K1 vs. Temperature at Different Pressures for Acetone (1)-Water (2) 
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the local model shows a larger deviation at high pressure due to the azeotropy. As can be 

seen from Figures 4.16 and 4.17, the dependency of the K-values on temperature and 

composition are different. Figure 4.17 shows that the relative deviation of temperature 

dependency is increased with the pressure increased, but still within the acceptable level.  

In the examples given here, the local models were used at pressures up to 34.47 

bar with reliable results. From our experience with mixtures that we have examined, the 

general conclusions are that, for non-ideal mixtures, the generated model is capable of 

correlating the equilibrium ratios to a relative acceptable accuracy over a wide range of 

compositions, temperature and pressure.  

To test local model’s reliability further, steady state simulation is run. A 56-plate 

acetone-water distillation column is simulated. The feed stream containing 400 lbmol/hr 

acetone and 600 lbmol/hr water is fed to the bottom of the column (tray 55) at pressure of 

2 bar as saturated liquid. The column is operated under 1.013 bar on the top with 0.5 bar 

pressure drop, the mole fraction of acetone on the top and at the bottom is 0.95 and 0.05 

respectively. The tower temperature profile is presented in Figure 4.18 and relative 

volatility is presented in Figure 4.19. Figures 4.18 and 4.19 show that, compared with the 

data and NRTL model, the generated local model’s performance is excellent under the 

specified operating conditions. 
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Figure 4.18 Temperature Profile of Acetone-Water Distillation Column 
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Figure 4.19 Relative Volatility Profile of Acetone-Water Distillation Column 
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In dynamic simulation, the process starts at steady state, a disturbance of 10% 

feed flow rate is introduced at the 50th minute of the simulation.  The resulting tower 

vapor and liquid flow rate profiles at different simulation times are given in Table 4.6. 

The distillation flow rate fluctuation due to the 10% feed flow rate increase is shown in 

Figure 4.20. The pressure response to the disturbance over time is shown in Figure 4.21. 

All figures for dynamic simulation show that the generated model gives a reliable result 

in the simulation. 
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Figure 4.20 Distillation Total Flow Rate 
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Figure 4.21 Distillation Column Pressure 

 

Table 4.6 Tower Profile at Different Runtime 

0 (min.) 200 (min.) 

Feed: 1000 lbmol/h Feed: 1100 lbmol/h 

 

Model Data NRTL Model Data NRTL 

Vapor lbmol/h 1630.8 1611.3 1523.6 1793.9 1772.4                      1686.0                      Stage 

5 Liquid lbmol/h 1257.8 1238.3 1150.2 1383.6 1362.2     1275.3     

Vapor lbmol/h 1621.4 1602.0 1507.8 1783.6 1762.3                      1668.6                      Stage 

25 Liquid lbmol/h 1248.7 1229.3 1134.8 1373.6 1352.3     1258.3     

Vapor lbmol/h 1598.2 1578.7 1485.1 1758.0 1736.5                      1643.6                      Stage 

50 Liquid lbmol/h 1220.9 1201.5 1109.5 1343.0 1321.6     1230.4    

Condenser, MMBtu/h -21.03 -20.78 -19.64 -23.13 -22.86 -21.76 

Reboiler, MMBtu/h 21.51 21.25 20.06 23.66 23.37 22.26 
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4.2 Discussion 

     
The linear models of vapor-liquid partition coefficient K for propane-propylene 

and acetone-water systems presented in Section 4.1 evolved from full data set that covers 

the entire pressure range. For acetone-water system, as shown in Figures 4.15 to 4.17, the 

T-X-Y diagram at 1.013 bar, 17.34 bar and 34.47 bar respectively, the deviation of the 

models increases with the pressure.  

 

Table 4.7 R
2
 of Different Models for K1 in Group Tests 

Propylene-Propane Acetone-Water Data Pressure (P) 

Range for Linear and 

Non-linear Models 

PT 

 

PTX 

 

PTXY 

 

PT 

 

PTX 

 

PTXY 

 

Linear 0.995 0.996 0.996 0.85 0.995 0.996 Low P 

Nonlinear 0.995 0.996 0.996 0.87 0.995 0.996 

Linear 0.992 0.995 0.996 0.82 0.991 0.995 High P 

Nonlinear 0.994 0.996 0.996 0.87 0.993 0.997 

Linear 0.993 0.994 0.995 0.82 0.991 0.996 Full 

Data Nonlinear 0.994 0.995 0.995 0.87 0.993 0.996 

 

In an effort to study pressure induced effects, the full data set was divided into 

low pressure and high pressure sets and additional tests were performed. The model was 

forced to be linear and nonlinear respectively, for both low and high pressures, as 

discussed in the next section. 
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4.2.1 Ideal gaseous and liquid mixture 

  

Low pressure models developed for propylene-propane system with different 

terminal sets provide very good data representation. Models with PT, PTX and PTXY 

terminal sets have R
2
 values of 0.995, 0.996 and 0.996 respectively. Including 

composition term in evolved local model doesn’t improve model’s goodness of fit since 

PT models represent the data very well. This result is expected as can be seen from the 

discussion to follow in this section.  

The basic vapor-liquid equilibrium relation can be expressed as: 
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i φφ         (4.1) 

The description of vapor-liquid equilibrium using an equation of state for both 

liquid and vapor phase is referred to as the φφ −  method, then,  
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The other alternative is to use an activity coefficient model for the liquid phase 

and an equation of state for the vapor phase, i.e, φγ −  method. Eq. (4.1) can be rewritten 

in the form of: 
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At low pressures, the vapor phase can be treated as an ideal gas, and all fugacity 

coefficient corrections are negligible. Thus, Eq. (4.4) can be simplified to: 

P

PxPT
K

sat

ii

i

),,(
−=

γ
                                                                                             (4.5) 

Furthermore, propylene-propane mixture forms an ideal solution in the liquid 

phase, i.e. 1=iγ for both propylene and propane. Then, eq. (4.5) can be further simplified 

to: 

P

TP
K

sat

i
i

)(
=               (4.6) 

Eq. (4.6) depicts that the vapor-liquid partition coefficient K for propylene-

propane system at low pressure is only the function of temperature and pressure, not 

composition. Therefore, the models with terminal sets of PTX and PTXY don’t improve 

the models’ accuracy significantly. 

 

4.2.2 Non-ideal gaseous mixture and ideal liquid mixture 

 

For propylene-propane system at high pressure, as shown in Table 4.7, R
2 
for the 

local models using different terminal sets of PT, PTX and PTXY are 0.992, 0.995 and 

0.996 respectively. Compared with the local model using the terminal set of PT, the one 

with PTX has better accuracy, whereas the model using PTXY has about same R
2
 value. 
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At higher pressures, the behavior of propylene-propane vapor phase deviates from 

ideal gas state and thus fugacity coefficient cannot be negligible. The liquid phase is not 

affected by pressure much so it still can be treated as ideal solution. The Eq. (4.4) can be 

reduced to: 
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φ

φ
             (4.7) 

Due to the composition dependent characteristic of fugacity coefficient correction, 

the introduced composition term of the evolved local model can and do improve model’s 

accuracy. 

 

4.2.3 Ideal gaseous and non-ideal liquid mixture 

 

As can be seen In Table 4.7, the local models developed for acetone-water system 

at low pressure improve significantly the goodness of fit after the liquid composition is 

introduced to the model, R
2
 is 0.85 for the terminal set of PT and R

2
 is 0.995 for the 

terminal set of PTX. There is no significant improvement for the terminal set of PTXY 

where R
2
 is 0.996. At low pressures, the vapor phase of acetone-water system approaches 

ideal gas state, and fugacity coefficient corrections can be omitted.  

However, in liquid phase, acetone-water forms a polar solution which displays a 

strong non-ideal behavior. Therefore, the effect of activity coefficient needs to be taken 

into account. Eq. (4.5) can be used to describe the vapor-liquid equilibrium for acetone-

water system at low pressure.   
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Since activity coefficient is composition dependent, the evolved local model with 

composition term improves the goodness of fit.  

 

4.2.4 Non-ideal gaseous mixture and non-ideal liquid mixture 

 

At high pressures, R
2
 s’ for local models with different terminal set of PT, PTX 

and PTXY are 0.82, 0.991 and 0.995 respectively for acetone-water system. The models 

with terminal set of PTX and PTXY have better data fit than the model with the terminal 

set of only PT. The model with PTXY also has better accuracy than the model with PTX. 

At higher pressures, both vapor and liquid phase display non-ideal behavior, and 

therefore fugacity coefficient and activity coefficient are necessary for description of the 

mixture. The composition has relatively larger impact on the system, in both vapor phase 

and liquid phase. The rigorous form of K model Eq. (4.4) can be used to describe this 

binary system at high pressure. From Eq. (4.4), we can see K value is vapor and liquid 

composition- dependent, therefore, the local models with the terms of composition in 

vapor and liquid phase can significantly improve the goodness of fit. 

It’s also observed that, in acetone-water system at low pressure, the model’s 

accuracy with PTX is close to that of the model with PTXY, however, at high pressure, 

the difference of accuracy between PTX and PTXY is larger. This is because at higher 

pressures, the non-ideal gas behavior has more impact in vapor phase; therefore, 

including the composition in the vapor phase can improve the model’s accuracy. 
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4.2.5 Linear model vs. nonlinear model 

 

 Using each low and high pressure group data, linear and nonlinear models were 

developed. The linear models that evolved from low pressure data for both propane-

propylene and acetone-water systems were given in Table 4.7. As can be seen in the 

Table 4.7, nonlinear models for low pressure do not exhibit significant improvement on 

goodness of fit for propylene-propane system. At low pressure, the propane-propylene 

system is an ideal or nearly ideal system. The linear model is good enough to describe the 

characteristics of solution. For the acetone-water system, the nonlinear model improves 

the prediction accuracy for the one with terminal set of PT, which R
2 

is 0.87 compared to 

0.85 for linear model, but there is no significant improvement for the linear models that 

have terminal set of PTX and PTXY. It indicates that composition is a necessary term for 

the evolved local model to have adequate capability to describe non-ideal system. Once 

the composition term is included in the model, linear model is also good enough to 

describe the non-ideal behavior.  

For higher pressures, the scenario got changed. When the linear model and the 

nonlinear model are compared, for propane-propylene system, the nonlinear model has 

slight improvement on accuracy for the PT model, where R
2 

is 0.994 for the nonlinear 

model compared with 0.992 for the linear model. For models with terminal sets of PTX 

and PTXY, the nonlinear ones don’t show significant improvement on models’ accuracy. 

For the acetone-water system at higher pressures, the nonlinear model shows some 

improvement for PT, PTX and PTXY terminal sets. The acetone-water system exhibits 
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strong nonlinearity with high pressure. Therefore, a nonlinear model may describe this 

behavior better. It also can be further demonstrated in Figures 4.16 and 4.17, with K1 vs. 

composition and K1 vs. pressure plots respectively. At low pressures, with no azeotropy 

present, the linear local model with PTX terminal set has a good fit to the data. At higher 

pressures, with an azeotropic behavior, K value exhibits a strong nonlinearity. Therefore, 

the nonlinear model can fit the data better. 

Acetone-water is a non-ideal system with an azeotropic point, which displays a 

nonlinear behavior with increasing pressure. The vapor-liquid partition coefficient K also 

displays a stronger nonlinearity than that of propane-propylene system. However, the 

model that evolved from the data is a linear model, with respective to its parameters. This 

limits model performance for the acetone-water system. 

This group of tests displays that, the models with different terminal sets are 

consistent with the thermo-physical behavior of ideal (or nearly ideal) and non-ideal 

systems.  

  

4.2.6 Extrapolation 

 

 In an effort to explore the extrapolation capability and validity of the models, 

models generated utilizing only low pressure data, including both the linear and the 

nonlinear models, were tested with the high pressure data. Similarly, models generated 

using high pressure data were used to test model at lower pressure.  
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The R
2 

s for each case are shown in Table 4.8.  “***” in Table 4.8 indicates the 

correspondingly redundant result presented in Table 4.7.  

 

Table 4.8 R
2
 of Extrapolation Test 

Propylene-Propane Acetone-Water  

fit to low 
pressure 

data 

fit to high 
pressure data 

fit to low 
pressure data 

fit to high 
pressure data 

linear *** 0.848 

 

*** 0.528 model (PTX) 

generated from 
low pressure 

data 
nonlinear *** 0.976 *** 0.720 

linear 0.946 *** 0.919 *** model (PTX) 

generated from  
high pressure 

data 
nonlinear 0.966 *** 0.977 *** 

 

As can be seen in Table 4.8, the models generated from low pressure data do not 

represent high pressure data well. This is true whether the model is linear or nonlinear, 

particularly for acetone-water system since azeotropy information is missing in low 

pressure. Also one can observe that the nonlinear models have better generalization 

capability than the linear models which is not surprising giving the non-linear nature of 

the phenomena particularly as transitions from ideal gas to real or azeotropy occurs. 

Similarly, the models generated from high pressure data have better generalization 

capability than those generated from low pressure data. These results prove again that 

genetic programming method is a fully data-driven method and is reliable in capturing 

phenomena when applied judiciously.  
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CHAPTER FIVE 

CONCLUSIONS AND RECOMMENDATIONS 

 

This research proposes a hybrid evolutionary modeling algorithm to build the 

vapor-liquid equilibrium K-factor models automatically. The developed system may also 

serve as a general-purpose machine function identification package which can 

automatically build a function model to fit the given experimental data. The main idea of 

the algorithm is to embed linear or nonlinear regression into GP, where GP is employed 

to optimize the structure of a model, while linear or nonlinear regression method is 

employed to optimize its parameters. A distinct advantage of this method is that no a-

priori assumptions have to be made about the actual model form: the structure and 

complexity of the model evolve as part of the problem solution. It may reduce the 

limitations on function structure that insufficient descriptions on studied system 

introduced by proposed initial structure, or over-simplified structure introduced by 

inappropriate assumptions made for function simplification procedure. The developed K 

model can be inserted in process simulation programs to save computation time, without 

affecting the accuracy of the simulation. 

The results clearly prove that the hybrid system is able to find the explicit form of 

models that closely approximate the data in a relatively wide range while the accuracy 

can be tailored to a desired level. The models have also been shown to accurately 
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represent ideal mixture equilibrium ratios for a binary vapor-liquid system. The greater 

the accuracy and region of validity of the models, the less frequently the parameters have 

to be updated. This in turn will require less use of the rigorous thermodynamic-physical 

property programs for computationally expensive property evaluations. For a non-ideal 

system with azeotropic point, GP seems to be capable for the whole pressure range at an 

acceptable level, and if necessary, one can adjust the parameter of the generated model to 

fit the data well. 

 The experimental data was obtained from literature, which may contain error. The 

results revealed that the hybrid system is able to find the explicit model that closely 

approximated the data. It shows GP’s robustness on data. 

In some cases, parsimony principle was incorporated through the fitness function. 

The results show that a simpler structure, but less accuracy can be obtained. 

 In conclusion, the results presented in this research indicate the potential of GP 

for developing thermo-physical model and other general purpose function identification. 

Genetic programming is a robust and efficient paradigm for discovering model structure 

using the expressiveness of symbolic representation. 

In this developed package, Marquardt regression method is used to get the 

parameter values for a nonlinear model structure. This method results in local as opposed 

to global solutions. The GP, as well as other evolutionary methods, will terminate early 

or converge to incorrect solution when the parameters regressed using local solvers are 

not adequate. Therefore, a global optimization method will resolve the local optimization 

problem, as well as ensuring a robust hybrid symbolic regression scheme.  
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As stated before, a primary classification used for property and process models in 

chemical engineering is algebraic versus differential equation models. K model is an 

algebraic equation that has multiple dependent variables and a single independent 

variable. The extended application of the developed package to differential equation can 

be studied further, which may enable the functionality of the package to be completed. 
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Appendix A. User Manual for GP Package 

 

A.1 MATLAB files 

 In the developed GP package, the MATLAB files (.m files) include: 

• gp_ main.m: the main code that completes GP operations. 

• marquardt.m: the subroutine that performs nonlinear parameter regression 

using Marquardt method, and calculates the fitness for an individual. 

• linear.m:  the subroutine that performs linear parameter regression using least 

square, and calculates the fitness for an individual. 

 

A.2 Architecture 

 The relationship between the .m files described above is given in the Figure A.1. 

The expanded structure for main code (gp_main.m) is on left side, and the subroutine is 

shown on the right hand side. 
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Appendix A (Continued)                  

Main                                 Subroutine 
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Figure A.1 Architecture of MATLAB Code 
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Appendix A (Continued)                  

 

A.3 How to use the GP package 

 In this section, we will follow the Figure A.1, and give a detail explanation on 

how to specify the parameter in the code. 

• Step 1: load data set and assign the value to the variables of terminal set. 

Command: DATA = LOAD (‘FILENAME’) 

• Step 2: create initial population. Command: CHROM_ID = GS_NEW 

(POPULATION, CHROMOSOME), POPULATION is a character string 

designating the chromosome population in which the new chromosome is 

created. CHROMOSOME is a character string defining the gene structure of 

the new chromosome. CHROM_ID is an integer identifying the newly created 

chromosome. Example: mem_id = gs_new ('Pop1', 'v2/T'); The initial 

population defined with GS_NEW command needs to include the complete 

terminal set and function set. 

• Step 3: define regression strategy. Command:  REGRESSION_TYPE = 

‘TYPE_VALUE’. TYPE_VALUE is set to 0 for linear regression, 1 for 

nonlinear regression, or 1 for both. Default value is set to 0. This command is 

to define the regression strategy going to be used in the GP. 
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Appendix A (Continued)                  

 

• Step 4: define stop criteria (Maximum Generation). Command:  MAXGEN = 

‘MAXIMUM NUMBER OF GENERATION’. This command defines the 

maximum generation of GP. The stop criterion is controlled by a while loop. 

• Step 5: select parent chromosomes. The selection strategies provided in GP 

toolbox are:  

o GS_SEL_HIFIT (or GS_SEL_LOFIT):  select two chromosomes with 

the highest (lowest) fitness values and return their ID 

o GS_SEL_LOTRN (or GS_SEL_HITRN): choose chromosomes using 

tournament selection and return their IDs, with chromosomes with 

higher (lower) fitness winning the tournament. 

o GS_SELR: select two chromosomes randomly. 

o GS_SELR_HIFIT (or GS_SELR_LOFIT): select two chromosomes 

randomly, with the probabilities of selection being proportional to their 

fitness value.  

o GS_SELR_HIRANK (or GS_SELR_LORANK): select two high (low) 

fitness chromosomes randomly, with the probabilities of selection 

being based on fitness rank. In this research, tournament method is 

used. Example: mem_ids = gs_sel_lotrn ('Pop1',4,2). 
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Appendix A (Continued)                  

 

 

• Step 6: define and perform genetic operators. Command: OP_NAME = 

GS_SEL_OP (OP_LIST, OP_PROB). Choose a random genetic operation from a 

list according to specified probabilities. OP_LIST is a cell array containing the 

names of the operations among which to select, OP_PROB is a corresponding list 

of probabilities, OP_NAME returns a string identifying the chosen operation, or 

null (‘ ’) if an error occurs. 

Then run genetic operations using: Command:  CHROM_IDS = GS_OP 

(POPULATION, OPERATION, CHROM_ID1, [CHROM_ID2, MUTPROB]). 

GS_OP implements a specified genetic operation on specified chromosome(s). 

POPULATION is a string designating the population from which the 

chromosomes to be operated. OPERATION is a string identifying the genetic 

operation. CHROM_ID1 is the first chromosome to be operated on. 

CHROM_ID2 is the second chromosome to be operated on, and is only required 

for crossover operations. MUTPROB is the mutation probability, required only 

for binary mutation. CHROM_IDS returns a vector of identification numbers of 

the one or two new chromosomes created by the genetic operation. Example: 

op_name = gs_sel_op ({'mut', 'xovr'}, [0.5, 0.5]); off_ids = gs_op ('Pop1', 

op_name, 12, 22). 
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Appendix A (Continued)                  

 

• Step 7: define deletion strategy.  The commands are same as the ones used for the 

selection strategies. Command: OUTCOME = GS_DEL (POPULATION, 

CHROM_ID). POPULATION is a character string designating the chromosome 

population from which the chromosome is to be deleted. CHROM_ID is an 

integer identifying the chromosome to be deleted. OUTCOME returns the 

specified CHROM_ID if the deletion is successful; otherwise, a value 0 is 

returned. Example: gs_del ('Pop1', off_ids(off)). 
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Appendix B. Statistical Analysis 

 

B.1 Tests for outliers  

Outlier can be detected from student residuals.The MATLAB code is given in 

Table B.1. 

Table B.1 MATLAB Code for Outlier Test 

 
nn=length(x1data); 

residual=k1_calc1-k1data; 
  

avg_k1=sum(k1data)/nn; 
  

sst=sum((k1data-avg_k1).^2); 
sse=sum(residual.^2); 

ssr=sum((k1_calc1-avg_k1).^2) 
 

counter=length(param); 
 

mse=sse/(nn-counter) 
msr=ssr/(counter-1) 

 
chr1=char('(1+3*x1+x1*log(x1))-v1*T+v2*x1/T-v3*(1-log(x1))-v4*(1-x1)') 

 
term1=char('T'); 

term2=char('x1./T')  
term3=char('1-log(x1)')  
term4=char('1-x1')  

  
r=0; 

X=[eval(term1) eval(term2) eval(term3) eval(term4)]; 
H=X*inv(X'*X)*X'; 

for ii=1:length(k1data) 
    r(ii)=abs((k1data(ii)-k1_calc1(ii))/sqrt(mse*(1-H(ii,ii)))); 

end 
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Appendix B (Continued)                  

Table B.2 The Result for Outlier Test 

 r  r  r  r  r 

1 1.667 26 0.014 51 0.848 76 0.446 101 0.1719 

2 0.694 27 0.341 52 0.224 77 0.275 102 0.0758 

3 1.594 28 0.106 53 0.0003 78 0.022 103 0.0657 

4 0.978 29 0.154 54 0.091 79 0.003 104 0.0673 

5 0.437 30 0.030 55 0.156 80 0.062 105 0.1176 

6 0.087 31 0.005 56 0.201 81 0.113 106 0.1549 

7 0.054 32 0.009 57 0.215 82 0.100   

8 0.165 33 0.026 58 0.182 83 0.125   

9 0.259 34 0.081 59 0.129 84 0.090   

10 0.334 35 0.124 60 0.094 85 1.540   

11 1.979 36 0.592 61 2.647 86 1.265   

12 0.099 37 0.491 62 1.371 87 0.963   

13 0.846 38 1.389 63 0.968 88 0.529   

14 0.457 39 0.216 64 0.428 89 0.288   

15 0.598 40 0.170 65 0.106 90 0.046   

16 0.389 41 0.150 66 0.026 91 0.042   

17 0.380 42 0.060 67 0.157 92 0.072   

18 0.119 43 0.058 68 0.194 93 0.085   
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Appendix B (Continued)        

           
Table B.2 (Continued) 

 r  r  r  r 

19 0.021 44 0.057 69 0.213 94 0.108 

20 0.028 45 0.061 70 0.172 95 0.039 

21 0.088 46 0.040 71 0.141 96 0.022 

22 0.155 47 0.006 72 4.143 97 6.162 

23 1.001 48 0.013 73 0.828 98 0.056 

24 2.510 49 2.592 74 0.803 99 0.268 

25 0.520 50 2.276 75 0.530 100 0.206 

 

0.3>
i

r  is a strong indicator that this data point is a likely outlier. The table shows that, 

data point #72 and #97 could be an outlier. Looking into the data, it is found that, both 

#72 and #97 are the equilibrium data points of dilute solution, which cannot be deleted, 

therefore, in this data set, no outlier was deleted. 

 

B.2 Evaluation of final model: cross-validation 

 

When it’s not possible to gather additional new data, and compare these observed 

data with the predicted value from the model, a cross validation is an alternative 

evaluation method. 
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Appendix B (Continued)                  

 
The original data set can be divided into two subsets A and B randomly, which is 

double cross-validation. A good model should be fit to both parts. The MATLAB code 

for data set partition is given in Table B.3. 

 

Table B.3 MATLAB Code for Data Set Partition 
 

r = ceil(106.*rand(53,1)) 
r=sort(r,1) 

alarm=2; 
  

for ivv=1:20 
for iii=2:53 

if r(iii)==r(iii-1) 
 r(iii) = ceil(106.*rand(1,1)) 

end 
end 

  
r=sort(r,1); 

end 
r=sort(r,1); 

     
A_index=r; 

B_index=0; 
counter_Bset=0; 

for iqq=1:106 
alarm0=0; 

for imm=1:53 
if A_index(imm)==iqq 

alarm0=1; 
break; 

end 
end 

if alarm0 ==0 
counter_Bset=counter_Bset+1; 

B_index(counter_Bset)=iqq; 
end 

end 
 



 
 

 126 
 

 
 

Appendix B (Continued)                  

 
   Table B.4 The Result for Data Set Partition 

 

Set A (Datapoint_indext_setA) 

2     3     7    15    16    19    21    22    25    29    31    33    37    38    41    44   45    46    48    

49    50    52    53    54    56    57    58    63    65    66    69    70   72    73    74    76    78  
79    80    81    84    87    88    89    90    91    92    95   96    98    99   100   101 

 

Set B (Datapoint_indext_setB) 

1     4     5     6     8     9    10    11    12    13    14    17    18    20    23    24 26    27    28    
30    32    34    35    36    39    40    42    43    47    51    55    59 60    61    62    64    67    

68    71    75    77    82    83    85    86    93    94    97   102   103   104   105   106 

Result: 
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2

, Ap
R  and 2

,Bp
R  have a high value, and close enough to each other. It concludes that, 

the evolved regression model is good. 
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