Logo des Repositoriums
 
Konferenzbeitrag

Supervised posteriors for DNA-motif classification

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2007

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e. V.

Zusammenfassung

Markov models have been proposed for the classification of DNA-motifs using generative approaches for parameter learning. Here, we propose to apply the discriminative paradigm for this problem and study two different priors to facilitate parameter estimation using the maximum supervised posterior. Considering seven sets of eukaryotic transcription factor binding sites we find this approach to be superior employing area under the ROC curve and false positive rate as performance criterion, and better in general using sensitivity. In addition, we discuss potential reasons for the improved performance.

Beschreibung

Grau, Jan; Keilwagen, Jens; Kel, Alexander; Grosse, Ivo; Posch, Stefan (2007): Supervised posteriors for DNA-motif classification. German conference on bioinformatics – GCB 2007. Bonn: Gesellschaft für Informatik e. V.. PISSN: 1617-5468. ISBN: 978-3-88579-209-3. pp. 123-134. Regular Research Papers. Potsdam. September 26-28, 2007, Potsdam,

Schlagwörter

Zitierform

DOI

Tags