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Abstract—As the communication network is in transition
towards a commercial one controlled by service providers (SP) ,
the present paper considers a pricing game in a communication
market covered by several wireless access points sharing the
same spectrum and analyzes two business models: monopoly (APs
controlled by one SP) and oligopoly (APs controlled by different
SPs). We use a Stackelberg game to model the problem: SPs
are the leader(s) and end users are the followers. We prove,
under certain conditions, the existence and uniqueness of Nash
equilibrium for both models and derive their expressions. In
order to compare the impact of different business models on
social welfare and SPs’ profits, we define two metrics: PoCS (price
of competition on social welfare) and PoCP (price of competition
on profits). For symmetric cross-AP interferences, the tight lower
bound of PoCS is 3/4, and that of PoCP is 1.

I. INTRODUCTION

Resource allocation is a basic issue in communication net-

works. Decentralized resource allocation has gained extensive

attention [1], in which the majority of relevant works treated

end users and service providers (SPs) as self-centric agents

making decisions to maximize their own utilities. Prices,

which are set by SPs, act as the bridge between end users

and SPs: SPs set proper prices for the services they provide to

achieve network improvement, fairness of resource allocation

[2] or maximization of profits [3]; on the other hand, end users

choose the proper services that maximize their own utilities

based on charged prices and the corresponding QoS.

For wired access networks, pricing models have received

extensive research in recent years [4] [2]. The congestion

condition of a transmission link in wired networks only

depends on the flows it carries. As shown in previous works,

the pricing problem can be converted to convex optimization

problems and can be analyzed using convex analysis tech-

niques. For wireless access networks, however, the study is

relatively limited. A main obstacle in wireless access networks

is the broadcast nature of wireless medium which induces

interferences, thus bringing new challenges to the pricing

analysis: congestion is not only caused by the users from the

same access network, but also from other networks nearby.

As a consequence, pricing models in wireless access networks

have mainly concentrated on new scenarios arising from new

elements introduced besides the existing networks, such as

femtocell [5], WiFi and WiMAX [6], thus to some extent

avoiding the treatment of interference. In [7], the authors ana-

lyzed the competition between wireless service providers with

context similar to us. However, they assumed that the resources

among the SPs are orthogonal and SPs are free from cross-

AP interferences. As a consequence, the result that competition

among SPs leads to a globally optimal outcome may no longer

be valid when cross-AP interferences are considered. The work

in [8] took an initial attempt to analyzing a duopoly pricing

model when the interferences among the SPs are not neglected.

However, therein the amount of interferences among the SPs

are always assumed equal, an assumption overly restrictive

for realistic applications. As another limitation in general,

most of existing studies only considers the monopoly case

or the duopoly case, individually, seldom comparing the two

business models together. Consequently, the purpose of our

study in this paper is twofold. First, we aim to develop a

general framework for analyzing pricing in wireless access

networks, with interferences taken into consideration. Second,

we aim to compare the impacts of monopoly and duopoly on

social welfare and SPs’ profits.

In this paper, we propose a general pricing model for multi-

ple wireless APs, which may be viewed as a generalization of

a wired access pricing model [9]. We consider a hotspot with a

large number of end users covered by several APs sharing the

same radio band. We adopt a market demand function to cap-

ture user heterogeneity in their willingness-to-pay and examine

two business models: monopoly and duopoly, respectively. We

formulate such a pricing model as a Stackelberg game: SPs

are the leader(s) and end users are the followers, and further

use Wardrop’s principle to describe users’ distribution on APs.

We establish the existence and uniqueness of the equilibria of

the game for both cases and further analytically characterize

the equilibria and the corresponding user distributions, under

linear demand function and cross-AP interferences model.

In order to compare the impacts of monopoly and duopoly

on social welfare and SPs’ profits, we define two metrics:

PoCS (price of competition on social welfare) which is the

ratio of social welfare of monopoly to that of duopoly, and

PoCP (price of competition on profits) which is the ratio of

profits of monopoly to the sum profits of duopoly. Then for

symmetric cross-AP interferences, we establish that PoCS is

lower bounded by 3/4 and PoCP lower bounded by 1, while

both of them are unbounded from above.

The remaining part of this paper is organized as follows.

Section II describes the system model, formulating wireless



APs’ pricing problem as a Stackelberg game and setting basic

assumptions for subsequent analysis. Section III establishes

the existence and uniqueness of user distribution equilibrium

following Wardrop’s principle for a given price profile. Section

IV analyzes the price equilibria of both monopoly and duopoly

models, as well as the corresponding user distributions. Sec-

tion V introduces the concepts of PoCS and PoCP, and

analyzes their bounds. Section VI provides some numerical

illustrations of our analysis. Finally Section VII concludes this

paper.

II. SYSTEM MODEL

A. General Model
Suppose that there is a hotspot covered by N wireless APs

which provide access services for a large number of end users.

Each AP has an access price pi, i ∈ N, and the users must

take payments before use. Let xi denote the flow carried on

APi and x = [x1, ..., xN ] denote the vector of flows of all

APs. As the congestion level of each AP is related to the flow

it serves and that of other APs (due to the broadcast nature of

wireless channel), we denote each AP’s congestion function

as li(x). Note that the game we considered in this paper is

in large time scale and the congestion function only reflects

an averaged congestion level. Then we define the disutility of

accessing APi as the sum of pi and li(x), i.e., di � pi + li(x)
(implicitly assuming that all users trade off time and money

identically [9]). The users are selfish and would access the

APs with the least disutility, so the disutility of the market

can be expressed as d � mini di. Because the value of the

wireless access service is different for different users, we use

a market demand function D(·) to capture this heterogeneity

in their willingness-to-pay. For convenience, we consider the

inverse of the demand function u(x) � D−1(x), where x =∑
i xi. We naturally assume that D(·) is decreasing due to the

law of demand [10] which indicates that the total flow of the

users is decreasing with the disutility of the market increasing.

We further assume that the number of end users is large and

each single user’s impact on the whole system is negligible,

i.e., any user’s switching from one AP to another AP does

not change the congestion situations of all APs. Thus we can

use Wardrop’s principle [11] to describe users’ distribution on

all APs. Formally, we define Wardrop equilibrium (WE) as

follows.
Definition 1 (Wardrop Equilibrium): Given a set of prices

of all APs, p, a flow distribution xWE forms a WE if it

satisfies:

1) ∀xWE
i > 0, di = pi + li(xWE) = u(

∑
j

xWE
j ); (1)

2) ∀xWE
i = 0, di = pi + li(xWE) ≥ u(

∑
j

xWE
j ). (2)

We define the profits of APi as pixi and consumers’ surplus

as
∫ u−1(d)

0
(u(x)−d)dx. Then the social welfare is defined as the

sum of APs’ profits and consumers’ surplus, and can further

be written as (at a WE):

SW(xWE) =
∫ ∑

j xWE
j

0

u(x)dx −
∑

j

xWE
j lj(xWE). (3)

When there exist only two APs, see Figure (1) for an

illustration.

Fig. 1. Illustration of system model for two-AP case

We formulate this wireless APs pricing model as a Stack-

elberg game: SPs are the leader(s) and they set prices for the

APs first; end users are the followers, they decide whether or

not to accept the services and if they do, further decide which

APs to access. When all the APs are controlled by a single

SP, we have a monopoly market; when the APs are owned

by different SPs, we have an oligopoly market. We define

monopoly equilibrium (ME) and oligopoly equilibrium (OE)

as follows.

Definition 2 (Monopoly Equilibrium): A set of prices of all

APs, pME, forms an ME, when it satisfies:

pME ∈ arg max
p

∑
i∈I

pix
WE
i (p). (4)

Definition 3 (Oligopoly Equilibrium): A set of prices of all

APs, pOE, forms an OE, when for any SPi, the price satisfies:

pOE
i ∈ arg max

pi,pOE
−i

pix
WE
i (pi,pOE

−i ). (5)

B. An SINR Example

A concrete example which motivates and also illustrates

the aforementioned general system model is a simple N -AP

uplink wireless access network. Assume that all users’ average

transmit power level is a common constant P , and that the

frequency-flat channel gains of all the user links connecting

to the same AP are also identical (averaged in large time scale).

Suppose that the average number of users served by APi is

Xi and the channel gain from the users of APj to that of

APi is gj,i . We focus on the scenario where the number of

users is large, and thus the noise as well as each single user’s

impact on SINR are negligible. Thus the average signal to

interference plus noise ratio (SINR) at APi is expressed as

(with bandwidth normalized)

SINRi
.=

gi,iP

N + gi,iPXi +
∑

j �=i gj,iPXj

.=
gi,i

gi,iXi +
∑

j �=i gj,iXj
. (6)



When considering a coding scheme using random Gaussian

codebooks and single-user decoding treating interference as

noise, a typical user connecting to APi achieves rate (normal-

ized) ri = log(1+SINRi). Since when the number of users is

large and the SINR is low,we have ri ≈ SINRi/ ln 2. Let each

user transmit (on average) a fixed amount μ of information bits

for accessing an AP. As a result, the averaged delay a typical

user of APi experiences is

li(X1, · · · , XN ) =
μ

ri
= μ

gi,iXi +
∑

j �=i gj,iXj

gi,i
ln 2. (7)

We then define xi � μXi ln 2 as the aggregated flow carried

on APi, and make the substitutions ∀j �= i, g̃j,i � gj,i/gi,i

and g̃i,i = 1 (G = [g̃i,j ]i,j). Thus the disutility of accessing

APi is

di = pi +
∑

j

g̃j,ixj . (8)

Remark 1: In the SINR example above, the linear structure

of the disutility function mainly results from two assumptions:

(1) the problem is considered in a large time scale, and

hence the fading effect of wireless channel can be averaged

and users’ consumption behavior can accord to some market

demand curve; (2) end users are gathered, and hence their

channels to an AP are homogeneous in the long run. However,

as we shall see in the subsequent analysis, the problem is

still complicated because both the pricing strategy of SPs

and accessing AP strategy of users are intertwined due to

the presence of interference, and the solution to the problem

exhibits interesting behavior.

III. WARDROP EQUILIBRIUM FOR USERS

In this section, we begin with a study on the existence and

uniqueness of user distribution equilibrium, i.e., WE, and we

analyze the characteristics of WE.

A. Existence of Wardrop Equilibrium

Borrowing ideas from proofs in [12], we establish the

following theorem.

Theorem 1 (Existence of WE): For any given positive

prices (p1, · · · , pN ), if the inverse of the user demand

function u(x) is continuous, bounded, non-negative and

decreasing, and ∀i, li(x) is continuous and satisfies

li(x) ≥ xi, then there exits xWE constituting a WE.

Proof: From Definition 1, conditions (1) and (2) of WE

can be written in the form of a nonlinear complementarity

problem (NCP), i.e., for ∀i ∈ {1, · · · , N}, xWE satisfies:{
xWE

i [pi + li(xWE) − u(
∑

j xWE
j )] = 0

xWE
i ≥ 0, pi + li(xWE) − u(

∑
j xWE

j )] ≥ 0.
(9)

We construct a mapping φ = (φ1, · · · , φN ), where

φi(xWE) = [xWE
i − Fi(xWE)]+, Fi(xWE) � pi + li(xWE)−

u(
∑

j xWE
j ) and [x]+ = max{x, 0}. From [12, Thm. 5.3], the

existence of the solution of NCP is equivalent to the existence

of a fixed point of the mapping φ = (φ1, · · · , φN ). Under

the conditions ∀i, li(xWE) ≥ xWE
i and u(·) a decreasing

function, for ∀i ∈ {1, · · · , N}, we have xWE
i − Fi(xWE) ≤

u(0). As a result, for all ∀xWE ∈ [0, u(0)]N , we have

φ(xWE) ∈ [0, u(0)]N . Applying Brouwer fixed-point theorem,

at least one fixed point x∗ exists and the corresponding WE

is just xWE = x∗.

Clearly the delay function li(·) in (8) of the SINR example

satisfies the conditions of Theorem 1, and thus the existence

of WE therein is guaranteed.

B. Uniqueness of Wardrop Equilibrium

For establishing the uniqueness of WE, we focus on linear

environment, i.e., two linear conditions (LC):

LC1: congestion function li(x) has a linear structure, li(x) =∑
j g̃j,ixj (∀i, j, g̃i,j > 0);

LC2: the inverse of the user demand function is linear, u(x) =
w − sx (w, s > 0).

We rewrite the WE conditions (1) and (2) in a compact form

(for compactness of representation, we will use x instead of

xWE) as

x ≥ 0 (10)

Mx + q ≥ 0 (11)

xT (Mx + q) = 0 (12)

where M = GT + 1sT , s = [s, · · · , s]T , w = [w, · · · , w]T ,

p = [p1, · · · , pN ]T and q = p−w. The conditions above form

a linear complementarity problem (LCP) and we can utilize

some existing results as follows.

Definition 4 (P-Matrix): A square matrix M is called a P-

matrix if all its principal sub-determinants are strictly positive.

Lemma 1 (Uniqueness of LCP): [13, Thm. 4.2] The system

(10)-(12) has a unique solution for each q ∈ RN if and only

if M is a P-matrix.

In the case considered in this article, the unique solution

of LCP (10)-(12) corresponds to the unique WE. In many

situations, the interferences among the APs are weak, and

thus it motivates us to examine if some “weak interference”

condition can lead to the uniqueness of WE.

Theorem 2 (Uniqueness of WE): Under the assumptions of

LC1 and LC2, for any given non-negative prices (p1, · · · , pN ),
if the cross-AP interferences are weak, i.e., ∀i,

∑
j �=i(g̃i,j +

g̃j,i) < 2g̃i,i, then WE exists and is unique.

Proof: From Geršgorin’s discs theorem (see, e.g., [14]),

the condition
∑

j �=i(g̃i,j + g̃j,i) < 2g̃i,i implies that all the

eigenvalues of the symmetric matrix (G+GT )/2 are positive

and hence (G + GT )/2 is a positive-definite matrix. Because

∀x ∈ RN , we have xT 1sT x = s(
∑

i xi)2 ≥ 0. Thus we have

∀x ∈ RN , xT ((G+GT )/2)x+xT (1sT )x > 0, i.e., xT (M +
MT )/2x = xT Mx > 0. Therefore, M is a positive-definite

matrix and then a P-matrix. Using Lemma 1, we complete the

proof.

To simplify the analysis, we will only focus on weak cross-

AP interferences throughout the remaining analysis of this

paper.



C. Characterization of Wardrop Equilibrium for Two APs

From the analysis above, we get a clear picture about the

number of WEs when the interferences between APs are weak.

But when the interferences become strong, how things would

be like? In the following, we will analyze a two-AP case to

illustrate under assumption LC1 only and try to gain some

insights into this problem.

At first, we study how to determine WE given the price

vector p = (p1, p2) of SPs. Without loss of generality

(WLOG), we assume that p1 < p2, and the analysis when

p1 ≥ p2 is similar. We will divide our analysis into three cases.

For convenience, we use substitutions a2 � g̃2,1, b1 � g̃1,2 and

g̃1,1 = g̃2,2 = 1.

(1) When p satisfies p1, p2 ≥ u(0), there is a unique WE

xWE
1 = xWE

2 = 0, which means that the prices set by the SPs

are so high that none of users has any incentive to access the

network for wireless services.

(2) When p satisfies p1 < u(0), p2 ≥ u(0), we have xWE
2 = 0

and xWE
1 satisfying xWE

1 +p1 = u(xWE
1 ). Because the left part

of the equation, xWE
1 +p1, is monotonically increasing in xWE

1

and the right part of the equation, u(xWE
1 ), is monotonically

decreasing in xWE
1 , they must have a single intersection point,

and the WE is unique.

(3) When p satisfies 0 ≤ p1 < p2 ≤ u(0), the situation

becomes more involved. Under this condition, xWE
1 and xWE

2

cannot be zero simultaneously (which can be verified by

contradiction). Given the market disutility d, we define the

total demand function as f(d) �
∑2

i=1 xWE
i (d). Thus the

intersection point between u−1(d) and f(d) determines the

market disutility d at WE. As u−1(d) is a strictly decreasing

function in market disutility d, while f(d) is not always

increasing in d as we will see, there may exist multiple in-

tersection points between f(d) and u−1(d) which correspond

to multiple WEs. It is different from the results in [9] when

cross-AP interferences are not considered. In the sequel, we

study the analytical expressions of f(d) under different cases

for fixed disutility level.

1) When d satisfies 0 ≤ d ≤ p1, we have xWE
1 = xWE

2 = 0
(the disutility that end users can stand is smaller than

the lowest price, and thus no one would like to access

the network), and hence f(d) = 0;

2) When d satisfies p1 < d ≤ p2, we have xWE
2 = 0 and

xWE
1 = d−p1 (utilizing equation (1) and (2)) and hence

f(d) = d − p1;

3) When d satisfies p2 < d < u(0), there are three cases

depending on the strength of cross-AP interferences

(a2, b1).
a) If xWE

1 > 0 and xWE
2 > 0, the conditions of WE

are {
p1 + l1(xWE) = d;
p2 + l2(xWE) = d.

Thus we can derive user distributions between the

two APs as{
xWE

1 = (1−a2)d+a2p2−p1
1−a2b1

;
xWE

2 = (1−b1)d+b1p1−p2
1−a2b1

.

Hence the cross-AP interferences region

{(a2, b1)|a2 < d−p1
d−p2

, b1 < d−p2
d−p1

or a2 >
d−p1
d−p2

, b1 > d−p2
d−p1

} can lead to xWE
1 > 0 and

xWE
2 > 0. The total demand function is

f(d) =
(2 − a2 − b1)d + (a2 − 1)p2 + (b1 − 1)p1

1 − a2b1
.

b) Similarly, if xWE
1 > 0 and xWE

2 = 0, then the

conditions of WE become{
p1 + l1(xWE) = d;
p2 + l2(xWE) ≥ d.

and we have xWE
1 = d−p1. Cross-AP interferences

region should satisfy {(a2, b1)|b1 ≥ d−p2
d−p1

} and the

total demand function is f(d) = d − p1.

c) If xWE
1 = 0 and xWE

2 > 0, we have xWE
2 = d−p2

and cross-AP interferences region should satisfy

{(a2, b1)|a2 ≥ d−p1
d−p2

}. The total demand function

is f(d) = d − p2.

To sum up, we divide cross-AP interferences region into

four sub-regions (see Figure (2)):

a) when (a2, b1) falls in region (I), we have

xWE
1 > 0, xWE

2 > 0 and f(d) =
(2−a2−b1)d+(a2−1)p2+(b1−1)p1

1−a2b1
;

b) when (a2, b1) falls in region (II), we have xWE
1 =

0, xWE
2 > 0 and f(d) = d − p2;

c) when (a2, b1) falls in region (III), three cases exist:

• xWE
1 > 0, xWE

2 > 0 and f(d) =
(2−a2−b1)d+(a2−1)p2+(b1−1)p1

1−a2b1
,

• or xWE
1 = 0, xWE

2 > 0 and f(d) = d − p2,

• or xWE
1 > 0, xWE

2 = 0 and f(d) = d − p1;

d) when (a2, b1) falls in region (IV), we have xWE
1 >

0, xWE
2 = 0 and f(d) = d − p1.

However, when market disutility d changes, the region that

(a2, b1) belongs to in Figure (2) also changes, we need to

have the region be further divided and the division should be

independent of market disutility d. Because the intersection

point of the four sub-regions in Figure (2) is
(

d−p1
d−p2

, d−p2
d−p1

)
,

when d increases from p2 to u(0), the intersection point moves

along the trajectory of a2b1 = 1, which enables us to further

divide the cross-AP interferences region into five sub-regions

(see Figure (3)). Due to aforementioned analysis, we are able

to get a detailed characterization of the total demand function

f(d) as follows:

1) when (a2, b1) falls in region (a) in Figure (3), i.e.,

{(a2, b1)|0 ≤ a2 < u(0)−p1
u(0)−p2

, 0 ≤ b1 < u(0)−p2
u(0)−p1

}, as

d increases from p2 to u(0), the region that (a2, b1)
belongs to in Figure (2) moves from region (IV) to

region (I), and thus we have

f(d) =

⎧⎪⎨
⎪⎩

d − p1, when p2 < d ≤ p2−b1p1
1−b1

;
(2−a2−b1)d+(a2−1)p2+(b1−1)p1

1−a2b1
,

when p2−b1p1
1−b1

< d < u(0);
(13)

2) similarly, when (a2, b1) falls in region (b), i.e.,

{(a2, b1)|a2 ≥ u(0)−p1
u(0)−p2

, 0 ≤ b1 ≤ u(0)−p2
u(0)−p1

, a2b1 < 1},



as d increases from p2 to u(0), it moves from region

(IV) to region (I) and finally moves to region (II), and

thus we have

f(d) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d − p1, when p2 < d ≤ p2−b1p1
1−b1

;
(2−a2−b1)d+(a2−1)p2+(b1−1)p1

1−a2b1
,

when p2−b1p1
1−b1

< d < p1−a2p2
1−a2

;
d − p2, when p1−a2p2

1−a2
≤ d < u(0);

(14)

3) when (a2, b1) falls in region (c), i.e., {(a2, b1)|a2 ≥
u(0)−p1
u(0)−p2

, 0 ≤ b1 ≤ u(0)−p2
u(0)−p1

, a2b1 > 1}, it moves from

region (IV) to region (III) and finally moves to region

(II), and thus we have

f(d) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

d − p1, when p2 < d ≤ p1−a2p2
1−a2

;
(2−a2−b1)d+(a2−1)p2+(b1−1)p1

1−a2b1

or d − p1

or d − p2,

when p1−a2p2
1−a2

< d < p2−b1p1
1−b1

;
d − p2, when p2−b1p1

1−b1
≤ d < u(0);

(15)

4) when (a2, b1) falls in region (d), i.e., {(a2, b1)|a2 >
u(0)−p1
u(0)−p2

, b1 > u(0)−p2
u(0)−p1

}, it moves from region (IV) to

region (III), and thus we have

f(d) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

d − p1, when p2 < d ≤ p1−a2p2
1−a2

;
(2−a2−b1)d+(a2−1)p2+(b1−1)p1

1−a2b1

or d − p1

or d − p2,

when p1−a2p2
1−a2

< d < u(0)

(16)

5) when (a2, b1) falls in region (e), i.e., {(a2, b1)|0 ≤ a2 <
u(0)−p1
u(0)−p2

, b1 > u(0)−p2
u(0)−p1

}, as d increases from p2 to u(0),
(a2, b1) always stays in region (IV), and thus we have

f(d) = d − p1, when p2 < d < u(0). (17)

Fig. 2. Cross-AP interferences sub-regions given market disutility d

Take part of region (b) for an illustration, see Figure

(4). When (a2, b1) ∈ {(a2, b1)|a2b1 < 1, a2 + b1 >
2}⋂

region (b), the total demand function f(d) decreases

in d when d falls in the interval (p2−b1p1
1−b1

, p1−a2p2
1−a2

). It is a

very counter-intuitive result, since the increase of end users’

tolerance of the market disutility can lead to the decrease of

the number of end users. There may exist multiple WEs due

to the following two reasons:
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0
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d: IV    III   II
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Fig. 3. General cross-AP interferences sub-regions

1) the interference regions involve region III when disutility

d varies (three cases can happen);

2) the interferences regions involve region I and (a2, b1)
falls in the region {(a2, b1)|a2b1 < 1, a2 + b1 > 2, a2 >
0, b1 > 0} (this is due to non-monotonicity of the total

flow).

Therefore, when we change the prices (p1, p2), as long as

a2 + b1 < 2, there exists a unique WE for all market

demand functions. This result coincides with Theorem 2, while

assumption LC2 is not required here.

Fig. 4. An illustration when (a2, b1) falls in region (b)

IV. OLIGOPOLY ANALYSIS

Generally, the oligopoly analysis of this problem is complex

and intractable. In this section, in order to obtain analytical

results and gain insights, we focus on a two-AP case under

the linear assumptions (LC1, LC2) with weak cross-AP in-

terferences. Through the following analysis, we characterize

the APs’ prices and user distributions at both monopoly and

duopoly equilibria.

A. Monopoly Case

When the APs are controlled by one SP, the goal of the SP

is to maximize the total profits of the APs. We prove that when

there are only two APs and the interferences between them are

weak, the pricing strategy can be expressed analytically.

Price differentiation (PD) is a pricing strategy in which

an SP offers the same service or product at different prices

in different markets. PD can be a feature of monopolistic

and oligopolistic markets. By means of PD, SP can absorb



consumer’s surplus from the consumer to raise its revenue. If

PD is permitted, the problem can be formulated as

max
p

pT x (18)

s.t. LCP (10) − (12).

Theorem 3 (Monopoly Equilibrium with PD): Under the

assumptions of LC1 and LC2, when cross-AP interferences

are weak, i.e., a2 + b1 < 2, and the prices are differentiated,

ME exists and is unique. The corresponding prices are:

pME = (M−1 + (M−1)T )−1M−1w (19)

Meanwhile the user distributions between the APs are:

xME = M−1(I − (M−1 + (M−1)T )−1M−1)w (20)

Proof: Firstly, we prove by contradiction that both

APs have positive demands, i.e., xWE
1 (pME) > 0 and

xWE
2 (pME) > 0. WLOG, suppose that at the ME, we have

xWE
1 = 0 and xWE

2 > 0, the corresponding disutility is

d∗. From the WE constraints d∗ = w − sxWE
2 , we get

xWE
2 = (w − d∗)/s. Thus the cost due to delay is (xWE

2 )2 =
((w − d∗)/s)2. Under the same degree of the disutility d∗, if

there exists p1 and p2 that can make xWE
1 > 0 xWE

2 > 0, then

the congestion cost incurred is

(xWE
1 + a2x

WE
2 )xWE

1 + (xWE
2 + b1x

WE
1 )xWE

2 (21)

= (xWE
1 + xWE

2 )2 − (2 − a2 − b1)xWE
1 xWE

2 (22)

= ((w − d∗)/s)2 − (2 − a2 − b1)xWE
1 xWE

2 (23)

< ((w − d∗)/s)2, (24)

which means that SP can get more profits if both of the APs

are at work. From Figure (3), when d∗ is fixed, as long as

a2 + b1 < 2, we can tune the prices p1 p2 that make (a2, b1)
falls in region (I). Thus both APs have positive demands and

the constraints of the problem become Mx + q = 0. It is

a non-constrained convex optimization problem and can be

easily solved.

Otherwise, without PD, the problem is to solve

max
p

p1T x (25)

s.t. LCP (10) − (12),

and we have the following result.

Theorem 4 (Monopoly Equilibrium without PD): Under

the assumptions of LC1 and LC2, when cross-AP interferences

are weak, i.e., a2+b1 < 2, and the prices are not differentiated,

ME exists and is unique. The corresponding prices are:

pME = w/2. (26)

Meanwhile the user distributions between the APs are:

xME = M−1w/2. (27)

Proof: When p1 = p2 is considered, it is a special case of

Figure(2). The region {(a2, b1)|0 ≤ a2, b1 < 1} corresponds

both of the APs have positive flow, the region {(a2, b1)|a2 ≥
1, b1 ≤ 1, a2+b1 < 2} corresponds to xWE

2 > 0 xWE
1 = 0 and

the region {(a2, b1)|a2 ≤ 1, b1 ≥ 1, a2 + b1 < 2} corresponds

to xWE
1 > 0 xWE

2 = 0. We prove by classified discussions.

(1) When a2 ≤ 1, b1 ≤ 1, since both APs have positive flows,

the constraints of WE reduce to Mx+q = 0. Thus the profit

of SP is p1T (M−1(w−p1)) and SP can get its optimal profit

by setting the price as pWE = w/2.

(2) When a2 ≥ 1, b1 ≤ 1, a2 + b1 < 2, we have xWE
2 > 0

xWE
1 = 0. Thus the profit of SP is pxWE

2 . Since w− sxWE
2 =

p + xWE
2 , the profit can be expressed as p(w − p)/(s + 1)

and SP can also get its optimal profit by setting the price as

pWE = w/2. The discussion of the other case is similar. Thus

we complete the proof.

This result is interesting because when the prices are not

differentiated, the SP simply sets pME = w/2 regardless of

the interferences between the APs.

B. Duopoly Case

When the APs are controlled by different SPs, the goal

of each SP is to maximize his own profits. Similar to the

monopoly case, we prove that each SP’s profit-maximizing

problem can be solved analytically when there only exist two

APs.

For each SP, its optimization problem given the price of the

other SP p−i can be expressed as

max
pi

pixi (28)

s.t. LCP (10) − (12).

The following theorem characterizes SPs’ pricing strategies.

Theorem 5 (Duopoly Equilibrium): Under the assumptions

of LC1 and LC2, when the cross-AP interferences are weak,

i.e., 0 ≤ a2 + b1 < 2, for each SPi, the best pricing strategy

is dependent on the cross-AP interference stated as follows.

1) When the cross-AP interferences satisfy 0 ≤ a2 ≤ 1 and

0 ≤ a2 ≤ 1, DE exists and is unique, and the pricing

strategies are:{
p∗1 = w[(a2+s)(1−b1)+2(1−a2)(1+s)]

4(1+s)2−(s+a2)(s+b1)
,

p∗2 = w[(b1+s)(1−a2)+2(1−b1)(1+s)]
4(1+s)2−(s+a2)(s+b1)

;
(29)

meanwhile the user distributions between the APs are:{
x∗

1 = (w−p∗
1)(1+s)−(w−p∗

2)(a2+s)
(1+s)2−(s+a2)(s+b1)

,

x∗
2 = (w−p∗

2)(1+s)−(w−p∗
1)(b1+s)

(1+s)2−(s+a2)(s+b1)
.

(30)

2) When the cross-AP interferences satisfy a2 > 1, 0 ≤
b1 < 1 and a2 + b2 < 2, the pricing strategies are:{

if p∗2x
∗
2 > (a2−1)w2

(s+a2)2
, pDE

2 = p∗2, pDE
1 = p∗1,

if p∗2x
∗
2 ≤ (a2−1)w2

(s+a2)2
, pDE

2 = (a2−1)w
s+a2

, pDE
1 ≥ 0.

3) When the cross-AP interferences satisfy b1 > 1, 0 ≤
a2 < 1 and a2 + b2 < 2, the pricing strategies are:{

if p∗1x
∗
1 > (b1−1)w2

(s+b1)2
, pDE

1 = p∗1, pDE
2 = p∗2,

if p∗1x
∗
1 ≤ (b1−1)w2

(s+b1)2
, pDE

1 = (b1−1)w
s+b1

, pDE
2 ≥ 0.

Proof:
1) When the cross-AP interferences satisfy 0 ≤ a2 ≤ 1 and



0 ≤ a2 ≤ 1, WLOG, we assume x1 = 0 and x2 > 0, and thus

we have d1 ≥ d2 (WE condition), i.e., p1 + a2x2 ≥ p2 + x2.

SP1 can always lower the price p1 it charges to gain positive

profits. Thus both SPs can get positive profits and flow. Solving

problem (28), the best-response function of SP1 is :

BR1(p2) = max
{

min
{

(a2 + s)p2 + w(1 − a2)
2(1 + s)

, u(0)
}

, 0
}

and that of SP2 is:

BR2(p1) = max
{

min
{

(b1 + s)p1 + w(1 − b1)
2(1 + s)

, u(0)
}

, 0
}

Because of x1 > 0 and x2 > 0, DE cannot be obtained at the

boundaries of both best-response functions, i.e., ∀i ∈ {1, 2},

pi �= 0, u(0). Thus DE is determined by the intersection point

of the two best-response functions’ linear part and we get the

prices pDE and user distributions between SPs xWE(pDE) at

DE.

2) When the cross-AP interferences satisfy a2 > 1, 0 ≤
b1 < 1 and a2 + b2 < 2, SP2 has the power to expel SP1

from the market. When SP1 is expelled from market, we have

x1 = 0 and x2 > 0, as the analysis above, the price of SP2

should satisfy p2 ≤ (a2 − 1)x2 to guarantee that no matter

how much SP1 charges, no users would choose it for service.

It follows that d2 = w − sx2 = p2 + x2, hence the profit of

SP2 is p2(w−p2)/(s+1). If there is no constraint of p2, then

SP2 can get its optimal profit by setting p2 = w/2. However,

as we have the constraint p2 ≤ (a2 − 1)x2 which implies

that p2 ≤ (a2 − 1)w/(s + a2) < w/2, SP2 have to set the

price as p2 = (a2 − 1)w/(s + a2) to get the maximum profit

(a2 − 1)w2/(s + a2)2. When the two SPs coexists, the profit

of SP2 is p∗2x
∗
2 and SP2 would choose the price that achieves

the optimal profit.

3) When the cross-AP interferences satisfy b1 > 1, 0 ≤
a2 < 1 and a2 + b2 < 2, the analysis is similar to 2).

V. COMPARISON OF MONOPOLY AND DUOPOLY

In this section, following the assumptions of Section IV, we

further specialize to the case where cross-AP interferences are

symmetric, i.e., 0 ≤ a2 = b1 < 1.

A. Price of Competition on Social Welfare

In order to compare the impacts of monopoly and duopoly

on social welfare, we define the price of competition on social

welfare (PoCS) as:

PoCS =
SW(xWE(pME))
SW(xWE(pDE))

(31)

We study the properties of PoCS and the results are sum-

marized in the following theorem.

Theorem 6 (Bound on PoCS): Under the assumptions of

LC1 and LC2 with weak and symmetric cross-AP interfer-

ences, a lower bound of PoCS is 3
4 and this bound is tight

in that it is attained when the elasticity of market demand

function, i.e., 1
s , approaches zero. On the other hand, PoCS

is unbounded from above.

Proof: Using the results of Theorem 3 and Theorem 5,

we obtain the analytical expression of PoCS as

PoCS =
(3s + 1 + a2)(s + 2 − a2)2

4(s + 1)(s2 + 3s + 1 − 2a2s − a2
2)

(32)

Then it is easy to verify that PoCS − 3
4 ≥ 0 and

lims→∞ PoCS = 3
4 . When the elasticity of market demand 1

s
approaches to infinity and cross-AP interferences approach to

1, we have lims→0+,a2→1− PoCS(a2, s) = ∞, which means

that PoCS is unbounded from above.

B. Price of Competition on Profits

In order to compare the impacts of monopoly and duopoly

on SPs’ profits, we define the price of competition on profits

(PoCP) as

PoCP =
∑

i pME
i xWE

i (pME)∑
i pDE

i xWE
i (pDE)

. (33)

Using the results of Theorem 3 and 5, we obtain

PoCP =
(s − a2 + 2)2

4(1 − a2)(s + 1)
(34)

We can then verify that PoCP−1 ≥ 0 and lims,a2→0 PoCP =
1, so we have the following theorem.

Theorem 7 (Lower bound of PoCP): Under the assump-

tions of LC1 and LC2 with weak and symmetric cross-AP

interferences, a lower bound of PoCP is 1 and this bound is

tight in that is attained when the elasticity of market demand

function, i.e. 1
s , diverges and cross-AP interferences approach

zero. On the other hand, PoCP is unbounded from above.

VI. NUMERICAL ILLUSTRATIONS

In this section, we perform some numerical experiments to

illustrate the analysis in Section IV and Section V.

Firstly, we study the relationship between the equilibrium

prices and cross-AP interferences. We set w = s = 1, b1 =
0.3 and vary a2 from 0 to 1.7, then we get the variations of

prices, user distributions and the profits of APs at ME and DE,

respectively (see Figure (5)). From the figure, we can see that

the prices at ME are always higher than those of DE which

accords with our intuitive ideas. As a2 increases, SP increases

AP2’s access price to control the flow amount, thus limiting

the cross-AP interference from AP2 to AP1; while at DE, SP2

even continues to reduce AP2’s price, which aggravates SP1’s

situation. Interestingly, at ME, the monopolistic SP prefers to

equalize the user distributions between two APs.

Then we study PoCS and PoCP for both symmetric and

asymmetric cases. We set s equal to 0.1, 1 and 10, respectively,

vary a2 from 0 to 1 and get the PoCS and PoCP variation

tendencies (see Figure (6)). From Figure (6a), we find that

when the elasticity of market demand equals 1 and the

symmetric cross-AP interferences are less than 0.7, duopoly is

more favorable than monopoly from the point of view of social

welfare. However, when the symmetric cross-interferences are

strong, monopoly is more favorable than monopoly from the

point of view of both social welfare and SPs’ profits.
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VII. CONCLUSION

Through the analysis in this paper, we find that when there

exist cross-AP interferences in the system, the performance

of monopoly is guaranteed from both the perspectives of

social welfare and profits. Indeed, as cross-AP interferences

become strong, the penalty due to competition on both social

welfare and SPs’ profits become large and even unbounded.

Such results shed new light on understanding the role of

competition and efficiency in wireless SP markets, where

cross-AP interferences are inevitable.
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