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Abstract—We consider the Gaussian interference channel as
a non-cooperative game taking into account the cost of the
transmission. We study the conditions of the existence of a pure
Nash equilibrium. Particularly, for the many-user case we give
sufficient conditions that lead to a Nash equilibrium, and for
the two-user case we exhaustively describe the conditions of the
existence and the uniqueness of a pure Nash equilibrium and we
show the existence of best-response dynamics that converge to
one of them.

I. INTRODUCTION

The Gaussian interference channel is one of the most
fundamental channels in wireless communications [1], but the
capacity of this channel still remains an open problem. One
way of improving the achievable capacity is the cooperation
between the transmitters [2], [3], [4]. However, if such co-
operation is not possible then the channel becomes a non-
cooperative game and the transmitters become players that
selfishly try to optimize their own utility [5].

Many game-theoretic studies have been done for this prob-
lem for the case of two users. In [6], the authors study the
two-user Gaussian interference channel with limited budget
of transmission power on a specific bandwidth, providing
conditions of existence and uniqueness of a Nash equilibrium
and they show conditions of convergence to this. In [7], the
authors study the Nash equilibrium region as an extension of
the information-theoretic capacity region. In [8], the authors
study the two-user Gaussian interference channel on a specific
channel and they give a pricing mechanism that leads the play-
ers to a unique, Pareto-efficient and “fair” Nash equilibrium. In
[9], [10] a spectrum sharing problem of two bands is studied.
In [11] the authors study a jamming game on many channels
with limited budget of transmission power taking into account
the transmission cost.

The research leading to these results has received funding from the People
Programme (Marie Curie Actions) of the European Union’s Seventh Frame-
work Programme FP7/2007-2013/ under REA grant agreement no 324515.

For many users, in [12] the authors prove the existence
of a Nash equilibrium in the Gaussian interference channel
with many channels and limited budget of transmission
power. A spectrum sharing problem with many users and
many channels is studied in [13]. In [14] the authors provide
an iterative waterfilling algorithm for finding the Nash
equilibrium. Finally, in [15] a spectrum sharing problem in
an unlicensed band is studied.

Our contribution. None of the above works takes into
account the transmission cost, apart from [11] and [8].
Particularly, in [8] the authors give a pricing mechanism
leading to a Nash equilibrium for the case of weak interference
and this case coincides with one of the cases of our analysis.

In this paper, we study the problem from a game-theoretic
point of view taking into account the transmission cost as
a linear function of the transmission power, so that the
transmitters try to maximize their own rate and simultaneously
minimize the cost of the transmission. We give conditions
that lead to a Nash equilibrium with M users. Particularly,
for the two-user case we prove the existence of a Nash
equilibrium under any condition of noise, interference and
transmission cost and we show the existence of best-response
dynamics that they lead to a Nash equilibrium. We find
interesting the striking similarity of our results with the results
of the species population competition described by the Lotka-
Volterra competition model [16], [17].

II. THE MODEL

We consider an M -pair transmitter-receiver Gaussian inter-
ference channel, where M is an integer greater than one. Any
receiver i ∈ {1, . . . ,M} treats the signal of the transmitters
different than the transmitter i as interference. Thus, by the
Shannon’s formula [18] we get the link capacities (in nats per
channel use):
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Ri(pi, p−i) =
1

2
ln

1 +
hiipi

M∑
j=1
j 6=i

hjipj + Ni

 ,

where pi ∈ [0, pmax] is the power of the transmitter i and pmax

is the maximum available power which is assumed for the
moment arbitrarily large. Furthermore, p−i are the choices of
transmission powers of all transmitters except from transmitter
i. The positive constants hji are the channel coefficients
between transmitter j and receiver i and the positive constant
Ni is the power of the additive Gaussian white noise (AGWN)
at receiver i. By scaling the channel coefficients we have that
the link capacities are equal to:

Ri(pi, p−i) =
1

2
ln

1 +
pi

M∑
j=1
j 6=i

ajipj + ni

 ,

where aji = hji/hii > 0, ni = Ni/hii > 0.
We can consider the transmitters as the players of a

non-cooperative game. The pure strategy of every transmit-
ter/player i is the power pi that she chooses to send her
message. We call strategy profile the M -tuple of the assigned
transmission powers of all players. In this paper, we only
consider pure strategies. We define the payoff of a player i to
be the capacity Ri minus a positive cost ci multiplied by the
transmitting power pi. As we will show below ci ≤ 1/(2ni),
since in the opposite case the best-response strategy of the
player i is pi = 0. So, the utility functions of the players are
defined as:

ui(pi, p−i) =
1

2
ln

1 +
pi

M∑
j=1
j 6=i

ajipj + ni

− cipi.

The utility function of the player i, ui, is a concave function
of pi for any fixed strategies of the other players, since the
second derivative with respect to pi is negative. In order to
find the best-response strategies, we find the roots of the first
derivative for pi of the utility function ui, for every i, so:

dui/dpi =
1

2

pi +
M∑
j=1
j 6=i

ajipj + ni


− ci = 0,

this implies that

pi +
M∑
j=1
j 6=i

ajipj =
1

2ci
− ni ≡ bi. (1)

So, the best-response strategy of any player i is

pi = max{bi −
M∑
j=1
j 6=i

ajipj , 0}. (2)

We can write up the equation (1) as a linear system

ATATAT · ppp = bbb, (3)

where

AAA =


1 a12 a13 . . . a1M
a21 1 a23 . . . a2M

. . .
aM1 aM2 . . . 1

 ,

ppp =


p1
p2
. . .
pM

 , and bbb =


1/(2c1)− n1

1/(2c2)− n2

. . .
1/(2cM )− nM

 .

By equation (1), we can see that for any i ∈ {1, . . . ,M},
bi ≥ 0, which implies that ci ≤ 1

2ni
. Actually, if bi = 0,

we can assume that the player i is not in the game. For the
analysis, we assume that bi > 0, for any i. The constant bi
is the power that will be used when the link i is free from
interference in order to maximize the utility function ui. From
its definition we see that bi is higher (and therefore higher
capacity can be achieved in the interference-free link i) if the
noise power ni is lower, the link quality hii is higher and the
power cost ci is lower.

If interference is introduced, the power that maximizes
the utility function ui will be less than bi. Thus, bi can be
considered as the maximum power that will be used in the
link i, let us call it maximum advantageous power. The sum
of the power pi plus the interference power must sum up to
bi and this can be interpreted as a kind of water-filling for the
link i. The corresponding maximum capacity Rimax of the
link will be 1

2 ln(1 + bi/ni) = 1
2 ln(1/(2cini)).

III. THE TWO-USER CASE

In order to get insight on the problem, we consider a two-
pair transmitter-receiver Gaussian interference channel, the
pair of transmitter 1 (t1) and receiver 1 (r1) and the pair of
transmitter 2 (t2) and receiver 2 (r2). The utility functions of
the players are defined as:

u1(p1, p2) =
1

2
ln

(
1 +

p1
a21p2 + n1

)
− c1p1,

u2(p2, p1) =
1

2
ln

(
1 +

p2
a12p1 + n2

)
− c2p2,

for player 1 and player 2, respectively.
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As in (1) the powers that maximize the utilities are:

p1 = b1 − a21p2, (4)

and
p2 = b2 − a12p1. (5)

As in (2) the best-response strategies are:

p1 = max{b1 − a21p2, 0}, (6)

and
p2 = max{b2 − a12p1, 0}. (7)

A. Conditions of the existence and the uniqueness of a pure
Nash equilibrium

In this section, we will describe the conditions of the
existence and the uniqueness of a pure Nash equilibrium. To
do this, we will do case-analysis for all possible scenarios.
But first, we give the analytic form of the cross point of the
lines described by (4) and (5), if it exists in the first quarter,
as a solution of the system that is created by these equations.

Theorem 1: If the lines (4) and (5) cross each other in the
first quarter, then the strategy profile

(
b1−a21b2
1−a12a21

, b2−a12b1
1−a12a21

)
is

a Nash equilibrium.
Proof 1: This is the solution of the system created by the

equations (4) and (5), in which both players mutually play
best-response strategies. Analytically, for the two-user case the
solutions are:

p1 =

∣∣∣∣b1 a21
b2 1

∣∣∣∣
∆

, p2 =

∣∣∣∣ 1 b1
a12 b2

∣∣∣∣
∆

,

where ∆ =

∣∣∣∣ 1 a21
a12 1

∣∣∣∣. If ∆ and the numerators are zero,

we have an infinite number of solutions.
ut

Theorem 2: There always exists at least one pure Nash
equilibrium (NE).

Proof 2: In order to prove this theorem we study the
existence of the pure Nash equilibrium in six different cases
depending on the topology (a12, a21) and the powers (b1, b2).

• Case 1: {b1 > a21b2 and b2 ≥ a12b1}, or
{b1 = a21b2 and b2 > a12b1}. From these conditions
we conclude that in this case a21 · a12 < 1. We can see
that the equation (4) is a line that crosses the axis of
p1 at the point (b1, 0) and the axis of p2 at the point
(0, b1/a21). The equation (5) is also a line that crosses
the axis of p1 at the point (b2/a12, 0) and the axis of
p2 at the point (0, b2). It is easy to see that with two
pairs of inequalities there is exactly one cross point of
the lines, so a pure Nash equilibrium.

• Case 2: b1 < a21b2 and b2 < a12b1. From these two
conditions we conclude that a21 · a12 > 1 that is we
have strong interference. In this case, there are three

p2

p1

b1
a21

b2

b1 b2
a12

(4) (5)

NE

Case 1

p2

p1

b2

b1
a21

b2
a12

b1

(5) (4)

NE

NE

NE

Case 2

p2

p1

b2
b1
a21

b1 b2
a12

(4)
(5)

NE Case 3

p2

p1

b1
a21

b2

b2
a12

b1

(5) (4)
NE

Case 4

Fig. 1. The first 4 possible cases.

Nash equilibria, the cross point of the two lines, the
point (b1, 0) and the point (0, b2). The point (b1, 0) is a
pure Nash equilibrium, since the best-response strategy
for the player 1 when the player 2 plays p2 = 0 is
the strategy p1 = b1, and the best-response strategy of
the player 2 when the player 1 plays b1 is the strategy
p2 = 0. A symmetric argument holds for the point (0, b2).

• Case 3: b1 < a21b2 and b2 > a12b1. In this case,
the point (0, b2) is a pure Nash equilibrium, since
the best-response strategy for the player 2 when the
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player 1 plays p1 = 0 is the strategy p2 = b2, and the
best-response strategy of the player 1 when the player 2
plays b2 is the strategy p1 = 0.

• Case 4: b1 > a21b2 and b2 < a12b1. In this case,
the point (b1, 0) is a pure Nash equilibrium, since
the best-response strategy for the player 1 when the
player 2 plays p2 = 0 is the strategy p1 = b1, and the
best-response strategy of the player 2 when the player 1
plays b1 is the strategy p2 = 0.

• Case 5: {b1 = a21b2 and b2 < a12b1}, or
{b1 < a21b2 and b2 = a12b1}. From these conditions, in
both cases, we conclude that a21 · a12 > 1. In the first
case, there are two Nash equilibria, the cross point of
the two lines and the point (b1, 0). The point (b1, 0) is a
pure Nash equilibrium, since the best-response strategy
for the player 1 when the player 2 plays p2 = 0 is
the strategy p1 = b1, and the best-response strategy of
the player 2 when the player 1 plays b1 is the strategy
p2 = 0. A symmetric argument holds for the case
b1 < a21b2 and b2 = a12b1.

• Case 6: b1 = a21b2 and b2 = a12b1. In this case, the
lines (4) and (5) coincide, so we have an infinite number
of cross points, so Nash equilibria. It is easy to see that
in this case a21 · a12 = 1.

Now, we will give the conditions of uniqueness of a pure
Nash equilibrium.

Theorem 3: If a12b1 < b2 or a21b2 < b1, then the pure Nash
equilibrium is unique.

Proof 3: We can see that in every case there is at least
one pure Nash equilibrium and the only case that we have
more than one Nash equilibrium is the case a12b1 ≥ b2 and
a21b2 ≥ b1. So, the logical negative of this case is a12b1 < b2
or a21b2 < b1. ut

B. Existence of best-response dynamics

We care about the convergence of a strategy profile to a
pure Nash equilibrium. We will graphically show that in any
case if the players sequentially play best-response strategies
they converge to one of them.

Particularly, in the case 1 where we have {b1 >
a21b2 and b2 ≥ a12b1}, or {b1 = a21b2 and b2 > a12b1},
there are best-response dynamics that converge to the unique
Nash equilibrium.

The same holds for the case 2 where {b1 < a21b2 and b2 <
a12b1}. However, in this case we have three Nash equilibria.
We call the Nash equilibrium in the cross point as “unstable”,
since there is a closed area around this that the best-response
dynamics can lead to one of Nash equilibria on the axes. For
example, from Theorem 1 we know that the cross point is
the strategy profile

(
b1−a21b2
1−a12a21

, b2−a12b1
1−a12a21

)
, if the players go

p2

p1

b1
a21

b2

b1 b2
a12

(4) (5)

NE

p2

p1

b2

b1
a21

b2
a12

b1

(5) (4)

NE

NE

NE

p2

p1

b2
b1
a21

b1 b2
a12

(4)
(5)

NE

p2

p1

b1
a21

b2

b2
a12

b1

(5) (4)
NE

Fig. 2. Best-response dynamics.

to a strategy profile
(

b1−a21b2
1−a12a21

± ε1,
b2−a12b1
1−a12a21

± ε2

)
, for any

small positive constants ε1, ε2, then there is the case that the
best-response dynamics can lead to one of the Nash equilibria
on the axes, depending on which player plays first.

In the cases 3 and 4 where {b1 < a21b2 and b2 > a12b1},
or {b2 < a12b1 and b1 > a21b2}, there are best-response
dynamics that converge to the unique pure Nash equilibrium.

In the case 5, where {b1 = a21b2 and b2 < a12b1}, or {b1 <
a21b2 and b2 = a12b1}, there are best-response dynamics that
converge to a pure Nash equilibrium, but the cross-point as
the above cases is “unstable”, since there are best-response
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dynamics in a closed area of the Nash equilibrium that can
lead to a different Nash equilibrium

In the case, b1 = a21b2 and b2 = a12b1, the two lines (4) and
(5) coincide, so any point on the lines is a Nash equilibrium.
However, in this case any Nash equilibrium is “unstable”, since
for any small neighbourhood of a Nash equilibrium there is
the possibility that the best-response dynamics can lead to a
different Nash equilibrium.

IV. MANY-USER CASE

We generalize the results of the two-user case to the
many-user case. In the following Theorem, we give sufficient
conditions that lead to a Nash equilibrium.

Theorem 4: If for all i, bi >
M∑
j=1
j 6=i

ajibj , or 1 >
M∑
j=1
j 6=i

aji,

then there is a Nash equilibrium equal to ppp = (AAAT )−1·bbb > bbb/2.

Proof 4: Note that the condition bi >
M∑
j=1
j 6=i

ajibj means that

the interference on link i when the other links operate with the
maximum advantageous power bj is less than the maximum
advantageous power bi of link i and corresponds to the case
of b1 > a21b2 and b2 > a12b1 of the two-user interference
channel (light interference with one Nash equilibrium).

For the proof, we will firstly prove that the matrix AAAT is
invertible, so there is a Nash equilibrium equal to p = (AAAT )−1·
bbb. After this, we will prove that the value of the power of every
player i, pi, in the Nash equilibrium is strictly greater than the
half of the maximum advantageous power, bi

2 .
Let BBB be a diagonal matrix of size M×M , such that BBBii =

bi, for any i ∈ {1, . . . ,M}, and 0 elsewhere. We conclude that
the matrix BBB is invertible, since it is diagonal and bi > 0. Let
now AAAT ·BBB be the multiplication of two matrices of AAAT and
BBB. The matrix AAAT · BBB is diagonally dominant, since bi >
M∑
j=1
j 6=i

ajibj , so the inverse (AAAT ·BBB)−1 exists. Since the inverse

(AAAT ·BBB)−1 exists, this means that the determinant det(AAAT ·
BBB) 6= 0. However, det(AAAT ·BBB) = det(AAAT ) · det(BBB) 6= 0. But,
since BBB is invertible, the det(BBB) 6= 0. Thus, det(AAAT ) 6= 0, so
the matrix AAAT is invertible.

For the second condition it is easy to see that if 1 >
M∑
j=1
j 6=i

aji,

then the matrix AAAT is diagonally dominant, so invertible.
In order to prove that in the Nash equilibrium the power

of every player i is pi >
bi
2 , we use the fact that since bi >

M∑
j=1
j 6=i

ajibj , this means that 2bi >
M∑
j=1

ajibj . Thus,

2III · bbb > AAAT · bbb,

where III is the identity matrix of size M ×M . This means
that

(2III −AAAT ) · bbb > 0⇒
(AAAT )−1 · (2III −AAAT ) · bbb > 0⇒ 2(AAAT )−1 · bbb− bbb > 0⇒

(AAAT )−1 · bbb > bbb/2⇒ ppp > bbb/2.

This result, in the best of our knowledge, is also new for the
Lotka-Volterra competition model of the species competition
[17] and implies that the population of every species in an
equilibrium, under the conditions of Theorem 4, is at least
half of its carrying capacity.

ut

V. THE SYMMETRIC CASE

We consider the symmetric case of the model, where
a = aii = aji, c = ci, n = ni and b = bi, for every
i, j ∈ {1, . . . ,M}. For the symmetric many-user Gaussian
interference channel we have the following Theorem:

Theorem 5: For the symmetric many-user Gaussian inter-
ference channel if a < 1/(M − 1), then there is a Nash
equilibrium equal to ppp = (AsymAsymAsym)−1 · bsymbsymbsym, where

AsymAsymAsym =


1 a a . . . a
a 1 a . . . a

. . .
a a . . . 1

 > 0, and

bsymbsymbsym =


1/(2c)− n
1/(2c)− n

. . .
1/(2c)− n

 > 0.

Proof 5:
By Theorem 4 we have that:

b =
1

2c
− n >

M∑
j=1
j 6=i

a

(
1

2c
− n

)
= (M − 1)a

(
1

2c
− n

)

⇔ a <
1

M − 1
.

ut
Now, we will analyse the two-user case. In this case the

utility functions of the two transmitters are equal to:

u1(p1, p2) =
1

2
ln

(
1 +

p1
ap2 + n

)
− cp1,

u2(p2, p1) =
1

2
ln

(
1 +

p2
ap1 + n

)
− cp2.

The powers that maximize the utilities are:

p1 = b− ap2, (8)
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and
p2 = b− ap1. (9)

The best-response strategies are:

p1 = max{b− ap2, 0},

and
p2 = max{b− ap1, 0}.

A. Conditions of the uniqueness of a pure Nash equilibrium

In this section, we will describe the conditions of the
uniqueness of a pure Nash equilibrium, since we know the
existence by Theorem 2.

Theorem 6: In the two-user symmetric case, if a < 1, then
the Nash equilibrium is unique.

Proof 6: In order to prove this theorem we study the
uniqueness of the pure Nash equilibrium in three different
cases.
• Case 1: ab < b. In this case, we have weak interference

(a < 1). We can see that the equation (8) is a line that
crosses the axis of p1 at the point (b, 0) and the axis of
p2 at the point

(
0, b

a

)
. The equation (9) is also a line

that crosses the axis of p1 at the point ( b
a , 0) and the

axis of p2 at the point (0, b). It is easy to see that in
this case there is an exact cross point of the lines, so a
unique pure Nash equilibrium.

• Case 2: ab > b. In this case, we have strong interference
(a > 1). There are three Nash equilibria, the cross
point of the two lines, the point (b, 0) and the point
(0, b). The point (b, 0) is a pure Nash equilibrium, since
the best-response strategy for the player 1 when the
player 2 plays p2 = 0 is the strategy p1 = b, and the
best-response strategy of the player 2 when the player 1
plays b is the strategy p2 = 0. A symmetric argument
hold for the point (0, b).

• Case 3: ab = b. In this case, we have equal interference
(a = 1) and we have an infinite number of Nash equi-
libria. The sum of the powers in every Nash equilibrium
is equal with b, so in this case any water-filling strategy
that the total sum is equal to b is a Nash equilibrium.

ut
Now in the case that the system of the equations (8) and (9)
has a unique solution, we will give the strategy profiles of
the players.

Theorem 7: The strategy profile
(

b
1+a ,

b
1+a

)
is a Nash

equilibrium.
Proof 7: This is the solution of the system of the equations

(8) and (9). If a = 1, the lines (8) and (9) coincide, so we
have an infinite number of Nash equilibria, but the sum of the
powers in the strategy profile

(
b

1+a ,
b

1+a

)
is equal to b, so

this strategy profile is a Nash equilibrium.
ut

p2

p1

b
a

b

b b
a

(8) (9)

NE

p2

p1

b

b
a

b
a

b

(9)

(8)
NE

NE

NE

p2

p1

b

b

Fig. 3. Two-user symmetric case.

VI. CONCLUSIONS

In this work, we study the Gaussian interference channel
from a game-theoretic perspective. We see how the intro-
duction of the transmission cost affects the strategies of the
transmitters. For the two-player case, we exhaustively analyse
the possible scenarios, and we show the existence of at least
one Nash equilibrium in any case. An important aspect of the
model is the existence of best-response dynamics that lead to a
Nash equilibrium point, making the Nash equilibria a rational
prediction point of our problem. For the many-user case, we
give sufficient conditions that lead to a Nash equilibrium, but
we believe that most of the results of the two-user case can
possibly be extended to the many-user case. Furthermore, it is
very interesting the connection of a wireless communication
problem with a problem of ecology, the population competition
of different species described by the Lotka-Volterra model.
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