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Abstract—The collision resolution mechanism in the Random
Access Channel (RACH) procedure of the Long-Term Evolution
(LTE) standard is known to represent a serious bottleneck in case
of Machine-Type Communication (MTC). Its main drawbacks
are seen in the facts that Base Stations (eNBs) typically cannot
infer the number of collided User Equipments (UEs) and that
collided UEs learn about the collision only implicitly, through the
lack of the feedback in the later stage of the RACH procedure.
The collided UEs then restart the procedure, increasing the
RACH load and making the system more prone to collisions.
In this paper, we leverage machine learning techniques to design
a system that, besides outperforming the state-of-the-art schemes
in preamble detection for the LTE RACH procedure, is able to
estimate the collision multiplicity and thus gather information
about how many devices chose the same preamble. This data can
be used by the eNB to resolve collisions, increase the supported
system load and reduce transmission latency. Besides LTE, the
presented approach is applicable to novel 3GPP standards that
target massive Internet of Things (IoT), e.g., LTE-M and NB-IoT,
as well as 5G, since their RACH procedures are based on the
same principles.

I. INTRODUCTION

The RACH procedure in LTE serves as a synchronization
mechanism between the eNB and the UEs: the UEs compete
for resources by randomly choosing a preamble and getting
resources assigned by the eNB, provided that they do not
collide with each other in the preamble-based contention
phase. The current system was designed to handle human-type
communication, but the rapid spread of MTC in the cellular
access has led to a dramatic traffic increase, causing channel
congestion problems. For example, in case of synchronized
alarms that trigger a feedback from multiple devices, simul-
taneous accesses to the channel may yield up to a tenfold
increase with respect to normal traffic, almost guaranteeing
that all UEs will collide [1], [2].

The RACH overload can significantly degrade the network
performance, and in the last years many approaches to mitigate
collisions were proposed [3]. Such studies generally focus
either on improving the preamble detection (i.e., identifying
whether a preamble has been chosen by any UE) or on mech-
anisms to efficiently use the random access-related resources.

In this work, we propose a novel strategy to deal with
the increased LTE traffic: estimate the collision multiplicity
during the RACH procedure to infer the current traffic load.
In particular, we propose a machine learning based scheme
that requires no modification of the current protocol stack, and

that can be fully implemented at the eNB. We first verify the
validity of applying machine learning techniques to collision
detection, showing that they can compete with the state-of-the-
art threshold-based detection algorithms described in [4], [5].
We then show the effectiveness of machine learning techniques
in estimating the number of UEs that pick the same preamble,
providing information about the collision, which is instead
not available with the current techniques. Such information
could be used to tune successive stages of the contention
resolution phase, thereby handling even higher traffic loads.
The development of such mechanisms is, however, outside of
the scope of this paper. We want to remark that the contribution
of this work is not the development of new machine learning
techniques, but rather the novel application of known machine
learning algorithms to infer previously unseen information in
the RACH procedure, information that can be exploited to
mitigate the increasing overload issue.

The rest of the paper is organized as follows. Sec. II de-
scribes the LTE RACH procedure and the algorithms currently
used for preamble detection, and briefly discusses how the
knowledge of the collision multiplicity could alleviate the
RACH overload issue. Sec. III explains the machine learning
approaches and the datasets they used. Sec. IV shows the
improvements brought by the new schemes compared to
current approaches, and explores new features that can be
enabled by collision multiplicity detection. Finally, Sec. VI
concludes the paper.

II. LTE RACH

The random access procedure in LTE is performed in
the Physical Random Access Channel (PRACH), a dedicated
physical channel with an overall bandwidth of 1.08 MHz and
duration between 1 and 4 LTE subframes. We first give an
overview of how PRACH preambles are generated and how
they are used in the multiple channel access scheme, and
then discuss the potential benefits of knowing the collision
multiplicity.

A. Preamble generation

LTE uses Zadoff-Chu (ZC) sequences, complex-valued se-
quences that satisfy the Constant Amplitude Zero Autocorrela-



tion (CAZAC) property, as a basis to create RACH preambles.
A ZC sequence of odd length Ny is defined as:
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where r€{1,...,Nzc—1} is the sequence root index; the LTE
standard uses Nyzc = 839'. Given a root r, it is possible to
generate multiple versions of the base sequence z, through a
circular shift, thereby obtaining orthogonal sequences that at
the receiver exhibit a zero correlation with one another. The
cyclic correlation of a ZC sequence with its root is a delta func-
tion with a peak corresponding to the shift that was applied
to the root sequence. Consequently, circular correlation of a
root against a superposition of different sequences obtained
from that root results in multiple peaks corresponding to the
individual shifts.

In this work, we consider the preamble format 0, which is
typically used in cells with a radius up to 14 km, and consists
in a 1 ms random access burst with preamble sequences of
duration 800 us [4]. The full PRACH preamble is obtained by
prepending the Cyclic Prefix (CP) to the ZC sequence chosen
by the UE, to counteract the multi-path reflection delay spread.
The CP also introduces an additional shift in the correlation
peak if the preamble signal is delayed in time, enabling the
eNB to estimate the channel delay experienced by a device.
In order to correctly identify the chosen preamble despite the
propagation delay, UEs are allowed to pick only sequences
whose shift is a multiple of a base quantity Ncs, which is
chosen so as to guarantee that the eNB can identify different
preambles by applying a correlator and a peak detector to the
received signal.

The LTE standard uses N,y = 64 preambles in each cell.
In this work, we only focus on the case N¢s = 13, which is
the smallest possible cyclic shift that allows to obtain exactly
Ny, preambles, so that a single root is used to generate all
the LTE preambles of the cell. This configuration can be used
in all cells covering a radius up to 0.79 km [4], and thus
suits well densely deployed urban scenarios. From now on, we
will denote as bin each portion of the correlation signal that
corresponds to a preamble (we thus have 64 different bins).
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B. RACH Procedure
The RACH procedure consists of four phases.

1) Random Access Preamble: the UEs that intend to trans-
mit data randomly choose one among Ny available
preambles and send it to the eNB.

2) Random Access Response (RAR): the eNB processes the
received signal, consisting in the superposition of all the
transmitted preambles. For each detected preamble, it
sends a RAR message to assign the uplink resources to
the corresponding UE.

3) L2/L3 message: the UEs use the newly assigned data
channel resources to communicate their connection re-
quest and a unique identifier.

'Except for preamble format 4, which is not treated in this paper.

4) Contention Resolution Message: the eNB responds to
the UEs using the identifiers they communicated in their
L2/L3 message, granting the requested resources.

Typically, UEs access the channel in a contention-based
mode,? where collisions happen when multiple UEs pick the
same preamble. If the colliding preambles are received with a
high enough Signal-to-Noise Ratio (SNR) and are sufficiently
spaced apart in time, the eNB can detect all of them and
recognize the collision, avoiding to send the RAR message to
the involved UEs. Otherwise, the eNB erroneously detects a
single preamble and all the colliding UEs will receive the RAR
message and try to access the same resource simultaneously,
colliding in the L2/L3 message phase. The UEs are implicitly
informed about the collision because they do not receive the
contention resolution message. In both cases, the collided
UEs can then try again in a new PRACH phase, potentially
increasing the RACH load. Moreover, in the latter case,
channel resources are allocated fruitlessly.

C. Interest in multiplicity detection

The conventional approach to preamble detection in LTE
RACH is represented by threshold-based detectors [4], which
compare the circular correlation of the received signal with its
base sequence against a previously set threshold. A preamble is
detected when the corresponding bin in the correlation signal
contains values above the threshold. Such threshold is typically
a function of the estimated noise level: this provides direct
control over the false alarm probability, which can be made
arbitrarily low (at a price in missed detection performance).

Several works in the literature extend and adapt the
threshold-based mechanism, e.g., to improve the computa-
tional performance at the expense of a larger missed detection
probability [5], to consider multiple root sequences [6], or to
counteract the problem of performance degradation due to time
dispersion of the channel [7].

The emergence of the IoT paradigm and the resulting in-
crease of MTC in many applications has however exacerbated
the overload issue in the RACH procedure, requiring an exten-
sive research effort to counteract the performance degradation
due to RACH congestion. Most of the available solutions are
based on initial proposals compiled by the 3GPP, including
separation of random-access resources, Access Class Barring
(ACB) schemes, pull-based random access and parameter
optimization in the medium access control layer [8]. Other
approaches assume reengineering of the LTE RACH proce-
dure, for example by grouping LTE preambles in codewords
that could convey information to the eNB [9] or by using
advanced collision resolution algorithms RACH [10].

Multiplicity detection could be beneficial for many of the
existing mechanisms that mitigate the RACH overload, helping
a proper dimensioning of the resources dedicated to the
PRACH. It may in fact allow to infer the current load of the
LTE RACH, as well as trends regarding its changes. Several

2The standard provides also a contention-free mode for handover and other
special delay-sensitive cases.



approaches leverage on (possibly dynamic) estimates of the
traffic load, implying that knowing the collision multiplicity
could yield enhanced performance. For example, [11] proposes
a learning automaton based algorithm that dynamically adapts
an ACB scheme based on the estimated arrival rate and
asymptotically converges to the optimal case of full informa-
tion available at the eNB: knowing the collision multiplicity
the algorithm could optimally adapt the ACB parameters
from the beginning. Similarly, [12] proposes a strategy to
automatically configure the random access parameters based
on the number of collided preambles and the estimated traffic
rate, which is dynamically updated using a moving average
filter. Such estimate could be replaced or integrated with the
information about the collision multiplicity, yielding a more
realistic value of the traffic demand and improved collision
resolution performance.

As a final remark, we highlight that the focus of the paper is
on the multiplicity detection, while its coupling with advanced
LTE RACH algorithms is left for further work.

III. MACHINE LEARNING APPROACHES

In this work, we apply Machine Learning (ML) techniques
to preamble detection, i.e., determining whether a certain
preamble was sent or not, and preamble multiplicity detection,
i.e., determining how many devices sent the same preamble,
in LTE. The proposal of using ML to solve the problem of
preamble detection is motivated by the fact that the peaks
in the correlation signal (see Sec. II-A) contain structured
information based on the behavior of the channel. This fact
can be seen in Fig. 1, which compares the peaks obtained in
the AWGN and Rayleigh channels, and highlights how the
peak takes the shape of the channel’s power delay profile in
the Rayleigh case. While basic approaches can still obtain
satisfactory results by simply comparing the height of the
peaks to a threshold, ML approaches can access more informa-
tion by considering the whole correlation signal; potentially,
they can learn to rely on the shape, position and height of
the peaks to make their classification decision and correctly
distinguish real peaks from those caused by noise. In this work,
we consider two different ML techniques, namely Logistic
Regression (LR) and Neural Network (NN), which strike a
good balance between complexity and performance.

In the remainder of this section, we first describe the dataset
we used, and then discuss the employed ML techniques.

A. Learning from data

The necessary premise for every ML algorithm is to have
data available, which can be used to frain these systems and
make them “learn.” Our goal is to detect the number of UEs
that chose a certain preamble, given the signal received at the
eNB. This can be modeled as a classification problem since
our desired output is a category. Classification problems are a
type of supervised learning, where the model is fed with input
data X and the corresponding desired output data Y = f(X).
These labeled data are denoted as training data and are used
as examples to extract a general rule to map an input to the
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Figure 1: Correlation generated by different channel models

correct output: the goal is to approximate the mapping function
f() so as to correctly predict the output data corresponding
to a previously unseen input. This is achieved by iteratively
optimizing an objective function based on a cost function,
which measures the distance between the desired output and
the prediction and thus must be minimized.

The performance of a classification algorithm is typically
evaluated using the accuracy metric, which represents the
percentage of predictions that are correct. Once the algorithm
has been trained, its performance is evaluated over a previously
unseen fest dataset.

Other important metrics in binary classification are the false
positive and true positive rates. The false positive rate, also
referred to as false alarm probability, is the probability of
falsely identifying a sample as belonging to a class. The
true positive rate, also known as detection probability, is the
probability of correctly identifying a sample.

B. Dataset generation

Research about multiplicity collision in the RACH proce-
dure is quite modest and, to the best of our knowledge, there is
no publicly available dataset that relates the signal received at
the eNB with the information of the preambles chosen by each
UE. Hence, we generated our own dataset using the MATLAB
LTE System Toolbox™,* which provides standard-compliant
functions for the design, simulation, and verification of the
LTE communication system.

In this section, we explain how we generate our dataset, i.e.,
which data we extracted and the scenarios we considered.

1) Data labeling: to run ML algorithms, we need a map
between (i) the signal received at the eNB at the end of Phase
1) of the RACH procedure (see Sec. II-B), and (ii) the number
of UEs that selected each preamble. These will represent
the input and output data of the algorithms, respectively.
Accordingly, each simulation consists of simultaneous random
access attempts from a certain number of UEs, each choosing
one of the N,y available preambles. The MATLAB LTE
module allows to extrapolate the corresponding correlation
signal at the eNB, i.e., the output of the cyclic correlation
of the received signal with respect to the root index (see
Sec. II-A). Each preamble is uniquely mapped to a bin, i.e., a

3https://www.mathworks.com/products/Ite-system.html
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Figure 2: Example of correlation signal with 16 bins.

correlation window of predefined size, according to the value
of Ncs. Since we are interested in how many devices chose
each preamble, we decided to consider each bin separately,
rather than the correlation signal as a whole. Fig. 2 shows an
example output of the MATLAB LTE module.

2) Applications: we investigated two distinct applications,
preamble and multiplicity detection. The former aims at com-
paring the performance of the proposed ML systems to the
state of the art, so the goal is to identify whether and which
preamble was sent. The latter application, instead, targets the
estimate of the number of UEs that chose the same preamble.

For preamble detection, we used three distinct datasets: (i)
a noise-only set of correlations, used to evaluate false alarm
probabilities according to the eNB testing specification [13];
(ii) a set of correlation signals obtained when only a single UE
is transmitting, used to test missed detection; (iii) a dataset
containing both noise-only and single UE correlations, used
for the training of the ML systems. For multiplicity detection,
instead, we generated a dataset with bins containing from 0 to
5 preambles; 70% of the bins were used for training and 30%
for testing. All datasets were generated considering multiple
scenarios, that differ in two features:

e Noise level. The signal received at the eNB is the superpo-
sition of all the transmitted preambles, corrupted by noise,
expressed in terms of SNR. Based on the performance of
the ML systems we tested, we decided to focus on an
SNR range between —20 dB and —12 dB.

e Channel model. We considered an Additive White Gaus-
sian Noise (AWGN) channel and an ETU70, i.e., an
Extended Typical Urban channel with 70 Hz Doppler
affected by Rayleigh fading.

For each scenario, we ran over 10° independent simulations,
obtaining the correlation signal in each bin and the number of
UEs that selected the corresponding preamble.

3) Traffic intensity: while the preamble detection problem
requires the transmission of at most one preamble per RACH
attempt, the number of competing devices is a critical parame-
ter for the multiplicity detection. The 3GPP proposes a model
for highly correlated traffic arrivals [14], where the number of
UEs in each random access opportunity in the considered time
frame follows a Beta distribution. The study defines a possible
massive access scenario with up to 30000 devices accessing

the channel “synchronously,” i.e., over a time interval of
about 10 s. Considering RACH opportunities to happen every
20 ms, this corresponds to a maximum expected number of
devices that participate in the same RACH opportunity of
about 120. We therefore generated our dataset with 120 UEs
randomly choosing among the Ny, available preambles: due
to the binomial distribution nature of the preamble selection
mechanism, 99% of the bins generated in this way have at
most 5 devices choosing that preamble.

C. Logistic regression

LR is a statistical method that predicts the probability
that an input data belongs or not to a certain class. The
rationale behind LR is that the input space can be separated
into two complementary regions, one for each class, by a
linear boundary. It differs from linear regression because the
dependent, output variable is binary rather than continuous,
and this method is in fact intended for classification problems.
The probability that the output belongs to one or the other
class is expressed by means of a sigmoid o(-), also called
logistic function, from which LR takes its name. Function o (-)
depends on some weights, which are tuned during the training
phase of the LR in such a way to minimize a predefined cost
function (see Sec. III-A).

Given an SNR value, we trained different LR models for
each type of channel considered, and for both the investigated
problems (preamble detection and collision multiplicity), using
the open source scikit-learn library in Python*. We used the
dataset described in Sec. III-B, so that the logistic regressor
is fed with the correlation signal obtained at the receiver
in a bin, while the output data is the number of UEs that
picked the preamble corresponding to the considered bin. For
preamble detection, there are two possible classes, i.e., 0 or
at least one UE, while the number of possible classes in the
collision multiplicity problem is Nyax + 1, where Ny 1S
the maximum number of colliding UEs we are interested in
estimating; we set Npa.x = 5. In our case, choosing among
Nmax + 1 alternatives can be modeled as a set of Npyax
independent binary choices (a pivot alternative is compared to
the remaining Np,,x ones). This method, commonly denoted
as “one vs. all,” makes the training complexity linear in Ny ax.

D. Neural network

Artificial NNs [15] are a class of mathematical models
that are considered universal approximators [16], as they
are able to represent, up to any accuracy, any non linear
function. The basic units of NNs are called neurons, and
are organized in multiple layers. Any NN has an input layer
fed with the data to process, an output layer that represents
the corresponding output determined by the network, and
possibly one or more hidden layers. Neurons represent non-
linear multi-input single-output functions: such functions are
characterized by some weights and biases, which represent
the interconnections among the neurons and are progressively

“https://scikit-learn.org
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Figure 3: Detection performance comparison in an AWGN channel.

tuned during the training phase to produce the desired output.
NNs are an extremely powerful tool because they can infer
even very complex functions, that analytical models or simpler
approaches such as LR fail to describe, and thus provide an
adequate way to detect and make use of the information that
is inherently available in the correlation signal.

We used a simple feedforward NN, i.e., a fully-connected
network where any neuron in layer ¢ is connected to every
neuron in the next layer ¢+ 1. For each SNR value, channel
type and problem to solve (preamble detection or collision
multiplicity), we trained a different NN using the Keras®
library. The input data is the correlation signal obtained at the
eNB for one bin, requiring 24 neurons in the input layer. The
output layer has Ny, a.x+1 nodes, where Ny, is the maximum
number of colliding UEs we are interested in estimating
(Nmax = 1 for preamble detection, Ny ,x = 5 for collision
multiplicity). We used 2 hidden layers.

In both scenarios, for all layers but the last one, the acti-
vation function (i.e., the function that dictates how a neuron’s
weighted input is mapped into its output) is the rectifier
function, whereas for the output layer we decided to use a
softmax function, as usually done in classification problems.
This implies that the NN outputs a separate probability for
each of the possible classes and chooses the most probable
class. Additionally, we inserted dropout layers with the aim of
helping the NN generalize and speed up the learning process.
Dropout refers to ignoring neurons during the training phase:
more specifically, at each training stage, individual neurons are
either dropped out of the network with probability 1—p or kept
with probability p, so that a reduced network is left; incoming
and outgoing edges to a dropped-out neuron are also removed.
This technique is used to prevent over-fitting of training data,
caused by the co-dependencies that neurons develop amongst
each other, which curb the individual power of each neuron.

Shttps://keras.io

>
= ~
— = ~
2 ~
< ~
g 1072 | e
a. = S~
g [ . _
.§ : <o _
o3 e _
5 1073k ==
g I Best threshold, ETU70
E B Logistic regression, ETU70
[ | — @ - Neural network, ETU70
10—4 | | | | |
—18 —17 —16 —15 —14 —13 —12
SNR (dB)
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comparison in an ETU70 channel.

IV. RESULTS

We first compared the performance of the LR and NN
methods in preamble detection to those obtained with state-of-
the-art detectors, and then evaluate the performance that the
ML approaches achieve in collision multiplicity estimation.

A. Preamble detection performance

To guarantee a fair comparison with state-of-the-art
threshold-based detection, we conducted our simulations ac-
cording to the LTE specifications on eNB conformance test-
ing [13]. We thus measured the missed detection probability,
i.e., the probability that a transmitted preamble remains un-
detected at the eNB, and the false alarm probability, i.e., the
probability that the eNB wrongly detects a transmission in an
unused bin (see Sec. III-A).

The test dataset used to evaluate the detection performance
contains bins belonging to correlation signals in which exactly
one device was transmitting. The dataset used for training of
the ML systems, instead, consists of bins coming from 105
correlation signals containing either O or 1 preambles.

Fig. 3 shows the missed detection probability for both the
LR and the NN schemes in the case of an AWGN channel,
together with the performance of the algorithms proposed
in [5]. The scheme based on LR yields worse performance than
those leveraging thresholds, because of its extreme simplicity;
the mediocre performance obtained with LR suggests that the
correlation signal at the eNB and the transmission of defined
preambles are data that are not completely separable, but are
rather related in a more complex way. This is supported by
the outstanding performance of the NN, which provides a gain
in the range of 2 to 3 dB with respect to the best threshold-
based detector for all values of SNR, yielding a performance
which conforms to the standard requirements. We remark that,
rigorously, missed detection probability should also include the
cases of a wrong UE delay estimation. However, in the case
of ML based systems, which are not capable of estimating this
parameter, delay detection cannot be taken into account.
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Fig. 4 shows a comparison between the detection perfor-
mance of the NN and LR in the case of an ETU70 channel,
and compares them with the performance of the best threshold-
based detection scheme. Also in this case, the NN achieves a
significant improvement in detection performance, upwards of
4 dB with respect to the threshold-based schemes described
in [5]. LR performance is only shown at SNR values in which
the false alarm probability requirement is satisfied.

As concerns the false alarm probability, the standard sets
the minimum requirement for this metric at 0.1% [13]. ML
approaches do not provide the same direct control over the
false alarm probability that threshold-based schemes offer.
With the LR scheme, the false alarm probability requirement is
respected for SNR larger than -16 dB. On the other hand, the
false alarm probability obtained with the NN was consistently
under the required 0.1% threshold for all the analyzed SNR
values, for both AWGN and ETU70 channels.

B. Multiplicity detection

The main goal of this work is to show the validity of
ML schemes in multiplicity detection. To do so, we decided
to measure the frequency of errors in the estimation. Let
z represent the actual number of preambles in a bin, i.e.,
the number of UEs that chose the same preamble, and &
the corresponding estimate made by the ML scheme. Fig. 5
shows, for both the LR and NN approaches, the probability
that the absolute difference between the estimated and the
actual number of preambles in a bin is an offset n, namely
P(]z — Z| = n). An offset of 0 represents the probability of
guessing exactly the number of preambles in the bin, an offset
of 1 represents the probability that the difference between the
estimated and real number of transmitted preambles is +1, and
so on. Analogously, Fig. 6 shows the same results in the case
of an ETU70 channel for the same system configurations.

As expected, lower SNR values give higher error probabil-
ities. The NN clearly outperforms the LR approach, thanks to
its higher complexity, which allows to infer even very com-
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Figure 6: Probability that the estimate on the multiplicity is wrong
by different offsets in an ETU70 channel.

Table I: Confusion matrices; SNR = —16 dB, AWGN channel.

Neural Network

N 0 1 2 3 4 5

T

0 0996 0.003 0 0 0 0

1 0 0972 0.027 0 0 0

2 0 0.005 0.987 0.007 0 0

3 0 0 0.013 0978 0.007 0

4 0 0 0 0.018 0.971  0.009
5 0 0 0 0 0.033  0.966

Logistic regression

~Z o 1 2 3 4 5

T

0 1 0 0 0 0 0

1 0.018 0.735 0.239 0.007 O 0

2 0 0.048 0.604 0334 0011 O

3 0 0 0.062 0.659 0278 0

4 0 0 0 0.086  0.813  0.099
5 0 0 0 0 0.088  0.912

plicated relations between its input and output data. Although
LR could not compete with the NN in preamble detection (see
Fig. 3), a linear approach is still able to extract the information
needed to identify the number of transmitters in each bin from
the signal received at the eNB with a probability of around
0.8 in the AWGN case, and gets the multiplicity wrong by at
most 1 with a probability of 0.99. The NN scheme, instead, in
the AWGN case guarantees with a probability of about 0.999
to have an estimate that is either correct or only off by one,
even for very low SNR values, and yields exact guesses with
a probability of 0.9. The performance of the ML schemes, and
especially of NN, gets worse for worse channel conditions, as
Fig. 6 shows.

Tab. I contains the normalized confusion matrices for the
NN and LR systems, in the case of SNR = —16 dB: the
rows represent the actual multiplicity value x, while the
columns represent the value estimated by the ML scheme
2. Hence, the confusion matrix for an ideal system would
have ones along the diagonal, signifying that for each input
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the labeling is correct with probability 1. It can be seen that
the NN consistently outperforms LR, except for the case of
no preambles being sent, where LR achieves a perfect score.
Despite this perfect performance in the correct detection of
no preambles in the bin, the LR scheme is heavily affected
by a wrong detection rate in case of 1 preamble being sent,
thus motivating the bad overall detection performance seen in
Fig. 3. Furthermore, the confusion matrices also show that the
LR scheme tends to overestimate the number of preambles in
a bin, while the NN yields a more symmetrical error.

The behavior highlighted with the confusion matrices can
be also seen in the Receiver Operating Characteristic (ROC)
curves, which show the true positive rate against the false
positive rate, giving a measure of the diagnostic ability of
a binary classifier system as its discrimination threshold is
varied. The dataset used for the evaluation of the ROC curves
contains balanced amounts of each class, so as not to skew
the curves. Since in our case we are dealing with multiple
classes, we used the “one vs. all” method to perform binary
classification and obtain a ROC curve, thus using a binary
classifier for each possible class, as previously done for LR
(see Sec. III-C). Fig. 7 shows the ROC curve obtained with
LR for each class (i.e., number of users that chose the same
bin) for the same configuration of the confusion matrices, i.e.,
AWGN channel and SNR = —16 dB. The curves confirm
the perfect detection performance for Class 0, and illustrate
how Classes 2 to 4 are the most difficult ones to correctly
detect, because of the tendency of the LR to overestimate
the number of preambles in a bin. When this overestimation
is not possible, as in the case of Class 5, the performance
is significantly better and very close to that of Class 1. In
the case of the NN instead, all the classes basically yield the
same performance, as per Table I. We thus only represented
the average ROC, obtained as the average of the ROC curves
of each class, which confirms the validity of the NN in
multiplicity detection.

The NN yields an outstanding ROC curve even for worse
channel conditions and more challenging channels. This can
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Figure 8: Neural Network average ROC for various combinations of
SNR and channel type.

be seen in Fig. 8, which shows a portion of the average ROC
curve obtained with the NN for the two considered channel
types (AWGN and ETU70) and for two values of the SNR,
namely —20 and —16 dB. We only reported the upper left
corner of the whole curve, to highlight the differences of the
system configurations. Clearly, the performance improves with
higher SNRs and with a simpler channel.

V. MACHINE LEARNING LIMITATIONS

Although they have been shown to provide good results in
preamble detection and collision multiplicity estimation, ML
approaches entail some disadvantages, which we describe next.

A. Complexity

Even though the training phase of ML based detection is
performed offline, such approaches are more complex than
threshold-based detection, and inevitably require a larger com-
putational effort. In fact, while state-of-the-art schemes only
need to compare each correlation sample with a predefined
threshold, a detector based on LR needs to perform a mul-
tiplication for each sample, and then sum all the obtained
results to get to a decision. To perform multiplicity detection,
such operations need to be performed for each classifier as
described in Sec. III-C. Neural networks also need to perform
a number of operations that is proportional to the network
complexity, and could be larger than the operations required by
a LR scheme in the case of detection. When compared to a LR
scheme in the case of multiplicity estimation, however, a NN
needs to perform roughly the same number of operations as in
the detection scheme, since it already outputs a classification.
In fairness to ML, we remark that the complexity burden
of the proposed algorithms is on the eNB, whose hardware
and software capabilities are constantly improving and which
typically have very little computational and energy restrictions,
such that the higher complexity demanded by ML schemes
may not be a limiting factor.



B. Dataset collection

Both in the case of LR and NNs, a dataset of sufficient
size must be available to perform effective training. In this
work, the ML based approaches were trained on computer
generated signals using a state-of-the-art simulator in order to
have a representation as close as possible to what the eNB
will actually see in a real deployment. This allowed us to
exactly know the number of UEs choosing each preamble. For
real deployments, this dataset could be integrated with some
samples taken by the eNB. In particular, a bin associated to a
certain preamble can be labeled according to the outcome of
the RACH procedure: label as 0 if no device sends a msg3, as 1
if exactly 1 device answers with a msg3, and as 2 if a collision
happens during msg3. Unfortunately, this does not allow for a
precise estimation of the number of devices sending a specific
preamble. Such an estimation may instead be possible if, once
the eNB detects a collision (i.e., if it labels the considered bin
as 2), another ad hoc contention resolution phase were to take
place iteratively among the colliding nodes, until resolution of
all collisions.

VI. CONCLUSIONS

With RACH overload becoming an increasingly serious
issue in massive access LTE scenarios, it is necessary to de-
velop techniques to better manage the contention of resources
by multiple users. In this work, we have investigated the
use of machine learning techniques to infer the number of
users that pick a selected preamble and estimate the collision
multiplicity. We also showed that ML approaches, and in
particular neural networks, can improve the performance of
state-of-the-art threshold-based schemes.

The results described in this paper may serve as a first
step to improve the current RACH procedure. They are also
applicable to novel 3GPP standards like LTE-M, NB-IoT, and
5G [17], as their RACH procedures are based on the same
principles. In particular, the possibility to immediately iden-
tify the collision multiplicity allows more efficient collision
management than the current approach, where the RACH
procedure is repeated until all UEs uniquely pick a preamble.
This would have a positive impact on the latency, the device
power consumption, and the supported system load. Moreover,
collision multiplicity detection may also allow to promptly
identify a switch in the data reporting regime, e.g., in case of
an alarm that triggers synchronous transmissions from multiple
devices, and act accordingly.

In the future, we plan to evaluate additional ML techniques,
assess the robustness of the proposed ML classifiers to difficult
signals, test their behavior using further time-varying channel
models and implement a link model based on the performance
of the scheme proposed in this paper as part of a system-level
simulator, in order to quantify the impact of the additional
information on multiplicity on collision resolution and RACH
management under overload scenarios.

Furthermore, the insights gained using ML techniques may
be helpful to develop an analytical scheme to infer the

preamble collision multiplicity, possibly based on the CAZAC
properties of the root sequences.
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