Abstract
For the precision calculations in perturbative Quantum Chromodynamics (QCD) gigantic expressions (several GB in size) in terms of highly complicated divergent multi-loop Feynman integrals have to be calculated analytically to compact expressions in terms of special functions and constants. In this article we derive new symbolic tools to gain large-scale computer understanding in QCD. Here we exploit the fact that hypergeometric structures in single and multiscale Feynman integrals emerge in a wide class of topologies. Using integration-by-parts relations, associated master or scalar integrals have to be calculated. For this purpose it appears useful to devise an automated method which recognizes the respective (partial) differential equations related to the corresponding higher transcendental functions. We solve these equations through associated recursions of the expansion coefficient of the multivalued formal Taylor series. The expansion coefficients can be determined using either the package Sigma in the case of linear difference equations or by applying heuristic methods in the case of partial linear difference equations. In the present context a new type of sums occurs, the Hurwitz harmonic sums, and generalized versions of them. The code HypSeries transforming classes of differential equations into analytic series expansions is described. Also partial difference equations having rational solutions and rational function solutions of Pochhammer symbols are considered, for which the code solvePartialLDE is designed. Generalized hypergeometric functions, Appell-, Kampé de Fériet-, Horn-, Lauricella-Saran-, Srivasta-, and Exton–type functions are considered. We illustrate the algorithms by examples.
Article PDF
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Avoid common mistakes on your manuscript.
Data Availability
The authors declare that all data supporting the findings of this study are available within the article and its supplementary information files; see also Appendix F.
Notes
Note various typographical errors in the literature.
References
Hamberg, R: Second order gluonic contributions to physical quantities, Ph.D. Thesis Leiden University (1991)
Davydychev, AI, Kalmykov, MY: Massive Feynman diagrams and inverse binomial sums. Nucl Phys B 699, 3–64 (2004). arXiv:hep-th/0303162
Bierenbaum, I., Blümlein, J., Klein, S: Two-loop massive operator matrix elements and unpolarized heavy flavor production at asymptotic values Q2 ≫ m2. Nucl. Phys. B. 780, 40–75 (2007). arXiv:hep-ph/0703285
Kalmykov, M., Bytev, V., Kniehl, B.A., Moch, S.O., Ward, B.F.L., Yost, S.A.: Hypergeometric Functions and Feynman Diagrams. arXiv:2012.14492. In: Blümlein, J., Schneider, C. (eds.) Anti-differentiation and the calculation of Feynman amplitudes, (Springer, Heidelberg) (2021)
Klein, F.: Vorlesungen über die hypergeometrische Funktionen, Wintersemester 1893/94, Die Grundlehren Der Mathematischen Wissenschaften, vol 39. Springer, Berlin (1933)
Bailey, W.N.: Generalized hypergeometric series. Cambridge University Press, Cambridge (1935)
Slater, L.J.: Generalized hypergeometric functions. Cambridge University Press, Cambridge (1966)
Appell, P., Kampé de Fériet, J.: Fonctions hypergéométriques et hypersphériques, polynomes D’ Hermite, (Gauthier-Villars Paris (1926)
Appell, P.: Les fonctions hypergéométriques de plusieur variables. Gauthier-Villars, Paris (1925)
Kampé de Fériet, J.: La fonction hypergéométrique. Gauthier-Villars, Paris (1937)
Kampé de Fériet, J.: Les fonctions hypérgeométriques d’Ordre Superieur à Deux Variables. C R Acad Sci Paris 173, 489–491 (1921)
Borngässer, L.: Über hypergeometrischen Funktionen zweier Veränderlichen, Thesis, P. h. D, (TU Darmstadt) (1933)
Horn, J.: Hypergeometrische Funktionen zweier Veränderlichen. Math Ann, vol. 105 (1931), pp. 381–407; 111 638–677 (1933)
Exton, H.: Certain hypergeometric functions for four variables. Bull. Soc. Math. Grè,ce. N.S. 13, 104–113 (1972)
Exton, H.: Multiple hypergeometric functions and applications. Ellis Horwood, Chichester (1976)
Exton, H.: Handbook of hypergeometric integrals. Ellis Horwood, Chichester (1978)
Schlosser, M.J.: Multiple hypergeometric series: Appell series and beyond. In: Schneider, C., Blümlein, J. (eds.) Computer algebra in quantum field theory: integration, summation and special functions, pp. 305–324, (Springer, Wien) [arXiv:1305.1966] (2013)
Anastasiou, C., Glover, E.W.N., Oleari, C.: Scalar one loop integrals using the negative dimension approach. Nucl. Phys. B572, 307–360 (2000). arXiv: [hep-ph/9907494]
Anastasiou, C., Glover, E.W.N., Oleari, C.: Application of the negative dimension approach to massless scalar box integrals. Nucl. Phys. B565, 445–467 (2000). [arXiv:hep-ph/9907523]
Srivastava, H.M., Karlsson, P.W.: Multiple Gaussian hypergeometric series. Ellis Horwood, Chicester (1985)
Lauricella, G.: Sulle funzioni ipergeometriche a più variabili. Rendiconti del Circolo Matematico di Palermo 7(S1), 111–158 (1893)
Saran, S.: Hypergeometric functions of three variables. Ganita. 5, 77–91 (1954)
Saran, S.: Transformations of certain hypergeometric functions of three variables. Acta. Math. 93, 293–312 (1955)
Erdélyi, A.: (Ed.) Higher transcendental functions, vol. 1, the Bateman manuscript Project. McGraw-Hill, New York (1953)
Kotikov, A.V.: Differential equations method. New technique for massive Feynman diagram calculation. Phys. Lett. B254, 158–164 (1991)
Bern, Z., Dixon, L.J., Kosower, D.A.: Dimensionally regulated one loop integrals. Phys. Lett. B302, 299–308 (1993). [Erratum: Phys. Lett. B318, (1993) 649] [arXiv:hep-ph/9212308]
Remiddi, E.: Differential equations for Feynman graph amplitudes. Nuovo. Cim. A110, 1435–1452 (1997). arXiv: [hep-th/9711188]
Gehrmann, T., Remiddi, E.: Differential equations for two loop four point functions. Nucl. Phys. B580, 485–518 (2000). arXiv: [hep-ph/9912329]
Ablinger, J., Behring, A., Blümlein, J., De Freitas, A., von Manteuffel, A., Schneider, C.: Calculating Three Loop Ladder and V-Topologies for Massive Operator Matrix Elements by Computer Algebra. Comput. Phys. Commun. 202, 33–112 (2016). [arXiv:1509.08324]
Kotikov, A.V.: The Property of maximal transcendentality in the N = 4 Supersymmetric Yang-Mills. In: Diakonov, D. (ed.) Subtleties in quantum field theory, pp 150–174, [arXiv:1005.5029] (1991)
Henn, J.M.: Multiloop integrals in dimensional regularization made simple. Phys. Rev. Lett. 110, 251601 (2013). [arXiv:1304.1806]
Ablinger, J., Blümlein, J., Marquard, P., Rana, N., Schneider, C.: Automated Solution of First Order Factorizable Systems of Differential Equations in One Variable. Nucl. Phys. B. 939, 253–291 (2019). [arXiv:1810.12261]
Lagrange, J.: Nouvelles recherches sur la nature et la propagation du son, Miscellanea Taurinensis,t. II, 1760-61; Oeuvres t. I, pp. 263 (1760/61)
Gauß, C.F.: Theoria attractionis corporum sphaeroidicorum ellipticorum homogeneorum methodo novo tractate, Commentationes societas scientiarum Gottingensis recentiores, Vol III Werke Bd. V pp 5–7 (1813)
Green, G.: Essay on the Mathematical Theory of Electricity and Magnetism, Nottingham, [Green Papers, pp. 1–115] (1828)
Ostrogradsky, M.: (presented: November 5, 1828; published: 1831) Première note sur la théorie de la chaleur. Mémoires de l’Académie impériale des sciences de St. Pétersbourg, series 6(1), 129–133 (1831)
Chetyrkin, K.G., Tkachov, F.V.: Integration by Parts: The Algorithm to Calculate Beta Functions in 4 Loops,. Nucl. Phys. B. 192, 159–204 (1981)
Laporta, S.: High precision calculation of multiloop Feynman integrals by difference equations. Int. J. Mod. Phys. A. 15, 5087–5159 (2000). [arXiv:hep-ph/0102033]
Marquard, P., Seidel, D.: The Crusher algorithm, unpublished
Studerus, C.: Reduze – Feynman Integral Reduction in C++. Comput. Phys. Commun. 181, 1293–1300 (2010). [arXiv:0912.2546]
von Manteuffel, A., Studerus, C.: Reduze 2 - Distributed Feynman Integral Reduction, arXiv:1201,4330, (2012)
Bostan, A., Chyzak, F., de Panafieu, É.: Complexity estimates for two uncoupling algorithms. In: Proceedings of ISSAC’13, Boston, [arXiv:1301.5414] (2013)
Zürcher, B.: Abbildungen, Rationale Normalformen von pseudo-linearen Abbildungen, Master’s Thesis, Mathematik, ETH Zürich (1994)
Gerhold, S.: Uncoupling systems of linear Ore operator equations, Master’s thesis, RISC, J. Kepler Universityv Linz (2002)
Janet, M.: Sur les systèmes d’équations aux dérivées partielles. Journal de mathématiques pures et appliquées 8 ser 3, 65–152 (1920)
Schwarz, F.: Janet Bases for Symmetry Groups. In: Buchberger, B., Winkler, F. (eds.) Gröbner Bases and Applications, Lecture Notes Series vol 251, (London Mathematical Society, London), pp. 221–234 (1998)
Boos, E.E., Davydychev, A.I.: A Method of evaluating massive Feynman integrals, Theor. Math. Phys. 89, 1052–1063 (1991)
Davydychev, A.I.: General results for massive N point Feynman diagrams with different masses. J. Math. Phys. 33, 358–369 (1992)
Broadhurst, D.J., Fleischer, J., Tarasov, O.V.: Two loop two point functions with masses: Asymptotic expansions and Taylor series, in any dimension. Z Phys C. 60, 287–302 (1993). [arXiv:hep-ph/9304303]
Berends, F.A., Buza, M., Böhm, M., Scharf, R.: Closed expressions for specific massive multiloop selfenergy integrals. Z. Phys. C. 63, 227–234 (1994)
Bauberger, S., Berends, F.A., Böhm, M., Buza, M.: Analytical and numerical methods for massive two loop selfenergy diagrams. Nucl. Phys. B. 434, 383–407 (1995). [arXiv:hep-ph/9409388]
Fleischer, J., Jegerlehner, F., Tarasov, O.V.: A New hypergeometric representation of one loop scalar integrals in d dimensions. Nucl. Phys. B. 672, 303–328 (2003). [arXiv:hep-ph/0307113]
Watanabe, N., Kaneko, T.: One loop integration with hypergeometric series by using recursion relations. J. Phys. Conf. Ser. 523, 012063 (2014). [arXiv:1309.3118]
Blümlein, J., Phan, K.H., Riemann, T.: Scalar one-loop vertex integrals as meromorphic functions of space-time dimension d. Acta Phys Polon B 48, 2313 (2017). [arXiv:1711.05510]
Phan, K.H., Riemann, T.: Scalar 1-loop Feynman integrals as meromorphic functions in space-time dimension d. Phys. Lett. B. 791, 257–264 (2019). [arXiv:1812.10975]
Bauberger, S., Böhm, M., Weiglein, G., Berends, F.A., Buza, M.: Calculation of two-loop self-energies in the electroweak Standard Model. Nucl. Phys. B. Proc. Suppl. 37(2), 95–114 (1994). [arXiv:hep-ph/9406404]
Ablinger, J., Blümlein, J., Hasselhuhn, A., Klein, S., Schneider, C., Wißbrock, F.: Massive 3-loop ladder diagrams for quarkonic local operator matrix elements. Nucl. Phys. B. 864, 52–84 (2012). [arXiv:1206.2252]
Salvy, B., Zimmermann, P.: GFUN: a Maple package for the manipulation of generating and holonomic functions in one variable. ACM Trans Math Software 20, 163–177 (1994)
Mallinger C., C.: Algorithmic manipulations and transformations of univariate holonomic functions and sequences. Master’s thesis, RISC, J. Kepler University Linz (1996)
Kauers, M., Paule, P.: The concrete tetrahedron, Texts and monographs in symbolic computation (Springer Wien) (2011)
Schneider, C.: Symbolic summation assists combinatorics. Sém Lothar. Combin. 56, 1–36 article B56b (2007)
Schneider, C.: Simplifying multiple sums in difference fields. In: Schneider, C., Blümlein, J. (eds.) Computer algebra in quantum field theory: integration, summation and special functions. Texts and monographs in symbolic computation (Springer, Wien) pp. 325–360 [arXiv:1304.4134] (2013)
Schneider, C.: Algebras, term representations, canonical difference ring theory for symbolic summation arXiv:2102.01471. In: Blümlein, J., Schneider, C. (eds.) Anti-differentiation and the calculation of Feynman amplitudes, (Springer), Heidelberg (2021)
Schneider, C.: A Collection of Denominator Bounds to Solve Parameterized Linear Difference Equations in πΣ-Extensions. An. Univ. Timisoara Ser. Mat-Inform. 42, 163 (2004)
Schneider, C.: Solving parameterized linear difference equations in terms of indefinite nested sums and products. J. Differ Equations Appl. 11, 799–821 (2005)
Schneider, C.: Degree bounds to find polynomial solutions of parameterized linear difference equations in πΣ-Fields. Appl. Algebra. Engrg. Comm. Comput. 16, 1–32 (2005)
Abramov, S.A., Bronstein, M., Petkovšek, M., Schneider, C.: On rational and hypergeometric solutions of linear ordinary difference equations in πΣ∗-field extensions. J. Symbolic. Comput. 107, 23–66 (2021). [arXiv:2005.04944]
Vermaseren, J.A.M.: Harmonic sums, Mellin transforms and integrals. Int. J. Mod. Phys. A. 14, 2037–2076 (1999). [arXiv:hep-ph/9806280]
Blümlein, J., Kurth, S.: Harmonic sums and Mellin transforms up to two loop order. Phys. Rev. D. 60, 014018 (1999). [arXiv:hep-ph/9810241]
Ablinger, J., Blümlein, J., Schneider, C.: Harmonic sums and polylogarithms generated by cyclotomic polynomials. J. Math. Phys. 52, 102301 (2011). [arXiv:1105.6063]
Moch, S., Uwer, P., Weinzierl, S.: Nested sums, expansion of transcendental functions and multiscale multiloop integrals. J. Math. Phys. 43, 3363–3386 (2002). [arXiv:hep-ph/0110083]
Weinzierl, S.: Symbolic expansion of transcendental functions. Comput. Phys. Commun. 145, 357–370 (2002). [arXiv:math-ph/0201011]
Moch, S., Uwer, P.: XSummer: Transcendental functions and symbolic summation in Form. Comput. Phys. Commun. 174, 759–770 (2006). [arXiv:math-ph/0508008]
Huber, T., Maitre, D.: HypExp: A Mathematica package for expanding hypergeometric functions around integer-valued parameters. Comput. Phys. Commun. 175, 122–144 (2006). [arXiv:hep-ph/0507094]
Huang, Z.W., Liu, J.: NumExp: numerical epsilon expansion of hypergeometric functions. Comput. Phys. Commun. 184, 1973–1980 (2013). [arXiv:1209.3971]
Huber, T., Maitre, D.: HypExp 2, expanding hypergeometric functions about Half-integer parameters. Comput. Phys. Commun. 178, 755–776 (2008). [arXiv:0708.2443]
Kalmykov, M.Y., Ward, B.F.L., Yost, S.A.: On the all-order epsilon-expansion of generalized hypergeometric functions with integer values of parameters. JHEP. 11, 009 (2007). [arXiv:0708.0803]
Bytev, V.V., Kalmykov, M.Y., Kniehl, B.A.: HYPERDIRE, HYPERgeometric functions DIfferential REduction: MATHEMATICA-based packages for differential reduction of generalized hypergeometric functions pFp− 1, F1,F2,F3,F4. Comput. Phys. Commun. 184, 2332–2342 (2013). [arXiv:1105.3565]
Bytev, V.V., Kalmykov, M.Y., Moch, S.O.: HYPERgeometric functions DIfferential REduction (HYPERDIRE): MATHEMATICA based packages for differential reduction of generalized hypergeometric functions: FD and FS Horn-type hypergeometric functions of three variables. Comput. Phys. Commun. 185, 3041–3058 (2014). [arXiv:1312.5777]
Greynat, D., Sesma, J.: A new approach to the epsilon expansion of generalized hypergeometric functions. Comput. Phys. Commun. 185, 472–478 (2014). [arXiv:1302.2423]
Greynat, D., Sesma, J., Vulvert, G.: Derivatives of the Pochhammer and reciprocal Pochhammer symbols and their use in epsilon-expansions of Appell and Kampé de Fériet functions. J. Math. Phys. 55, 043501 (2014)
Itzykson, C., Zuber, J.-B.: Quantum field theory. McGraw-Hill, New York (1980)
Whittaker, E.T., Watson, G.N.: A course of modern analysis. Cambridge University Press, Cambridge (1927)
Barnes, E.W.: A transformation of generalized hypergeometric series. Quarterly Journal of Mathematics 41, 136–140 (1910)
Mellin, H.: Abriß einer einheitlichen Theorie der Gamma- und der hypergeometrischen Funktionen. Math. Ann. 68(3), 305–337 (1910)
Czakon, M.: Automatized analytic continuation of Mellin-Barnes integrals. Comput. Phys. Commun. 175, 559–571 (2006). [arXiv:hep-ph/0511200]
Smirnov, A., Smirnov, V.: On the Resolution of Singularities of Multiple Mellin-Barnes Integrals. Eur. Phys. J. C62, 445–449 (2009). [arXiv:0901.0386]
Smirnov, V.A.: Analytical result for dimensionally regularized massless on shell double box. Phys. Lett. B. 460, 397–404 (1999). [arXiv:hep-ph/9905323]
Tausk, J.B.: Nonplanar massless two loop Feynman diagrams with four on-shell legs. Phys. Lett. B. 469, 225–234 (1999). [arXiv:hep-ph/9909506]
Pochhammer, L.: Zur Theorie der Euler’schen Integrale. Math. Ann. 35, 495–526 (1890)
Kratzer, A., Franz, W.: Transzendente Funktionen. Geest Portig, Leipzig (1960)
Blümlein, J., Klein, S., Schneider, C., Stan, F.: A symbolic summation approach to Feynman integral calculus. J. Symb. Comput. 47, 1267–1289 (2012). [arXiv:1011.2656]
Gluza, J., Kajda, K., Riemann, T.: AMBRE: A Mathematica package for the construction of Mellin-Barnes representations for Feynman integrals. Comput. Phys. Commun. 177, 879–893 (2007). arXiv:0704.2423
Gluza, J., Kajda, K., Riemann, T., Yundin, V.: Numerical evaluation of tensor Feynman integrals in Euclidean kinematics. Eur. Phys. J. C. 71, 1516 (2011). [arXiv:1010.1667]
Dubovyk, I., Gluza, J., Somogyi, G.: Mellin-Barnes integrals: a primer on particle physics applications, lecture notes in physics, band 1008, (Springer, Berlin), [arXiv:2211.13733] (2023)
Zhdanov, O.N., Tsikh, A.K.: Investigation of multiple Mellin-Barnes integrals by means of multidimensional residue. Sib. Math. J. 39, 281–298 (1998)
Passare, M, Tsikh, A, Zhdanov, O: A multidimensional Jordan residue lemma with an application to Mellin-Barnes integrals. Aspects of Math E 26, 233–241 (1994)
Paris, R.B., Kaminski, D.: Asymptotics and Mellin-Barnes integrals (Encyclopedia of mathematics and its applications, vol 85). Cambridge University Press, Cambridge (2001)
Passare, M., Tsikh, A.K., Cheshel, A.A.: Multiple Mellin-Barnes integrals as periods of Calabi-Yau manifolds with several moduli. Teor. Mat. Fiz. 109N3, 381–394 (1996). [arXiv:hep-th/9609215]
Friot, S., Greynat, D.: On convergent series representations of Mellin-Barnes integrals. J. Math. Phys. 53, 023508 (2012). [arXiv:1107.0328]
Davydychev, A.I., Grozin, A.G.: Effect of m(c) on b-quark chromomagnetic interaction and on-shell two loop integrals with two masses. Phys. Rev. D. 59, 054023 (1999). [arXiv:hep-ph/9809589]
Bierenbaum, I., Weinzierl, S.: The massless two loop two point function. Eur. Phys. J. C. 32, 67–78 (2003). [arXiv:hep-ph/0308311]
Halliday, I.G., Ricotta, R.M.: Negative dimensional integrals, 1. Feynman graphs. Phys. Lett. B. 193, 241–246 (1987)
Dunne, G.V., Halliday, I.G.: Negative dimensional integration. 2. Path integrals and fermionic equivalence. Phys. Lett. B. 193, 247–252 (1987)
Dunne, G.V., Halliday, I.G.: Negative dimesnional oscillators. Nucl. Phys. B. 308, 589–618 (1988)
Ricotta, R.M.: Negative dimensions in field theory. In: Falomir, H., Ferreira, P.L., Gamboa Saravi, R.E., Schaposnik, F.A. (eds.) J. J. Giambiagi Festschrift, World Scientific, Singapore 350-366 (1990)
Suzuki, A.T., Schmidt, A.G.M.: Two loop selfenergy diagrams worked out with NDIM. Eur. Phys. J. C. 5, 175–179 (1998). [arXiv:hep-th/9709144]
Suzuki, A.T., Schmidt, A.G.M.: Negative dimensional integration for massive four point functions. 1. The Standard solutions, [arXiv:hep-th/9707187]
Suzuki, A.T., Schmidt, A.G.M.: Negative dimensional integration for massive four - point functions. 2. New solutions, [arXiv:hep-th/9709167]
Suzuki, A.T., Schmidt, A.G.M.: An easy way to solve two loop vertex integrals. Phys. Rev. D. 58, 047701 (1998). [arXiv:hep-th/9712108]
Suzuki, A.T., Schmidt, A.G.M.: Solutions for a massless off-shell two loop three point vertex, [arXiv:hep-th/9712104]
Suzuki, A.T., Schmidt, A.G.M.: Negative dimensional integration revisited. J. Phys. A. 31, 8023–8039 (1998)
Suzuki, A.T., Schmidt, A.G.M., Bentin, R.: Probing negative dimensional integration: Two loop covariant vertex and one loop light cone integrals. Nucl. Phys. B. 537, 549–560 (1999). [arXiv:hep-th/9807158]
Suzuki, A.T., Schmidt, A.G.M.: . Can. J. Phys. 78, 769–777 (2000). [arXiv:hep-th/9904195]
Suzuki, A.T., Schmidt, A.G.M.: Feynman integrals with tensorial structure in the negative dimensional integration scheme. Eur. Phys. J. C. 10, 357–362 (1999). [arXiv:hep-th/9903076]
Suzuki, A.T., Santos, E.S., Schmidt, A.G.M.: One loop N point equivalence among negative dimensional, Mellin-Barnes and Feynman parametrization approaches to Feynman integrals. J. Phys. A. 36, 11859–11872 (2003). [arXiv:hep-ph/0309080]
Gonzalez, I., Moll, V.H.: Definite integrals by the method of brackets. Part 1. Adv. Appl. Math. 45, 50–73 (2010). [arXiv:0812.3356]
Gonzalez, I., Moll, V.H., Straub, A.: The method of brackets. Part 2. Examples and applications, [arXiv:1004.2062]
Gonzalez, I., Moll, V.H.: Definite integrals by the method of brackets. Part 1. Adv. Appl. Math. 45, 50–73 (2010)
Gonzalez, I., Kohl, K., Jiu, L., Moll, V.H.: An extension of the method of brackets. Part 1, arXiv:1707.08942
Gonzalez, I., Jiu, L., Moll, V.H.: An extension of the method of brackets. Part 2. Open. Math. 18, 983–995 (2020)
Ananthanarayan, B., Banik, S., Friot, S., Ghosh, S.: Multiple series representations of N-fold Mellin-Barnes integrals. Phys. Rev. Lett. 127 (15), 151601 (2021). arXiv:{2012.15108}
Ananthanarayan, B., Banik, S., Friot, S., Pathak, T.: On the method of brackets [arXiv:2112.09679]
Gonzalez, I., Kondrashuk, I., Moll, V.H., Recabarren, L.M.: Mellin-Barnes integrals and the method of brackets. Eur. Phys. J. C. 82(1), 28 (2022). [arXiv:2108.09421]
Ablinger, J., Blümlein, J., Klein, S., Schneider, C.: Numerical evaluation of tensor Feynman integrals in Euclidean kinematics. Nucl. Phys. Proc. Suppl. 205-206, 110–115 (2010). [arXiv:1006.4797]
Blümlein, J., Hasselhuhn, A., Schneider, C.: Evaluation of multi-sums for large scale problems, PoS (RADCOR2011) 032 [arXiv:1202.4303]
Schneider, C.: Modern summation methods for loop integrals in quantum field theory: the packages Sigma, EvaluateMultiSums and SumProduction. J. Phys. Conf. Ser. 523, 012037 (2014). [arXiv:1310.0160]
Krattenthaler, C., Schneider, C.: Evaluation of binomial double sums involving absolute values. In: Pillwein, V., Schneider, C. (eds.) Algorithmic Combinatorics: Enumerative Combinatorics, Special Functions and Computer Algebra, (Springer, Wien) pp. 249–296 (2020)
Karr, M.: Summation in finite terms. J. ACM. 28, 305–350 (1981)
Schneider, C.: Symbolic summation in difference fields, Ph.D. Thesis, RISC, Johannes Kepler University, Linz technical report pp. 01-17 (2001)
Schneider, C.: Simplifying sums in πΣ-extensions. J. Algebra. Appl. 6, 415–441 (2007)
Schneider, C.: A symbolic summation approach to find optimal nested sum representations. In: Carey, A., Ellwood, D., Paycha, S., Rosenberg, S. (eds.) Motives, quantum field theory, and pseudodifferential operators. Clay mathematics proceedings Vol. 12 (Amer Math Soc) pp. 285–308 [arXiv:0904.2323] (2010)
Schneider, C.: Parameterized telescoping proves algebraic independence of sums, [arXiv:0808.2596]. Ann. Comb. 14, 533–552 (2010)
Schneider, C.: Fast algorithms for refined parameterized telescoping in difference fields. In: Gutierrez, J., Schicho, J., Weimann, M. (eds.) Computer Algebra and Polynomials, Applications of Algebra and Number Theory, Lecture Notes in Computer Science (LNCS) 8942 pp. 157–191 [arXiv:13077887] (2015)
Schneider, C.: A Refined Difference Field Theory for Symbolic Summation. J. Symbolic. Comput. 43, 611–644 (2008). [arXiv:0808.2543v1]
Schneider, C.: A Difference Ring Theory for Symbolic Summation. J. Symb. Comput. 72, 82–127 (2016). [arXiv:1408.2776]
Schneider, C.: Summation Theory II: Characterizations of RπΣ∗-extensions and algorithmic aspects. J. Symb. Comput. 80, 616–664 (2017). [arXiv:1603.04285]
Kauers, M., Schneider, C.: Partial denominator bounds for partial linear difference equations. In: Proc. ISSAC’10 pp. 211–218 (2010)
Kauers, M., Schneider, C.: A refined denominator bounding algorithm for multivariate linear difference equations. In: Proc. ISSAC’11 pp. 201–208 (2011)
Gauß, CF: Disquisitiones generales circa seriem infinitam 1 + αβ/1γ, pars prior. Commentationes societatis regiae scientarum Gottingensis recentiores 2 (1813) reprinted in Werke 3, 123–162 (1876)
Paule, P.: Contiguous relations and creative telescoping. In: Blümlein, J., Schneider, C. (eds.) Anti-differentiation and the Calculation of Feynman Amplitudes, (Springer, Heidelberg (2021)
Abramov, S.A., Petkovšek, M.: On the structure of multivariate hypergeometric terms. Adv. in Appl. Math. 29, 386–411 (2002)
Ore, O.: Sur les fonctions hypergéométriques de plusieurs variables. Comptes. Rendus. Acad. Sci. Paris. 189, 1238–1240 (1929)
Ore, O.: Sur la forme des fonctions hypergéométriques de plusieurs variables. J. Math. Pures. Appl. 9(9), 311–326 (1930)
Sato, M., Shintani, T., Muro, M.: Theory of prehomogeneous vector spaces (algebraic part). Nagoya. Math. J. 120, 1–34 (1990)
Chen, S., Feng, R., Fu, G., Li, Z.: On the structure of compatible rational functions. In: Proc. ISSAC’11 pp. 91–98 (2011)
Matiyasevich, Y.V.: Hilbert’s Tenth Problem. MIT Press, Cambridge (1993)
Viète, F.: Opera mathematica (Reprinted: Bonaventurae & Abrahami Elzeviriorum, Leiden, 1646) (1579)
Jean-Baptiste le Rond d’Alembert: Opuscules Mathématiques, tome V (Chez Briasson, Paris) pp 171–182 (1768)
Hurwitz, A.: . Z. Math. und Physik. 27, 86–101 (1882)
Ablinger, J., Blümlein, J., Schneider, C.: Analytic and algorithmic aspects of generalized harmonic sums and polylogarithms. J. Math. Phys. 54, 082301 (2013). [arXiv:1302.0378]
Ablinger, J., Blümlein, J., Raab, C.G., Schneider, C.: Iterated binomial sums and their associated iterated integrals. J. Math. Phys. 55, 112301 (2014). [arXiv:1407.1822]
Ablinger, J., Blümlein, J., Schneider, C.: Iterated integrals over letters induced by quadratic forms. Phys. Rev. D. 103, 096025 (2021). [arXiv:2103.08330]
Ablinger, J., Blümlein, J., Schneider, C.: Generalized harmonic, cyclotomic, and binomial sums, their polylogarithms and special numbers. J. Phys. Conf. Ser. 523, 012060 (2014). [arXiv:1310.5645]
Ablinger, J.: The package HarmonicSums: computer algebra and analytic aspects of nested sums, PoS vol 019 [arXiv:1407.6180] (LL2014)
Ablinger, J.: A computer algebra toolbox for harmonic sums related to particle physics, Diploma Thesis, JKU Linz, arXiv:1011.1176 (2009)
Ablinger, J.: Computer algebra algorithms for special functions in particle Physics, Ph. D. Thesis, JKU Linz. arXiv:1305.0687 (2012)
Ablinger, J.: Inverse Mellin transform of holonomic sequences, PoS (LL2016) 067; Discovering and proving infinite binomial sums identities, Experimental Mathematics 26 [arXiv:1507.01703] (2017)
Ablinger, J.: Computing the inverse Mellin transform of holonomic sequences using Kovacic’s algorithm, PoS(RADCOR2017)001 [arXiv:1801.01039] (RADCOR2017)
Ablinger, J.: An improved method to compute the inverse Mellin transform of holonomic sequences, PoS (LL2018) 063; J Blümlein, Structural Relations of Harmonic Sums and Mellin Transforms up to Weight w = 5, vol. 180. [arXiv:0901.3106] (2009)
Ablinger, J.: Discovering and proving infinite binomial sums identities, Experimental Mathematics 26 [arXiv:1507.01703] (2017)
Ablinger, J.: Discovering and proving infinite Pochhammer sum identities, arXiv:1902.11001 (2019)
Remiddi, E., Vermaseren, J.A.M.: Harmonic polylogarithms. Int. J. Mod. Phys. A. 15, 725–754 (2000). [arXiv:hep-ph/9905237]
Abramov, S.A.: On the summation of rational functions. Zh. vychisl. mat. Fiz. 11(4), 1071–1075 (1971)
Abramov, S.A.: Rational solutions of linear differential and difference equations with polynomial coefficients. USSR. Comput. Math. Math. Phys. bf. 29 (6), 7–12 (1989)
Abramov, S.A., Petkovšek, M.: On polynomial solutions of linear partial differential and (q-)difference equations. In: Proc., CASC, pp. 1–11 (2012)
Blümlein, J.: Algebraic relations between harmonic sums and associated quantities. Comput. Phys. Commun. 159, 19–54 (2004). [arXiv:hep-ph/0311046]
Ablinger, J., Schneider, C.: Algebraic independence of sequences generated by (cyclotomic) harmonic sums. Ann. Comb. 22, 213–244 (2018). [arXiv:1510.03692]
Schläfli, L.: Ueber die allgemeine Möglichkeit der conformen Abbildung einer von Geraden begrenzten ebenen Figur in eine Halbebene. J Reine Angew Math 78, 63–80 (1874)
Erdé, lyi, A.: Integraldarstellungen für Produkte Whittakerscher Funktionen. Nieuw. Arch. Wisk. 20, 1–34 (1939)
Saran, S.: The solutions of certain hypergeometric equations. Proc. Nat Acad. Sci. India Sect. A. 21, 404–408 (1955)
Pandey, R.C.: On certain hypergeometric transformations. J. Math. Mech. 12, 113–118 (1963)
Srivastava, H.M.: Hypergeometric functions of three variables. Ganita. 15, 97–108 (1964)
Srivastava, H.M.: Some integrals representing triple hypergeometric functions. Rend. Circ. Mat. Palermo. 16(2), 99–115 (1967)
Dhawan, G.K.: Hypergeometric functions of three variables. Proc. Nat. Acad. Sci. India Sect. A. 40, 43–48 (1970)
Srivastava, H.M.: A note on certain hypergeometric differential equations. Mat. Vesnik. 9(24), 101–107 (1972)
Exton, H.: On a certain hypergeometric differential system (II). Funkcial. Ekvac. 16, 189–194 (1973)
Samar, M.S.: Some definite integrals. Vijnana Parishad Anusandhan Patrika 16, 7–11 (1973)
Exton, H.: Hypergeometric functions of three variables. J. Indian Acad. Math. 4, 113–119 (1982)
Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H: Singular 4-2-0 — A computer algebra system for polynomial computations. http://www.singular.uni-kl.de(2019)
Kauers, M., Levandovskyy, V.: An Interface between Mathematica and Singular, Technical Report 29, SFB F013. Johannes Kepler University Linz, Austria (2006)
Acknowledgements
We thank J. Ablinger, D. Broadhurst, and P. Marquard for discussions. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska–Curie grant agreement No. 764850, SAGEX and from the Austrian Science Fund (FWF) grant SFB F50 (F5009-N15) and P33530.
Funding
Open access funding provided by Austrian Science Fund (FWF).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interests
The authors declare that they have no conflict of interest.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendices
Appendix A: The multiple series representation
In the following we summarize the different multiple series representations that can be found in the existing literature. We note that starting with their partial linear differential representation our methods described above can also provide the presented sum representations. The expansion coefficients are given as rational functions of Pochhammer symbols, which requires a corresponding re-parameterization of the coefficients of the foregoing differential and difference equations.
One of the simplest functions of these classes is Gauß’ hypergeometric function (2). Its generalizations, the generalized hypergeometric functions, are given by (3). The bi–variate Appell series [8, 9] have the representations (4) and
This set is extended to the Horn-type bi–variate series [12, 13]
As in the case of the generalized hypergeometric functions there are confluent forms of the bi–variate functions.
There are also the further bi–variate series [18, 19]
The generalization of the bi–variate hypergeometric functions is the Kampé de Fériet function [11]
Triple hypergeometric functions of the Lauricella–Saran type [21,22,23] are
There are three more triple hypergeometric functions, the Srivastava functions [20],
These functions are given in the literature in different forms. The following identities hold comparing to Ref. [20]:
A comprehensive list of triple hypergeometric series f1b to f62b has been given in Ref. [20, 169,170,171,172,173,174,175,176,177,178,179].
The quadruple hypergeometric functions by Exton [14] areFootnote 1
Furthermore, there are the multivariate Lauricella functions [21]
The file cases.m gives an even more extensive computer–readable list of these functions.
Appendix B: Mapping conditions to the Pochhammer case
The parameters of the general representations of the (partial) differential equations given in Section 2, leading to product solutions, obey the well–know Pochhammer solutions, if they apply a number of relations. Here we present some typical examples for these relations. The case of two variables:
The case of three variables, [20]:
The case of four variables, [14, 15]:
The complete list of relations is given in computer readable form in the attachment Mconditions.m to this paper.
Appendix C: A brief descriptions of the commands of HypSeries
In the following we describe the commands available in the Mathematica package HypSeries. To execute this package requires also the packages Sigma, EvaluateMultiSums [125,126,127,128], and HarmonicSums as well as other packages, see Appendix F. The user has to provide n (partial) differential equations in the n–variable case. The commands
check whether the corresponding set of one to four variables has product solutions by consulting internal lists of cases. If applicable, the corresponding product solution for the expansion coefficients f(m) to f(m,n,p,q) are provided. In the bi–variate case subclasses are dealt with individually. The command is e.g.
More general solutions are possible by using the command DEProductSolution. One has to provide the required n differential equations in the list
Then
returns the respective expansion coefficient f(m,n,p,q). Here the tools described in Section 3.1 are utilized.
If one has, on the reverse, a Pochhammer ratio A = f(m,n,p,q) the command
returns the system of differential equations obeyed by
Given a differential equation equ in n variables the command findRE
returns a corresponding recurrence for f(m,n,...). The last two commands implement the techniques presented in the beginning of Section 3.
To prepare for the expansion in the dimensional parameter ε, which frequently occurs in the parameters of the differential and difference equations, one usually needs to check for the convergence domain of the corresponding solution, to be able to perform the respective limit \(N \rightarrow \infty \) in the sums involved. Generally it is assumed that {x,y,z,t}∈] − 1, 1[. However, often stronger conditions are needed in the multivariate cases. Internal Tables, cf. [20], allow to check for this in the bi– and tri–variate cases using the commands findCond2 and findCond3. One first has to determine the corresponding function label fcn via classifier2, classifier3, as e.g.
returning fcn. Then
returns the convergence conditions, which are in some cases given in implicit form. The ε–expansion is performed using algorithms implemented in Sigma. The attached notebooks ExHypSeries.nb and ExSolvePartialLDE.nb give a more detailed explanation on this.
In the cases wherein the ε–expansion of the considered higher transcendental functions can be performed to a certain power O(εk) one may want to check, whether the solution satisfies the corresponding differential equations. This is provided by the command CheckDE[sol,eq], where sol denotes the solution up to the corresponding degree in ε and eq the differential equation:
returns then a result, which is of higher order in ε.
Appendix D: A brief descriptions of the commands of solvePartialLDE
The Mathematica package SolvePLDE.m implements the aforementioned algorithms for solving partial linear difference equations. It requires Sigma and HarmonicSums to be loaded. Additionally, the software Singular [180] must be installed, and made available through the interface given in [181]. The installation path of Singular can be set using the command appropriate for the user’s system, e.g.
< <Singular.m
SingularCommand = " (path to) /Singular-4.1.3-x86_64-Linux/bin /Singular".
The functions available are
-
spread[p,q,{n, k,...}(,{eps,...})]: this function calculates the spread of the polynomials p and q, in the variables n,k,…. The symbols in the optional list are treated as an extension to the field over which the polynomials are defined. If the polynomials p and q contain symbolic parameters other than n,k,…, such as for instance the dimensional regulator ε, they must be declared in the second list.
-
dispersion[p,q,{n, k,...}(,{eps,...})]: this function calculates the dispersion (it is the maximum of the spread) of the polynomials p and q in the variables n,k,…. The second optional list has the same function as in the function spread.
-
SolvePLDE[eq==rhs,f[n,k,...],(options)]. This command solves the linear partial difference equation. It has the following available options:
-
UseObject →list of Harmonic sums and/or Pochhammer symbols Allows to define a list of harmonic sums and Pochhammer symbols to be searched in the numerator of the solution.
-
PLDEdegBound →d Allows to choose the total degree d of the Ansatz for the numerator of the solution. Defaults to 0.
-
InsertDenFactor →factors In the case the periodic denominator bound was not complete, the user may force the search to include factors in the denominator.
-
PLDESymbols →list Any symbols appearing other than the shift variables must be declared in list.
-
InitialValues →list A list of initial values in the form \(\{\{var_{1}\rightarrow val_{1}, var_{2}\rightarrow val_{2},\ldots , initial value\},\ldots \}\)
-
SymbolDegree →d When initial conditions are provided, a linear combination of the homogeneous solutions is built, having as coefficients rational functions in the symbols. This option sets the maximum total degree of the numerator and denominator of those rational functions.
-
-
\(\texttt {SolveExpand[eq==rhs,f[n,k,...],PLDEExpandIn}\rightarrow \{\varepsilon ,\ell _{min},\ell _{max}\},\) \( \texttt {InitialValues}\rightarrow \{\ldots \},(options)]\): this command solves the PLDE in a series expansion in a parameter. The options are the same as for SolvePLDE.
-
expandHypergPref[eq==rhs, f[n,k,...],fac]. This command derives a new equation whose solution has the hypergeometric factor fac removed, as described in Section 6.3.1.
Appendix E: A constant
We calculate the constant C given in (115). The two contributions to this infinite sum do both diverge, while
Unfortunately (115) cannot simply be written in terms of a hypergeometric function of main argument 1, since this diverges, which is easily seen by applying Gauß’ formula. However, one can define it as the following limit
Before expanding in ε one should map the main argument as, cf. e.g. [7],
Furthermore, the relation for the digamma function
shall be used. One finally obtains (116). In deriving (116) one obtains first an expression both containing the real and the imaginary part of \(\psi \left (\frac {1}{2}+\frac {i\sqrt {3}}{2}\right )\). Those obey the following integral representations
While the imaginary part of \(\psi \left (\frac {1}{2}+\frac {i\sqrt {3}}{2}\right )\) evaluates to a basic function, a further simplification seems not to be possible.
The new entities emerging here are therefore
In the expansion of multi–variate series of the Pochhammer-type one expects quite new classes of special numbers to emerge, which will become a potential research topic in the future.
Appendix F: Software required
The ancillary files cover the Mathematica notebooks ExHypSeries.nb and ExSolvePartialLDE.nb . Their execution requires the following software packages, which can be downloaded from the software site of the RISC institute:
EvaluateMultiSums.m https://risc.jku.at/sw/evaluatemultisums/ Guess.m, LinearSystemSolver.m https://risc.jku.at/sw/guess/ HarmonicSums.m https://risc.jku.at/sw/harmonicsums/ Sigma.m https://risc.jku.at/sw/sigma/
In addition, the computer algebra system Singular Singular.m http://www.singular.uni-kl.de has to be installed in order to execute the Mathematica package SolvePartialLDE.m.
All data and its supplementary information files generated or analyzed during this study are included in this published article:
cases.m converg.m HypSeries.m Mconditions.m SolvePartialLDE.m ExHypSeries.nb ExSolvePartialLDE.nb .
It is recommended to download all precomputed tables for HarmonicSums. The Mathematica notebooks ExHypSeries.nb and ExsolvePartialLDE.nb contain the information from where the correct version of the used packages can be downloaded.
While the notebook ExsolvePartialLDE.nb needs a few minutes computation time only, ExHypSeries.nb needs 1.32 days.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Blümlein, J., Saragnese, M. & Schneider, C. Hypergeometric structures in Feynman integrals. Ann Math Artif Intell 91, 591–649 (2023). https://doi.org/10.1007/s10472-023-09831-8
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10472-023-09831-8
Keywords
- (Multivariate) hypergeometric series
- Series expansion
- Feynman integral
- Symbolic summation
- Partial linear differential equation
- Partial linear difference equation