Abstract
In this paper, we propose a manipulation system for agricultural robots that handle heavy materials. The structural systems of a mobile platform and a manipulator are selected and designed after proposing new knowledge about agricultural robots. Also, the control systems for these structural systems are designed in the presence of parametric perturbation and uncertainty while avoiding conservative results. The validity of both the structural and control systems is confirmed by conducting watermelon harvesting experiments in an open field. Furthermore, an explicit design procedure is confirmed for both the structural and control systems and three key design tools are clarified.
Article PDF
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Avoid common mistakes on your manuscript.
References
Edan, Y., Rogozin, D., Flash, T., & Miles, G. E. (2000). Robotic melon harvesting. IEEE Transactions on Robotics and Automation, 16(6), 831–835.
Fang, H., Lenain, R., Thuilot, B., & Martinet, P. (2005). Robust adaptive control of automatic guidance of farm vehicles in the presence of sliding. Proceedings IEEE International Conference on Robotics and Automation, 3113–3118.
Grisso, R. D., Kocher, M. F., Adamchuk, V. I., Jasa, P. J., & Schroeder, M. A. (2004). Field efficiency determination using traffic pattern indices. Applied Engineering in Agriculture, 20(5), 563–572.
Grand, d’E., Rabatel, A. G., Pellenc, R., Journeau, A., & Aldon, M. J. (1987). Magali: A self-propelled robot to pick apples. American Society of Agricultural Engineering Paper, 87–1037.
Henten, V., Hemming, J., Tuijl, B., Kornet, J., Meuleman, J., Montsema, J., & Os, E. (2003). An autonomous robot for harvesting cucumbers in greenhouses. Autonomous Robots, 13(3), 241–258.
Hwang, H., & Kim, S. C. (2003). Development of multi-functional tele-operative modular robotic system for greenhouse watermelon. Proceedings IEEE International Conference of Advanced Intelligent Mechatronics, 1344–1349.
Iida, M., Namikawa, K., Furube, K., Umeda, M., & Tokuda, M. (1995). Development of watermelon harvesting robot (II) Watermelon harvesting gripper. Proceedings Symposium on Automation and Robotics in Bioproduction and Processing, 2, 17–24.
Ikuta, K., & Notaka, M. (1999). General evaluation method of safety for human-care Robots. Proceedings IEEE International Conference on Robotics and Automation, 2065–2072.
Kawamura, N., Namikawa, K., Fujiura, T., & Ura, M. (1984). Study on agricultural robot (part 1). Journal of the Japanese Society of Agricultural Machinery, 46(3), 353–358.
Kawanishi, M., & Sugie, T. (1995). Analysis/Synthesis based on exact expression of physical parameter variations. Proceedings of European Control Conference, 1, 159–164.
Kondo, N., & Ting, T. C. (1998). Robotics for bioproduction systems. American Society of Agricultural Engineers Publication.
Lenain, R., Thuilot, B., Cariou, C., & Martinet, P. (2006). High accuracy path tracking for vehicles in presence of sliding: application to farm vehicle automatic guidance for agricultural tasks. Autonomous Robots, 21(1), 79–97.
Mario, M., & Reina, F. G. (2007). Agricultural robot for radicchio harvesting. Journal of Field Robotics, 23, 363–377.
Packard, A., & Doyle, J. (1993). The complex structured singular value. Automatica, 29(1), 71–109.
Sakai, S., Iida, M., & Umeda, M. (2002). Heavy material handling robot for agriculture. Proceedings IEEE International Conference on Robotics and Automation, 1062–1068.
Sakai, S., Osuka, K., Iida, M., & Umeda, M. (2003). Control of a heavy material handling agricultural manipulator using robust gain-scheduling and μ-synthesis. Proceedings IEEE International Conference on Robotics and Automation, 1967–1970.
Sakai, S., Osuka, K., & Umeda, M. (2004). Global performance of agricultural robots. Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems, 461–466.
Sakai, S., Osuka, K., Maekawa, T., & Umeda, M. (2005). Active vision of a heavy material handling agricultural robots using robust control. Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems, 1707–1713.
Sakai, S., Osuka, K., Maekawa, T., & Umeda, M. (2007). Robust control systems of a heavy material handling agricultural robots. IEEE Transactions on Control Systems Technology, 16(6), 1038–1048.
Shamma, S. (1994). Robust stability with time-varying the structured uncertainty. IEEE Transaction on Automatic Control, 39(4), 714–724.
Tokunaga, Y., Hakukawa, T., & Inoue, T. (1999). Algorithm and design of an intelligent digital integrated circuit for a watermelon harvesting robot. Journal of Robotics and Mechatronics, 11(3), 173–182.
Umeda, M., Iida, M., & Kubota, S. (1997). Development of watermelon harvesting robot: Stork. Proceedings IFAC/CIGR Workshop on Robotics and Automated Machinery for Bio-Products, 137–142.
Yang, M., & Lee, T. W. (1984). Heuristic combination optimization in the design of manipulator Workspace. IEEE Transaction on Systems, Man and Cybernetics, 14(4), 571–580.
Yoshikawa, T. (1985). Dynamic manipulability of robotic mechanism. Journal of Robotic Systems, 2(1), 113–124.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Sakai, S., Iida, M., Osuka, K. et al. Design and control of a heavy material handling manipulator for agricultural robots. Auton Robot 25, 189–204 (2008). https://doi.org/10.1007/s10514-008-9090-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10514-008-9090-y