- Poster presentation
- Open access
- Published:
Ensemble docking revisited
Journal of Cheminformatics volume 2, Article number: P25 (2010)
In recent years, the importance of considering induced fit effects in molecular docking calculations has been widely recognised in the molecular modelling community. While small-scale protein side-chain movements are now accounted for in many state-of-the-art docking strategies, the explicit modelling of large-scale protein motions such as loop movements in kinase domains is still a challenging task. For this reason ensemble-based methods have been introduced taking into account several discrete protein conformations in the conformational sampling step. Our protein-ligand docking approach GOLD [1, 2] has been extended to search such conformational ensembles time-efficiently. The performance of the approach has been assessed on several protein targets using different scoring functions. A detailed analysis of pose prediction and virtual screening results in dependence of the number of protein structures considered in the conformational ensemble will be presented and limitations of the approach will be highlighted.
References
Jones G, Willett P, Glen RC: Molecular Recognition of Receptor Sites Using a Genetic Algorithm with a Description of Desolvation. J Mol Biol. 1995, 245: 43-53. 10.1016/S0022-2836(95)80037-9.
Jones G, Willett P, Glen RC, Leach AR, Taylor R: Development and Validation of a Genetic Algorithm for Flexible Docking. J Mol Biol. 1997, 267: 727-748. 10.1006/jmbi.1996.0897.
Author information
Authors and Affiliations
Rights and permissions
Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License ( https://creativecommons.org/licenses/by-nc/2.0 ), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Korb, O., Bowden, S., Olsson, T. et al. Ensemble docking revisited. J Cheminform 2 (Suppl 1), P25 (2010). https://doi.org/10.1186/1758-2946-2-S1-P25
Published:
DOI: https://doi.org/10.1186/1758-2946-2-S1-P25