Class prediction of the prevalent transmission mode of COVID-19 within a geographic area Online publication date: Tue, 07-Mar-2023
by Donald Douglas Atsa'am; Ruth Wario
International Journal of Medical Engineering and Informatics (IJMEI), Vol. 15, No. 2, 2023
Abstract: This research developed a multinomial classification model that predicts the prevalent mode of transmission of the coronavirus from person to person within a geographic area, using data from the World Health Organization (WHO). The WHO defines four transmission modes of the coronavirus disease 2019 (COVID-19); namely, community transmission, pending (unknown), sporadic cases, and clusters of cases. The logistic regression was deployed on the COVID-19 dataset to construct a multinomial model that can predict the prevalent transmission mode of coronavirus within a geographic area. The k-fold cross validation was employed to test predictive accuracy of the model, which yielded 73% accuracy. This model can be adopted by local authorities such as regional, state, local government, and cities, to predict the prevalent transmission mode of the virus within their territories. The outcome of the prediction will determine the appropriate strategies to put in place or re-enforced to curtail further transmission.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Medical Engineering and Informatics (IJMEI):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email [email protected]