Amplifying Tests for Cross-Platform Apps
through Test Patterns

Thiago Botti de Assis, André Augusto Menegassi, and Andre Takeshi Endo
Department of Computing
Federal University of Technology — Parana (UTFPR)
Cornélio Procépio, Brazil

thiagobotti@gmail.com,

Abstract—Cross-platform app development has achieved
meaningful results in practice with frameworks like React Native,
Xamarin, and Apache Cordova. Unlike native apps, such frame-
works support the development of a mobile app that can run in
different platforms. Nevertheless, the literature lacks techniques
to test cross-platform apps since most of the existing works
focus on native Android apps. A promising strategy for native
apps is to amplify test suites so that the specific characteristics
of mobile apps can be tested. This paper aims to investigate
the test amplification of cross-platform apps. To do so, we
apply four test patterns that verify well-known characteristics of
mobile computing and amplify existing test suites. The proposed
approach has been implemented in a tool capable of generating
Appium test scripts and was evaluated with nine cross-platform
apps. The amplified test suites exercise new scenarios, uncovering
23 unique bugs in eight out of nine apps.

I. INTRODUCTION

Smartphones, tablets, e-readers, and wearables have domi-
nated the consumption of digital information and data traffic;
the number of these devices has grown exponentially over the
years [1]. The software running in such devices, so-called
mobile apps (or just apps for short), radically changed the
lifestyle of billions of people around the world, being used
for several hours every day and helping users to perform
a wide variety of activities [2]. To meet the ample range
of users, millions of apps have been developed and are
available for download [3]. Currently, the dominant operating
systems (OSs) for mobile devices are Google’s Android and
Apple’s i0S; they provide their own software development
kits, characterizing the single-platform native development.

In order to reach more end users, the software industry has
shown an upward trend in adopting cross-platform mobile app
development. In such a paradigm, a unique code base is used
to deliver the same app in different platforms (e.g., Android,
10S, Windows) and their versions [4], [5]. This is aided by
several open source and commercial cross-platform develop-
ment frameworks and tools; the most notable examples are
React Native, Xamarin, and Apache Cordova. Developed by
Facebook, React Native leverages the well-known web library
React to generate mobile apps with native user interfaces (UIs)
and coded in Javascript [6]. Acquired by Microsoft in 2016,
Xamarin offers C# or F# as a common programming language
to develop apps for the three main platforms: Android, iOS and

DOI reference number: 10.18293/SEKE2019-076

andremenegassi@hotmail.com,

andreendo@utfpr.edu.br

Windows. According to Microsoft, 75% of the code is shared
among the platforms on average; this figure can be close
to 100% if the UI toolkit Xamarin.Forms is employed [7].
Finally, Apache Cordova fosters the development of hybrid
apps using standard web technologies like HTMLS5, CSS3, and
Javascript [8]. As such, it is popular among web developers
and has supported other mobile frameworks like Ionic and
PhoneGap [9], [10].

Apart from this trend, research efforts in engineering high-
quality mobile apps have focused on native development for
Android [11], [12]. The demand for quality in mobile apps
has grown along with their spread; the users want the apps to
be reliable, robust, and efficient. As a consequence, mobile
software engineers must adopt adequate quality assurance
techniques [2]. Software testing is the primary activity to
reduce risks and minimize the presence of bugs in the software.
In a nutshell, testing involves the process of running a software
system with the purpose of uncovering bugs [13].

As mobile apps possess specific features to be checked,
Test Amplification [14] has been investigated in literature to
go beyond functional test cases. Test amplification can be
defined as the extension of existing test cases to verify other
properties of the software under test. This is a promising
strategy for mobile apps that are susceptible to bugs related
to device rotation, interruptions, loss of resources, unique
UI events/components, and so on. The verification of such
specific features can be described in a well-defined set of
generic actions and expected behavior called fest pattern [15],
[19]. The amplification by test patterns has been explored in
native Android apps and results have shown effective bug
detection [15], [16], [18], [19]. However, little is known on
how test amplification performs in mobile apps developed with
cross-platform frameworks.

This paper introduces an approach for test amplification of
cross-platform apps. In particular, we describe four test pat-
terns that aim to verify well-known characteristics of mobile
computing and amplify test cases. The proposed approach has
been implemented in a tool, called x-PATeSCO, capable of
producing test scripts for cross-platform apps. We evaluated
the approach and its supporting tool with nine real-world
apps, developed with frameworks React Native, Xamarin, and
Cordova.

This paper is organized as follows: Section II presents the

background and related work. Section III brings the test ampli-
fication approach proposed for cross-platform apps. Section IV
presents the evaluation setup and the results are analyzed in
Section V. Finally, Section VI makes the concluding remarks
and sketches future work.

II. BACKGROUND AND RELATED WORK

Mobile computing brings a diverse set of features that may
cause failures in the software developed for such platform.
Holl and Elberzhager [22] propose a failure classification
based on a literature review and a study with developers and
testers of mobile apps. They list events that might make apps
to fail, namely, temporarily disconnected network, network
change (3G - WiFi), GPS temporarily disconnected, weak
battery, globalization (localization, language, date or time
differences between clients and servers), UI changes due to
orientation, screen changes, OS-specific native functionality,
interruptions via incoming calls or text messages, unexpected
termination of an app process, and permissions. Similarly,
Linares-Vasquez et al. [21] manually searched for bugs in
Android apps related to specific features like GPS failures,
loss of access to network data, slow data reception, and device
rotation. The authors used this bug set to elaborate Android-
specific mutation operators and developed a mutation testing
tool for Android apps.

These well-known features have also been used to amplify
existing test cases in a systematic way. Zaeem et al. [16]
also performed a study with bugs from the most popular
open source app projects, identifying feature interactions that
might cause errors. The authors proposed an approach to
verify automatically the feature interactions and a tool was
developed to exhaustively test them. Morgado and Paiva [15]
introduce a catalog of behavioral principles of the Android
UI elements. Such behavioral principles are described as test
patterns related to UI menu elements (drawer style) and device
rotation. They also propose patterns related to features like
GPS and 3G connection. Adamsen et al. [18] explore the
injection of adverse conditions in existing test suites. The
adverse conditions are related to common usage of apps like
pause-stop-resume, rotation, as well as missing or changed
resources such as loss of GPS accuracy, change of mobile
network, and transition between Internet networks (3G-WiFi-
3G). Their results show that the approach is effective in finding
critical flaws and the additional cost in the test time is low,
compared to the number of bugs found.

While test amplification and test patterns have been investi-
gated [15], [16], [18], the state of the art in mobile app testing
is focused on native Android apps [11], [12]. On the other
hand, cross-platform app development has gained momentum
by winning a meaningful market share, and being supported by
big players of the software industry like Facebook, Microsoft,
and Apache Software Foundation. In this context, one might
wonder if the testing techniques developed for native apps are
seamlessly applicable to cross-platform apps. In this paper, we
inquire into test amplification for cross-platform apps; to our
best knowledge, this is the first study on the topic.

III. TEST AMPLIFICATION APPROACH

This section describes the approach we define to test
amplification of cross-platform apps; Figure 1 shows an
overview of the approach. There is a component called
Test Amplification Generator that receives as in-
put a set of system-level test cases TC1,7Cs,...,TC, and
a one or more test patterns. Then, it produces as output a
combination of test cases and test patterns, the amplified test
script. Such scripts can then be executed in the app under test
(AUT).

:H
16, 1¢C,..TC,
Test Amplification
Generator
Test Patt
est Patterns

r

AUT Amplified test scripts

Fig. 1. Overview of the proposed approach.

The following sections explain how we implemented the
approach. Section III-A details how a test case and a test
pattern are combined to amplify the tests. In particular,
we leverage four test patterns that verify well-known char-
acteristics of mobile apps. Section III-B focuses on the
Test Amplification Generator, describing how we
made the approach applicable to cross-platform apps.

A. Test Patterns

We herein describe the four test patterns adopted in this
work. All test patterns assume that a test case is provided
as a sequence of system-level events, mostly Ul actions like
clicking a button, selecting an item, or filling a text field.
The test pattern contains not only a pre-defined sequence of
specific events that should be executed, but also a mechanism
to identify a potential bug (i.e., a test oracle). To simplify
the presented algorithms, we do not treat exceptions that can
be thrown when a given event is executed in the app (e.g., a
crash). Nevertheless, our tool deals with it by capturing the
exception and recording the bug information in a log (further
details in Section III-B). The literature on Android app testing
reports different strategies to amplify test suites [4], [16],
[18], [21]; this study adopts four test patterns, well-known in
literature and that we found relevant to cross-platform apps.

1) Lost Connection (LC): This pattern aims to verify how
the AUT behaves when the Internet connection is lost [15],
[21], [22]. As mobile devices are susceptible to unstable
networks, the AUT is supposed to be aware and react when a
connection is lost. By reacting, we assume that some feedback
is provided to the end user, like an error message or a
warning [17], [20].

Algorithm 1 describes how a test case is amplified to
verify a lost connection. It receives as input a test case as
an array of events, and a map of states recorded during the
original execution of the test case. First, the procedure turns
the connection off and starts the app (Lines 4-5). In each
iteration, it checks if the current state is different from the
original state (Line 8); i.e., the connection lost had an impact
on the UL If the current state has no sign of feedback for the
user (like an error message) (Line 9), we record the scenario
as a bug (Line 10). To resume the verification in the following
events of the test case, we turn the connection on (Line 12),
execute the events normally until the current state (Line 13).
The connection is then turned off (Line 14) and the iteration
continues to the next event (Line 16).

Algorithm 1 Lost Connection Test Pattern
1: procedure LOSTCONNECTION(all Events[], origStates|])

2: input all Events|] - Test case as an array of events
3: input origStates|| - Map of states collected from the original execution

4 connection(OFF);

5: startApp();

6: for each event € all Events do

7: currentState = getActualState();

8 if currentState != origStates[event] then //changed GUI

9: if ! existLostConnectionMsg(currentState) then //no feedback
10: RecordBugInfo();

11: end if

12: connection(ON);

13: bringAppTo(currentState);

14: connection(OFF);

15: end if

16: executeEvent(event);

17: end for

18: end procedure

2) Back Event (BE): This pattern aims to verify how the
AUT behaves when the Back event is triggered during a test
case [16], [22]. We assume that when running, the Back event
must go to a previous screen of the application [17], [20].

Algorithm 2 describes how the test case is amplified to
verify the execution of the Back event. It receives as input
a test case as an array of events. Initially, the procedure starts
the application (Line 3). In each iteration, we execute the
corresponding event, then it is checked if the state after the
event execution is equal to the state before execution (Line 8).
The procedure executes the Back event, and validates whether
the application has returned to the previous state (Lines 9-11).
If the states are different after running the Back event, we
record this scenario as a bug (Line 12). If the states are equal,
the procedure follows the verification for the next event.

3) Side Drawer Menu (SDM): This pattern aims to verify
how AUT behaves when having a side menu [16], [22]. The
menu opens when the user slides from the screen to the center
or clicks in a menu icon or label [15]. We validate if all the
menu items take the app to a different screen.

Algorithm 3 describes how the test case is amplified to
validate the application menus. It receives as input a test
case as an array of events. Initially, the procedure starts the
application (Line 3). For each iteration, we check whether the
application has a menu (Lines 6-23). If there is a menu in

Algorithm 2 Back Event Test Pattern
1: procedure BACKEVENT(all Events|])

2: input all Events|] - Test case as an array of events

3 startApp();

4: for each event € all Events do

5: beforeState = getActualState();

6: executeEvent(event);

7 afterState = getActualState();

8: if beforeState != afterState then //there is a screen transition
9: ExecuteBack();

10: afterBackState = getActualState();

11: if beforeState != afterBackState then //bug detected
12: RecordBuglInfo();

13: end if

14: bringAppTo(afterState);

15: end if

16: end for

17: end procedure

the AUT, the procedure checks the menu items empirically
by clicking on them and checking if the application changes
the screen after entering a menu item (Lines 28-33). If the
application does not change screen, we record this scenario
as a bug (Line 31). If no menu item is found, the procedure
proceeds to the next iteration (Line 35).

Algorithm 3 Side Drawer Menu Test Pattern
1: procedure SIDEDRAWERMENU(all Events|])

2: input all Events]] - Test case as an array of events
3 startApp();

4 for each event € allEvents do

5: beforeMenuState = getActualState();

6: haveMenu = false;

7.

8: /[Try do detect menu by horizontal swipe

9: initialState = beforeMenuState;

10: Swipe();

11: finalState = getActualState();

12: if initialState != finalState then

13: haveMenu = true;

14: else

15: /[Try do detect menu by menu button
16: initialState = getActualState();

17: LocateAndClickMenuButton();

18: finalState = getActualState();

19:

20: if initialState != finalState then

21: haveMenu = true;

22: end if

23: end if

24:

25: if haveMenu then

26: menuState = getActualState();

27: for each item € getMenultems() do
28: tap(item);

29: afterTapltemState = getActualState();
30: if afterTapltemState € {beforeMenuState, menuState} then
31: RecordBuglnfo();

32: end if

33: bringAppTo(menuState);

34: end for

35: bringAppTo(beforeMenuState);

36: end if

37: executeEvent(event);

38: end for

39: end procedure

4) Don’t Change State (DCS): This pattern aims to verify
how the AUT behaves when external events triggered by the
user occur during the test case [15], [16], [18]. As mobile
devices are susceptible to these actions, the AUT is supposed

to be aware and prevent failures because of external events.
We assume that after the execution of external events, the app
should return to the state it was before [17], [20].

Algorithm 4 describes how a test case is amplified to verify
the external events performed by users. It receives as input a
test case as an array of events, and the type of the external
action to be executed. The types currently supported are
Rotate, Pause-Stop-Resume, Zoom, Swipe, and Scroll. First,
the procedure starts the application (Line 4). For each iteration,
it records the state before and after the external event (Lines 7-
9). If the states are different (the AUT did not return to the
same screen) (Line 10), we record the scenario as a bug (Line
11). The procedure then continues to the next event (Line 12).

Algorithm 4 Don’t Change State Test Pattern
1: procedure DONTCHANGESTATE(all Events||, type)

2: input allEvents]] - Test case as an array of events
3: input type € {Rotate, PauseStopResume, Zoom, Scroll, Swipe }

4 startApp();

5: for each event € allEvents do

6: executeEvent(event);

7: beforeState = getActualState();

8: execute(type); /lexecute one of the 5 types
9: afterState = getActualState();

10: if beforeState != afterState then //didn’t come back to the same screen
11: RecordBuglInfo();

12: bringAppTo(beforeState);

13: end if

14: end for

15: end procedure

B. Test Amplification Generator

We developed a tool named X-PATeSCO (cross-Platform
App Test Script reCOrder) to support cross-platform mobile
app testing. The tool is built on top of Appium [23], an open
source framework to automate Ul tests in native, Web and
hybrid apps. Moreover, Appium is cross-platform and makes
it possible to automate tests for iOS and Android platforms,
using a Selenium WebDriver API. x-PATeSCO is able to read
the elements of an app’s Ul and assist the tester in selecting
these elements to design automated test cases.

The Test Amplification Generator component
has been implemented within x-PATeSCO. The four test
patterns aforementioned are embedded into the tool as code
templates, that are integrated with the recorded test cases. Such
integration is realized when the test scripts are generated;
currently, x-PATeSCO produces scripts coded in C#. These
scripts are capable of executing the four test patterns in the
original test case automatically, therefore no manual effort is
required to apply test amplification in cross-platform apps.

IV. EVALUATION SETUP

To evaluate the proposed approach, we set out the following
research questions (RQs):
« RQ;. Can test amplification detect bugs in cross-platform
apps?
¢« RQ-. What is the impact of test amplification on test
execution?

o RQs. Are the results replicable in different settings (e.g.,
OS version)?

To answer RQ;, we record the number of unique bugs
detected as a consequence of the test amplification. As our
approach may show false alarms, the number of tests present-
ing failure (failures) and false positives are also collected. So,
for each failure, we try to reproduce it by manually performing
the test steps. For a successful reproduction, we have a bug,
otherwise a false positive. As for RQ,, we measure the
overhead of the amplified tests in test execution time. Given
that 75,4 is the runtime of the original test cases and Ty, is
the runtime of the amplified tests, the overhead is calculated
by Tomp/Torig- Finally, RQs analyzes the results collected
in RQ; from the perspective of different configurations. In
this study, we only considered different versions of the OS
Android.

Table I lists the nine apps evaluated; for each app, it shows
the project size in number of lines of code (LOC), the cross-
platform app development framework, the number of test cases
(#TCs) and their events (#Ev.). Such cross-platform apps’
size ranges from around 400 LOC to up to 178 KLOC,
and are implemented in different cross-platform development
frameworks (namely, Apache Cordova, React Native, and
Xamarin). Two apps are industrial (namely, MemesPlay and
Bargains) and have been provided by partner IT companies.
The other seven are open source projects obtained from
GitHub. Each app has two or three test cases (with nine to
20 events each), designed by independent participants.

TABLE I
APPS UNDER TEST.
App Size-LOC | Framework | #T'Cs (#Ev.)
Fresh-Food-Finder 13824 Cordova 3 (20)
OrderApp 71565 Cordova 3 (16)
MemesPlay 5484 Cordova 3(12)
Agenda 1038 Cordova 3(18)
TodoListCordova 9304 Cordova 3 (10)
MovieApp 2088 React Native 3 (10)
TodoList 405 React Native 3(13)
Tasky 654 Xamarin 309
Bargains 178266 Xamarin 2 (10)

x-PATeSCO was used to support the experimental evalua-
tion; it connects to Appium which, in turn, connects to mobile
devices to run the test cases and log pieces of information to
answer RQq, RQ;, and RQs. The apps were installed in two
devices, one with Android 6.0 and another with Android 7.0,
and all tests were executed in both devices. Besides the mobile
devices, the test projects were run from a computer with an
Intel Core i5 dual-core (2.5 GHz) processor and 8 GB of RAM
without any further processing or communication load in order
to avoid CPU and memory saturation. An Appium server was
also installed in this machine.

To foster future replication and overcome possible threats
to this study, we make the tool and the experiment ob-
jects available as an open source experimental package in
https://goo.gl/7CF407%

V. ANALYSIS OF RESULTS

a) Bug detection: Table II shows the number of bugs
found, failing test cases (Fail), and false positives (FP); rows
identify the apps and OS version (OS V.), while columns
group the test patterns: Back Event (BE), Lost Connection
(LC), Side Drawer Menu (SDM), and Don’t Change State
(DCS). Column DCS takes into account the results of Ro-
tate, PauseStopResume, Zoom, Scroll, and Swipe. Symbol -’
indicates that the test pattern is not applicable in a given app.
For instance, Agenda does not use Internet connection, so
LC is not applicable. In this part, we focus our analysis on
the OS version that had more bugs revealed (namely, Android
6.0).

As for BE, this pattern revealed seven bugs in seven different
apps. We did not observe false positives since all failures were
caused by the identified bugs. In general, this pattern finds a
faulty scenario in which the app does not return to a previous
screen using the back button. Instead, the app terminates, goes
to the background, or returns to a different screen. Concerning
LC, this pattern revealed five bugs in four out of five apps in
which is applicable. It shows a smaller number of failures
and no false positives. This is likely due to the low number
of events that depend on an Internet connection to properly
execute. For instance, OrderApp does not give a feedback on
a lost message due to a failing Internet connection. MovieApp
presents the same bug, and in other scenario of connection lost
the app crashes.

There is no bug, failure or false positive for SDM. While
four apps have menus, all menu items are accessible and
navigate to different screens correctly. We surmise that menus
are built with well-tested UI components and developers pay
special attention to them due to their relevancy in the app.
As a consequence, menus are more tested and less susceptible
to bugs. The DCS test pattern uncovered 11 bugs in eight
apps. Notice that this pattern showed a high number of
failures and false positives. This occurred due to issues related
to the Appium framework. Actions like Zoom, Scroll and
Swipe caused exceptions during the automated test execution,
but we failed to reproduce these scenarios manually. As
for the bugs, the OrderApp, TodoList, Bargains, and
Memesplay apps restarted after a Pause-Stop-Resume action.
Agenda, Fresh-Food-Finder, MovieApp, TodoList,
and Bargains slowed down when performing the zoom
action.

The amplified tests detected 23 unique bugs in eight out of
the nine cross-platform apps. Among the four test patterns,
only SDM did not reveal a bug. A reasonable number of false
positives has been observed, except for DCS. We believe that
new Appium versions and adjustments in x-PATeSCO can
reduce the presence of false alarms in future. The results give
evidence that supports a positive answer for RQj.

b) Overhead in test execution: Table III shows the over-
head of the amplified tests in test execution time. The overhead
of the test patterns shows some variation among the apps. For

instance, the BE’s overhead ranges from 0.71 to 4.5 times
in comparison with the original test suite. On average, BE
also poses the highest overhead (2.97x), while SDM shows
the lowest average (2.06x). DCS and LC had intermediate
averages, 2.42x and 2.68x, respectively.

TABLE III
OVERHEAD IN THE TEST EXECUTION TIME.

App OS V. | BE LC | SDM | DCS
Fresh-Food-Finder 6.0 450 | 1.70 1.71 2.59
7.0 455 | 1.72 1.70 2.69
OrderApp 6.0 425 | 3.37 - 391
7.0 3.36 | 2.66 - 3.09
Memesplay 6.0 425 | 5.56 3.09 4.47
7.0 240 | 3.58 1.96 2.70
Agenda 6.0 3.44 - 1.82 2.07
7.0 342 - 1.64 2.29
TodoListCordova 6.0 3.71 - - 2.62
7.0 4.17 - - 2.87
MovieApp 6.0 220 | 2.54 | 3.10 2.04
7.0 0.71 | 0.82 1.02 0.65
TodoList 6.0 1.43 - - 2.40
7.0 1.39 - - 1.99
Tasky 6.0 1.97 - - 2.38
7.0 2.00 - - 243
Bargains 6.0 222 | 3.04 - 1.77
7.0 2.50 | 2.31 - 1.99
Max 450 | 5.56 | 3.10 4.47
Min 0.71 | 0.82 1.02 0.65
Avg 297 | 2.68 | 2.06 242

The results show that amplified tests execute from 0.65
to up to 5.56 times the runtime of the original test suite.
Answering RQ2, the impact can be reasonable depending on
the app and test pattern, though the (low) cost of CPU time
might be compensated by the bug detection capabilities of
the proposed approach.

c¢) Different settings: Due to space limitations, we an-
alyze the results using two settings: Android 6.0 and An-
droid 7.0. As we used two devices with different hardware
configurations, variations in the runtime were expected and
natural (see Table III). So, we focus on the results summarized
in Table II. Notice that there is no discrepancy between the
OS versions for test patterns BE, LC, and SDM. So, the 12
bugs detected by them were detected in both devices. From
the 23 bugs found in Android 6.0, 11 were not observed in
Android 7.0. Fewer failures were also noticed in Android 7.0,
yet the number of false positives was slightly higher.

As all false positives were caused by Appium’s issues,
newer versions of Android seem to be more robust for
automated tests. Surprisingly, all bugs found by DCS in
Android 6.0 were not detected in Android 7.0. We believe
that Android policies for background processes (app not in
focus) may differ between the OS versions. This might cause
a faulty behavior in a specific version.

The different results obtained in Android 6.0 and Android
7.0 give initial evidence that supports a negative answer to
RQs. This motivates further investigation on different Android
versions and other target OSs like iOS and Windows.

TABLE II
NUMBER OF BUGS, FAILURES (FAIL), AND FALSE POSITIVES (FP).

BE LC SDM DCS Total

App OSV. | Bug Fail FP | Bug Fail FP | Bug Fail FP | Bug Fail FP | Bug Fail FP
Fresh-Food-Finder 6.0 1 10 0 0 0 0 0 0 0 1 31 15 2 41 15
7.0 1 10 0 0 0 0 0 0 0 0 16 16 1 26 16

OrderApp 6.0 1 15 0 1 6 0 - - - 1 9 0 3 30 0
7.0 1 15 0 1 6 0 - - - 0 9 9 2 30 9

Memesplay 6.0 1 8 0 1 6 0 0 0 0 1 23 21 3 37 21
7.0 1 8 0 1 6 0 0 0 0 0 17 17 2 31 17

Agenda 6.0 1 8 0 - - - 0 0 0 1 40 38 2 48 38
7.0 1 8 0 - - 0 0 0 0 12 12 1 20 12

TodoListCordova 6.0 1 3 0 - - - - - - 1 11 10 2 14 10
7.0 1 3 0 - - - - - - 0 11 11 1 14 11

MovieApp 6.0 1 8 0 2 6 0 0 0 0 3 46 39 6 60 39
7.0 1 8 0 2 6 0 0 0 0 0 46 46 3 60 46

TodoList 6.0 0 0 0 - - - - - - 1 18 13 1 18 13
7.0 0 0 0 - - - - - - 0 15 15 0 15 15

Tasky 6.0 0 0 0 - - - - - - 0 2 2 0 2 2
7.0 0 0 0 - - - - - - 0 2 2 0 2 2

Bargains 6.0 1 3 0 1 5 0 - - - 2 21 5 4 29 5
7.0 1 3 0 1 5 0 - - - 0 20 20 2 28 20
Total 6.0 7 55 0 5 23 0 0 0 0 11 201 136 23 279 | 143
7.0 7 55 0 5 23 0 0 0 0 0 148 | 148 12 226 | 148

VI. CONCLUSION

This paper presented and evaluated an approach to generate
amplified test scripts for cross-platform apps. To do so, we
employed four test patterns that check well-known features of
a mobile application: namely, Lost Connection, Back Event,
Side Drawer Menu, and Don’t Change State. We developed a
supporting tool called x-PATeSCO and nine apps were used
in the experiments. The results gave evidence that test ampli-
fication is capable of uncovering new bugs in cross-platform
apps, though there exists a reasonable overhead in the test
execution time. We also noticed variations between different
versions of Android; this motivates further investigation on
automated tests in multiple configurations of hardware, OSs,
and so on.

ACKNOWLEDGMENT

Andre T. Endo is partially financially supported by CNPq/Brazil
(grant number 420363/2018-1).

REFERENCES

[1] Dzhagaryan, A. and Milenkovi, A. (2016) “Models for Evaluating
Effective Throughputs for File Transfers in Mobile Computing”, In:
ICCCN 2016. doi: 10.1109/ICCCN.2016.7568547.

Amalfitano, D., Riccio, V., Paiva, A. C. R. and Fasolino, A. R. (2017)
“Why does the orientation change mess up my Android application?
From GUI failures to code faults”, STVR journal (September), p. 1-27.
Rumee, S. T. A. and Liu, D. (2013) “DroidTest: Testing Android
Applications for Leakage of Private Information”, In: ISC 2013.
Joorabchi, M. E., Ali, M. and Mesbah, A. (2015) “Detecting inconsis-
tencies in multi-platform mobile apps”, In ISSRE 2015, p. 450—460.
doi: 10.1109/ISSRE.2015.7381838.

El-kassas, W. S., Abdullah, B. A., Yousef, A. H., Member, S. and Wahba,
A. M. (2016) “Enhanced Code Conversion Approach for the Integrated
Cross-Platform Mobile Development (ICPMD)”, 42(11), p. 1036-1053.
Build native mobile apps using JavaScript and React. Available at:
https://facebook.github.io/react-native/ (Accessed: March 2019).
Platform Xamarin. Available at: https://www.xamarin.com/platform (Ac-
cessed: March 2019).

Apache Cordova. Available at: https://cordova.apache.org (Accessed:
March 2019).

[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

Malavolta, I., Ruberto, S., Soru, T. and Terragni, V. (2015) “Hybrid
Mobile Apps in the Google Play Store: An Exploratory Investigation”,
p. 56-59. doi: 10.1109/MobileSoft.2015.15.

Bosnic, S., Papp, I. and Novak, S. (2016) “The development
of hybrid mobile applications with Apache Cordova”. doi:
10.1109/TELFOR.2016.7818919.

P. Kong, L. Li, J. Gao, K. Liu, T. F. Bissyandé and J. Klein, ”Automated
Testing of Android Apps: A Systematic Literature Review,” 2018 in
IEEE Transactions on Reliability. doi: 10.1109/TR.2018.2865733

Zein, S., Salleh, N. and Grundy, J. (2016) “A systematic mapping
study of mobile application testing techniques”, Journal of Systems and
Software. Elsevier Inc., 117, p. 334-356. doi: 10.1016/j.jss.2016.03.065.
Myers, G. J., Thomas, T. M. and Wiley, J. (2004) The Art of Software
Testing.

Danglot, B., Vera Perez, O., Yu, Z., Monperrus, M., and Baudry, B.
(2017) “A Snowballing Literature Study on Test Amplification”. CoRR.
Available at: https://arxiv.org/abs/1705.10692

Morgado, I. C. and Paiva, A. (2015b) “The iMPAcT Tool: Testing
UI Patterns on Mobile Applications”, 30th IEEE/ACM International
Conference on Automated Software Engineering The, p. 876-881. doi:
10.1109/ASE.2015.96.

Zaeem, R. N., Prasad, M. R. and Khurshid, S. (2014) “Automated gen-
eration of oracles for testing user-interaction features of mobile apps”,
In: IEEE 7th International Conference on Software Testing, Verification
and Validation, ICST 2014, p. 183-192. doi: 10.1109/ICST.2014.31.
Android Core App Quality. Available at:
https://developer.android.com/docs/quality-guidelines/core-app-quality
(Accessed: March 2019).

Adamsen, C. Q., Mezzetti, G. and Mgller, A. (2015) “Systematic
Execution of Android Test Suites in Adverse Conditions”, In: The
International Symposium on Software Testing and Analysis (ISSTA).
Morgado, I. C. and Paiva, A. (2015a) “Testing approach for mobile
applications through reverse engineering of UI patterns”, 2015 30th
IEEE/ACM International Conference on Automated Software Engineer-
ing Workshop (ASEW), p. 42-49. doi: 10.1109/ASEW.2015.11.

Apple iO0S Human Interface Guidelines. Available
at: https://developer.apple.com/design/human-interface-
guidelines/ios/overview/themes/ (Accessed: March 2019).
Linares-vasquez, M., Bavota, G., Tufano, M., Moran, K., Penta, M. Di,
Vendome, C., Bernal-cardenas, C. and William, C. (2017) “Enabling
Mutation Testing for Android Apps”. doi: 10.1145/3106237.3106275.
Holl, K. and Elberzhager, F. (2014) “A Mobile-specific Failure
Classification and its Usage to Focus Quality Assurance”. doi:
10.1109/SEAA.2014.19.

Appium. Available at: http://appium.io/ (Accessed: March 2019).

