@inproceedings{iso-etal-2022-comparative,
title = "Comparative Opinion Summarization via Collaborative Decoding",
author = "Iso, Hayate and
Wang, Xiaolan and
Angelidis, Stefanos and
Suhara, Yoshihiko",
editor = "Muresan, Smaranda and
Nakov, Preslav and
Villavicencio, Aline",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2022",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.findings-acl.261",
doi = "10.18653/v1/2022.findings-acl.261",
pages = "3307--3324",
abstract = "Opinion summarization focuses on generating summaries that reflect popular subjective information expressed in multiple online reviews. While generated summaries offer general and concise information about a particular hotel or product, the information may be insufficient to help the user compare multiple different choices. Thus, the user may still struggle with the question {``}Which one should I pick?{''} In this paper, we propose the comparative opinion summarization task, which aims at generating two contrastive summaries and one common summary from two different candidate sets of reviews. We develop a comparative summarization framework CoCoSum, which consists of two base summarization models that jointly generate contrastive and common summaries. Experimental results on a newly created benchmark CoCoTrip show that CoCoSum can produce higher-quality contrastive and common summaries than state-of-the-art opinion summarization models. The dataset and code are available at \url{https://github.com/megagonlabs/cocosum}",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="iso-etal-2022-comparative">
<titleInfo>
<title>Comparative Opinion Summarization via Collaborative Decoding</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hayate</namePart>
<namePart type="family">Iso</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaolan</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stefanos</namePart>
<namePart type="family">Angelidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yoshihiko</namePart>
<namePart type="family">Suhara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2022</title>
</titleInfo>
<name type="personal">
<namePart type="given">Smaranda</namePart>
<namePart type="family">Muresan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aline</namePart>
<namePart type="family">Villavicencio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Opinion summarization focuses on generating summaries that reflect popular subjective information expressed in multiple online reviews. While generated summaries offer general and concise information about a particular hotel or product, the information may be insufficient to help the user compare multiple different choices. Thus, the user may still struggle with the question “Which one should I pick?” In this paper, we propose the comparative opinion summarization task, which aims at generating two contrastive summaries and one common summary from two different candidate sets of reviews. We develop a comparative summarization framework CoCoSum, which consists of two base summarization models that jointly generate contrastive and common summaries. Experimental results on a newly created benchmark CoCoTrip show that CoCoSum can produce higher-quality contrastive and common summaries than state-of-the-art opinion summarization models. The dataset and code are available at https://github.com/megagonlabs/cocosum</abstract>
<identifier type="citekey">iso-etal-2022-comparative</identifier>
<identifier type="doi">10.18653/v1/2022.findings-acl.261</identifier>
<location>
<url>https://aclanthology.org/2022.findings-acl.261</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>3307</start>
<end>3324</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Comparative Opinion Summarization via Collaborative Decoding
%A Iso, Hayate
%A Wang, Xiaolan
%A Angelidis, Stefanos
%A Suhara, Yoshihiko
%Y Muresan, Smaranda
%Y Nakov, Preslav
%Y Villavicencio, Aline
%S Findings of the Association for Computational Linguistics: ACL 2022
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland
%F iso-etal-2022-comparative
%X Opinion summarization focuses on generating summaries that reflect popular subjective information expressed in multiple online reviews. While generated summaries offer general and concise information about a particular hotel or product, the information may be insufficient to help the user compare multiple different choices. Thus, the user may still struggle with the question “Which one should I pick?” In this paper, we propose the comparative opinion summarization task, which aims at generating two contrastive summaries and one common summary from two different candidate sets of reviews. We develop a comparative summarization framework CoCoSum, which consists of two base summarization models that jointly generate contrastive and common summaries. Experimental results on a newly created benchmark CoCoTrip show that CoCoSum can produce higher-quality contrastive and common summaries than state-of-the-art opinion summarization models. The dataset and code are available at https://github.com/megagonlabs/cocosum
%R 10.18653/v1/2022.findings-acl.261
%U https://aclanthology.org/2022.findings-acl.261
%U https://doi.org/10.18653/v1/2022.findings-acl.261
%P 3307-3324
Markdown (Informal)
[Comparative Opinion Summarization via Collaborative Decoding](https://aclanthology.org/2022.findings-acl.261) (Iso et al., Findings 2022)
ACL