@inproceedings{weeds-etal-2017-red,
title = "When a Red Herring in Not a Red Herring: Using Compositional Methods to Detect Non-Compositional Phrases",
author = "Weeds, Julie and
Kober, Thomas and
Reffin, Jeremy and
Weir, David",
editor = "Lapata, Mirella and
Blunsom, Phil and
Koller, Alexander",
booktitle = "Proceedings of the 15th Conference of the {E}uropean Chapter of the Association for Computational Linguistics: Volume 2, Short Papers",
month = apr,
year = "2017",
address = "Valencia, Spain",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/E17-2085",
pages = "529--534",
abstract = "Non-compositional phrases such as \textit{red herring} and weakly compositional phrases such as \textit{spelling bee} are an integral part of natural language (Sag, 2002). They are also the phrases that are difficult, or even impossible, for good compositional distributional models of semantics. Compositionality detection therefore provides a good testbed for compositional methods. We compare an integrated compositional distributional approach, using sparse high dimensional representations, with the ad-hoc compositional approach of applying simple composition operations to state-of-the-art neural embeddings.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="weeds-etal-2017-red">
<titleInfo>
<title>When a Red Herring in Not a Red Herring: Using Compositional Methods to Detect Non-Compositional Phrases</title>
</titleInfo>
<name type="personal">
<namePart type="given">Julie</namePart>
<namePart type="family">Weeds</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thomas</namePart>
<namePart type="family">Kober</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jeremy</namePart>
<namePart type="family">Reffin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Weir</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mirella</namePart>
<namePart type="family">Lapata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Phil</namePart>
<namePart type="family">Blunsom</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Koller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Valencia, Spain</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Non-compositional phrases such as red herring and weakly compositional phrases such as spelling bee are an integral part of natural language (Sag, 2002). They are also the phrases that are difficult, or even impossible, for good compositional distributional models of semantics. Compositionality detection therefore provides a good testbed for compositional methods. We compare an integrated compositional distributional approach, using sparse high dimensional representations, with the ad-hoc compositional approach of applying simple composition operations to state-of-the-art neural embeddings.</abstract>
<identifier type="citekey">weeds-etal-2017-red</identifier>
<location>
<url>https://aclanthology.org/E17-2085</url>
</location>
<part>
<date>2017-04</date>
<extent unit="page">
<start>529</start>
<end>534</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T When a Red Herring in Not a Red Herring: Using Compositional Methods to Detect Non-Compositional Phrases
%A Weeds, Julie
%A Kober, Thomas
%A Reffin, Jeremy
%A Weir, David
%Y Lapata, Mirella
%Y Blunsom, Phil
%Y Koller, Alexander
%S Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers
%D 2017
%8 April
%I Association for Computational Linguistics
%C Valencia, Spain
%F weeds-etal-2017-red
%X Non-compositional phrases such as red herring and weakly compositional phrases such as spelling bee are an integral part of natural language (Sag, 2002). They are also the phrases that are difficult, or even impossible, for good compositional distributional models of semantics. Compositionality detection therefore provides a good testbed for compositional methods. We compare an integrated compositional distributional approach, using sparse high dimensional representations, with the ad-hoc compositional approach of applying simple composition operations to state-of-the-art neural embeddings.
%U https://aclanthology.org/E17-2085
%P 529-534
Markdown (Informal)
[When a Red Herring in Not a Red Herring: Using Compositional Methods to Detect Non-Compositional Phrases](https://aclanthology.org/E17-2085) (Weeds et al., EACL 2017)
ACL