single-rb.php

JRM Vol.35 No.5 pp. 1281-1289
doi: 10.20965/jrm.2023.p1281
(2023)

Paper:

Image Search Strategy via Visual Servoing for Robotic Kidney Ultrasound Imaging

Takumi Fujibayashi*,**, Norihiro Koizumi** ORCID Icon, Yu Nishiyama** ORCID Icon, Jiayi Zhou**, Hiroyuki Tsukihara***, Kiyoshi Yoshinaka* ORCID Icon, and Ryosuke Tsumura* ORCID Icon

*Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology
1-2-1 Namiki, Tsukuba, Ibaraki 205-8564, Japan

**Graduate School of Informatics and Engineering, The University of Electro-Communications
1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan

***Graduate School of Engineering, The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

Received:
March 7, 2023
Accepted:
June 23, 2023
Published:
October 20, 2023
Keywords:
robotic ultrasound, medical robotics, kidney ultrasound
Abstract

Ultrasound (US) imaging is beneficial for kidney diagnosis; however, it involves sophisticated tasks that must be performed by physicians to obtain the target image. We propose a target-image search strategy combining visual servoing and deep learning-based image evaluation for robotic kidney US imaging. The search strategy is designed by mimicking physicians’ motion axis of the US probe. By controlling the position of the US probe along each of the motion axes while evaluating the obtained US images based on an anatomical feature extraction method via instance segmentation with YOLACT++, we are able to search for an optimal target image. The proposed approach was validated through phantom studies. The results showed that the proposed approach could find the target kidney images with error rates of 2.88±1.76 mm and 2.75±3.36°. Thus, the proposed method enables the accurate identification of the target image, which highlights its potential for application in autonomous kidney US imaging.

Search strategy based on visual servoing

Search strategy based on visual servoing

Cite this article as:
T. Fujibayashi, N. Koizumi, Y. Nishiyama, J. Zhou, H. Tsukihara, K. Yoshinaka, and R. Tsumura, “Image Search Strategy via Visual Servoing for Robotic Kidney Ultrasound Imaging,” J. Robot. Mechatron., Vol.35 No.5, pp. 1281-1289, 2023.
Data files:
References
  1. [1] A. Pinto, F. Pinto, A. Faggian, G. Rubini, F. Caranci, L. Macarini, E. A. Genovese, and L. Brunese, “Sources of error in emergency ultrasonography,” Crit. Ultrasound J., Vol.5, No.Suppl.1, Article No.S1, 2013. https://doi.org/10.1186/2036-7902-5-S1-S1
  2. [2] C. F. Tator and C. Truluck, “Musculoskeletal pain relief in sonographers: A systematic review of the effects of therapeutic techniques,” J. Diagn. Med. Sonogr., Vol.33, No.5, pp. 420-426, 2017. https://doi.org/10.1177/8756479317721673
  3. [3] S. Ohrndorf, L. Naumann, J. Grundey, T. Scheel, A. K. Scheel, C. Werner, and M. Backhaus, “Is musculoskeletal ultrasonography an operator-dependent method or a fast and reliably teachable diagnostic tool? Interreader agreements of three ultrasonographers with different training levels,” Int. J. Rheumatol., Vol.2010, Article No.164518, 2010. https://doi.org/10.1155/2010/164518
  4. [4] K. Li, Y. Xu, and M. Q.-H. Meng, “An overview of systems and techniques for autonomous robotic ultrasound acquisitions,” IEEE Trans. Med. Robot. Bionics, Vol.3, No.2, pp. 510-524, 2021. https://doi.org/10.1109/TMRB.2021.3072190
  5. [5] Z. Jiang, Y. Gao, L. Xie, and N. Navab, “Towards autonomous atlas-based ultrasound acquisitions in presence of articulated motion,” IEEE Robot. Autom. Lett., Vol.7, No.3, pp. 7423-7430, 2022. https://doi.org/10.1109/lra.2022.3180440
  6. [6] F. Suligoj, C. M. Heunis, J. Sikorski, and S. Misra, “RobUSt—an autonomous robotic ultrasound system for medical imaging,” IEEE Access, Vol.9, pp. 67456-67465, 2021. https://doi.org/10.1109/ACCESS.2021.3077037
  7. [7] J. Zielke, C. Eilers, B. Busam, W. Weber, N. Navab, and T. Wendler, “RSV: Robotic sonography for thyroid volumetry,” IEEE Robot. Autom. Lett., Vol.7, No.2, pp. 3342-3348, 2022. https://doi.org/10.1109/LRA.2022.3146542
  8. [8] J. T. Kaminski, K. Rafatzand, and H. K. Zhang, “Feasibility of robot-assisted ultrasound imaging with force feedback for assessment of thyroid diseases,” Proc. SPIE 11315, Med. Imaging 2020: Image-Guid. Proced. Robot. Interv., Article No.113151D, 2020. https://doi.org/10.1117/12.2551118
  9. [9] S. Ipsen, D. Wulff, I. Kuhlemann, A. Schweikard, and F. Ernst, “Towards automated ultrasound imaging—robotic image acquisition in liver and prostate for long-term motion monitoring,” Phys. Med. Biol., Vol.66, No.9, Article No.094002, 2021. https://doi.org/10.1088/1361-6560/abf277
  10. [10] A. S. B. Mustafa et al., “Development of robotic system for autonomous liver screening using ultrasound scanning device,” 2013 IEEE Int. Conf. Robot. Biomim. (ROBIO), pp. 804-809, 2013. https://doi.org/10.1109/ROBIO.2013.6739561
  11. [11] R. Tsumura and H. Iwata, “Robotic fetal ultrasonography platform with a passive scan mechanism,” Int. J. Comput. Assist. Radiol. Surg., Vol.15, No.8, pp. 1323-1333, 2020. https://doi.org/10.1007/s11548-020-02130-1
  12. [12] S. Wang et al., “Robotic-assisted ultrasound for fetal imaging: Evolution from single-arm to dual-arm system,” Proc. 20th Annu. Conf. Towards Auton. Robot., Part 2, pp. 27-38, 2019. https://doi.org/10.1007/978-3-030-25332-5_3
  13. [13] R. Tsumura and H. Iwata, “Development of ultrasonography assistance robot for prenatal care,” Proc. SPIE, Vol.11315, Med. Imaging 2020: Image-Guid. Proced. Robot. Interv., Article No.113152O, 2020. https://doi.org/10.1117/12.2550038
  14. [14] R. Ye et al., “Feasibility of a 5G-based robot-assisted remote ultrasound system for cardiopulmonary assessment of patients with coronavirus disease 2019,” Chest, Vol.159, No.1, pp. 270-281, 2021. https://doi.org/10.1016/j.chest.2020.06.068
  15. [15] R. Tsumura et al., “Tele-operative low-cost robotic lung ultrasound scanning platform for triage of COVID-19 patients,” IEEE Robot. Autom. Lett., Vol.6, No.3, pp. 4664-4671, 2021. https://doi.org/10.1109/LRA.2021.3068702
  16. [16] P. Abolmaesumi, S. E. Salcudean, W.-H. Zhu, M. R. Sirouspour, and S. P. DiMaio, “Image-guided control of a robot for medical ultrasound,” IEEE Trans. Robot. Autom., Vol.18, No.1, pp. 11-23, 2002. https://doi.org/10.1109/70.988970
  17. [17] Z. Jiang, M. Grimm, M. Zhou, J. Esteban, W. Simson, G. Zahnd, and N. Navab, “Automatic normal positioning of robotic ultrasound probe based only on confidence map optimization and force measurement,” IEEE Robot. Autom. Lett., Vol.5, No.2, pp. 1342-1349, 2020. https://doi.org/10.1109/LRA.2020.2967682
  18. [18] P. Chatelain, A. Krupa, and N. Navab, “Confidence-driven control of an ultrasound probe: Target-specific acoustic window optimization,” 2016 IEEE Int. Conf. Robot. Autom. (ICRA), pp. 3441-3446, 2016. https://doi.org/10.1109/ICRA.2016.7487522
  19. [19] P. Chatelain, A. Krupa, and N. Navab, “Optimization of ultrasound image quality via visual servoing,” 2015 IEEE Int. Conf. Robot. Autom. (ICRA), pp. 5997-6002, 2015. https://doi.org/10.1109/ICRA.2015.7140040
  20. [20] Y. Huang, W. Xiao, C. Wang, H. Liu, R. Huang, and Z. Sun, “Towards fully autonomous ultrasound scanning robot with imitation learning based on clinical protocols,” IEEE Robot. Autom. Lett., Vol.6, No.2, pp. 3671-3678, 2021. https://doi.org/10.1109/LRA.2021.3064283
  21. [21] J. Zhou et al., “A VS ultrasound diagnostic system with kidney image evaluation functions,” Int. J. Comput. Assist. Radiol. Surg., Vol.18, No.2, pp. 227-246, 2022. https://doi.org/10.1007/s11548-022-02759-0
  22. [22] D. Bolya, C. Zhou, F. Xiao, and Y. J. Lee, “YOLACT++ better real-time instance segmentation,” IEEE Trans. Pattern Anal. Mach. Intell., Vol.44, No.2, pp. 1108-1121, 2022. https://doi.org/10.1109/TPAMI.2020.3014297
  23. [23] T. Fujii et al., “Servoing performance enhancement via a respiratory organ motion prediction model for a non-invasive ultrasound theragnostic system,” J. Robot. Mechatron., Vol.29, No.2, pp. 434-446, 2017. https://doi.org/10.20965/jrm.2017.p0434
  24. [24] S. Yin, Z. Zhang, H. Li, Q. Peng, X. You, S. L. Furth, G. E. Tasian, and Y. Fan, “Fully-automatic segmentation of kidneys in clinical ultrasound images using a boundary distance regression network,” 2019 IEEE 16th Int. Symp. Biomed. Imaging (ISBI 2019), pp. 1741-1744, 2019. https://doi.org/10.1109/ISBI.2019.8759170

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Nov. 04, 2024