As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Inspired by emerging applications of social networks, we introduce in this paper a new centrality measure termed gate-keeper centrality. The new centrality is based on the well-known game-theoretic concept of Shapley value and, as we demonstrate, possesses unique qualities compared to the existing metrics. Furthermore, we present a dedicated approximate algorithm, based on the Monte Carlo sampling method, to compute the gatekeeper centrality. We also consider two well known applications in social network analysis, namely community detection and limiting the spread of mis-information; and show the merit of using the proposed framework to solve these two problems in comparison with the respective benchmark algorithms.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.