As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Online planning algorithms are typically a tool of choice for dealing with sequential decision problems in combinatorial search spaces. Many such problems, however, also exhibit combinatorial actions, yet standard planning algorithms do not cope well with this type of “the curse of dimensionality”. Following a recently opened line of related work on combinatorial multi-armed bandit (CMAB) problems, we propose a novel CMAB planning scheme, as well as two specific instances of this scheme, dedicated to exploiting what is called linear side information. Using a representative strategy game as a benchmark, we show that the resulting algorithms very favorably compete with the state-of-the-art.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.