As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Network (or graph) embedding is the task to map the nodes of a graph to a lower dimensional vector space, such that it preserves the graph properties and facilitates the downstream network mining tasks. Real world networks often come with (community) outlier nodes, which behave differently from the regular nodes of the community. These outlier nodes can affect the embedding of the regular nodes, if not handled carefully. In this paper, we propose a novel unsupervised graph embedding approach (called DMGD) which integrates outlier and community detection with node embedding. We extend the idea of deep support vector data description to the framework of graph embedding when there are multiple communities present in the given network, and an outlier is characterized relative to its community. We also show the theoretical bounds on the number of outliers detected by DMGD. Our formulation boils down to an interesting minimax game between the outliers, community assignments and the node embedding function. We also propose an efficient algorithm to solve this optimization framework. Experimental results on both synthetic and real world networks show the merit of our approach compared to state-of-the-arts.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.