As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Stratified Mortality Prediction of Patients with Acute Kidney Injury in Critical Care
Zhenxing Xu, Yuan Luo, Prakash Adekkanattu, Jessica S. Ancker, Guoqian Jiang, Richard C. Kiefer, Jennifer A. Pacheco, Luke V. Rasmussen, Jyotishman Pathak, Fei Wang
Acute Kidney Injury (AKI) is the most common cause of organ dysfunction in critically ill adults and prior studies have shown AKI is associated with a significant increase of the mortality risk. Early prediction of the mortality risk for AKI patients can help clinical decision makers better understand the patient condition in time and take appropriate actions. However, AKI is a heterogeneous disease and its cause is complex, which makes such predictions a challenging task. In this paper, we investigate machine learning models for predicting the mortality risk of AKI patients who are stratified according to their AKI stages. With this setup we demonstrate the stratified mortality prediction performance of patients with AKI is better than the results obtained on the mixed population.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.