As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Object detection using convolutional neural networks (CNNs) has achieved high performance and achieved state-of-the-art results with natural images. Compared to natural images, medical images present several challenges for lesion detection. First, the sizes of lesions vary tremendously, from several millimeters to several centimeters. Scale variations significantly affect lesion detection accuracy, especially for the detection of small lesions. Moreover, the effective extraction of temporal and spatial features from multi-phase CT images is also an important issue. In this paper, we propose a group-based deep layer aggregation method with multiphase attention for liver lesion detection in multi-phase CT images. The method, which is called MSPA-DLA++, is a backbone feature extraction network for anchor-free liver lesion detection in multi-phase CT images that addresses scale variations and extracts hidden features from such images. The effectiveness of the proposed method is demonstrated on public datasets (LiTS2017) and our private multiphase dataset. The results of the experiments show that MSPA-DLA++ can improve upon the performance of state-of-the-art networks by approximately 3.7%.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.