Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

Abstract

Biology

Detection of Protein Aggregation using Fluorescence Correlation Spectroscopy

Published: April 25th, 2021

DOI:

10.3791/62576

Abstract

Protein aggregation is a hallmark of neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and so on. To detect and analyze soluble or diffuse protein oligomers or aggregates, fluorescence correlation spectroscopy (FCS), which can detect the diffusion speed and brightness of a single particle with a single molecule sensitivity, has been used. However, the proper procedure and know-how for protein aggregation detection have not been widely shared. Here, we show a standard procedure of FCS measurement for diffusion properties of aggregation-prone proteins in cell lysate and live cells: ALS-associated 25 kDa carboxyl-terminal fragment of TAR DNA/RNA-binding protein 43 kDa (TDP25) and superoxide dismutase 1 (SOD1). The representative results show that a part of aggregates of green fluorescent protein (GFP)-tagged TDP25 was slightly included in the soluble fraction of murine neuroblastoma Neuro2a cell lysate. Moreover, GFP-tagged SOD1 carrying ALS-associated mutation shows a slower diffusion in live cells. Accordingly, we here introduce the procedure to detect the protein aggregation via its diffusion property using FCS.

Explore More Videos

Keywords Protein Aggregation

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved