Computer Science > Computation and Language
[Submitted on 4 Feb 2019 (v1), last revised 11 Nov 2019 (this version, v2)]
Title:A Comprehensive Exploration on WikiSQL with Table-Aware Word Contextualization
View PDFAbstract:We present SQLova, the first Natural-language-to-SQL (NL2SQL) model to achieve human performance in WikiSQL dataset. We revisit and discuss diverse popular methods in NL2SQL literature, take a full advantage of BERT {Devlin et al., 2018) through an effective table contextualization method, and coherently combine them, outperforming the previous state of the art by 8.2% and 2.5% in logical form and execution accuracy, respectively. We particularly note that BERT with a seq2seq decoder leads to a poor performance in the task, indicating the importance of a careful design when using such large pretrained models. We also provide a comprehensive analysis on the dataset and our model, which can be helpful for designing future NL2SQL datsets and models. We especially show that our model's performance is near the upper bound in WikiSQL, where we observe that a large portion of the evaluation errors are due to wrong annotations, and our model is already exceeding human performance by 1.3% in execution accuracy.
Submission history
From: Wonseok Hwang [view email][v1] Mon, 4 Feb 2019 07:55:47 UTC (288 KB)
[v2] Mon, 11 Nov 2019 04:48:46 UTC (345 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.