Mathematics > Numerical Analysis
[Submitted on 9 Aug 2022 (v1), last revised 16 Mar 2023 (this version, v2)]
Title:Decay of coefficients and approximation rates in Gabor Gaussian frames
View PDFAbstract:The aim of this note is to present a self-contained proof of the fact that a function can be approximated using a linear combination of Gaussian coherent states, with a number of terms controlled in terms of the smoothness and of the decay at infinity of the function. This result can easily be obtained using advanced results on modulation spaces, but the proof presented here is completely elementary and self-contained.
Submission history
From: Théophile Chaumont-Frelet [view email][v1] Tue, 9 Aug 2022 15:32:26 UTC (33 KB)
[v2] Thu, 16 Mar 2023 19:10:09 UTC (37 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.