Computer Science > Computation and Language
[Submitted on 17 Apr 2023 (v1), last revised 23 Feb 2024 (this version, v3)]
Title:Efficient and Effective Text Encoding for Chinese LLaMA and Alpaca
View PDF HTML (experimental)Abstract:Large Language Models (LLMs), such as ChatGPT and GPT-4, have dramatically transformed natural language processing research and shown promising strides towards Artificial General Intelligence (AGI). Nonetheless, the high costs associated with training and deploying LLMs present substantial obstacles to transparent, accessible academic research. While several large language models, such as LLaMA, have been open-sourced by the community, these predominantly focus on English corpora, limiting their usefulness for other languages. In this paper, we propose a method to augment LLaMA with capabilities for understanding and generating Chinese text and its ability to follow instructions. We achieve this by extending LLaMA's existing vocabulary with an additional 20,000 Chinese tokens, thereby improving its encoding efficiency and semantic understanding of Chinese. We further incorporate secondary pre-training using Chinese data and fine-tune the model with Chinese instruction datasets, significantly enhancing the model's ability to comprehend and execute instructions. Our experimental results indicate that the newly proposed model markedly enhances the original LLaMA's proficiency in understanding and generating Chinese content. Additionally, the results on the C-Eval dataset yield competitive performance among the models with several times the size of ours. We have made our pre-trained models, training scripts, and other resources available through GitHub, fostering open research for our community. Chinese LLaMA series: \url{this https URL} and Chinese Llama-2 series: \url{this https URL}
Submission history
From: Yiming Cui [view email][v1] Mon, 17 Apr 2023 11:39:53 UTC (47 KB)
[v2] Thu, 15 Jun 2023 06:23:19 UTC (83 KB)
[v3] Fri, 23 Feb 2024 02:22:36 UTC (282 KB)
Current browse context:
cs.CL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.