Computer Science > Software Engineering
[Submitted on 15 May 2023 (v1), last revised 19 Sep 2024 (this version, v3)]
Title:DAppSCAN: Building Large-Scale Datasets for Smart Contract Weaknesses in DApp Projects
View PDF HTML (experimental)Abstract:The Smart Contract Weakness Classification Registry (SWC Registry) is a widely recognized list of smart contract weaknesses specific to the Ethereum platform. Despite the SWC Registry not being updated with new entries since 2020, the sustained development of smart contract analysis tools for detecting SWC-listed weaknesses highlights their ongoing significance in the field. However, evaluating these tools has proven challenging due to the absence of a large, unbiased, real-world dataset. To address this problem, we aim to build a large-scale SWC weakness dataset from real-world DApp projects. We recruited 22 participants and spent 44 person-months analyzing 1,199 open-source audit reports from 29 security teams. In total, we identified 9,154 weaknesses and developed two distinct datasets, i.e., DAPPSCAN-SOURCE and DAPPSCAN-BYTECODE. The DAPPSCAN-SOURCE dataset comprises 39,904 Solidity files, featuring 1,618 SWC weaknesses sourced from 682 real-world DApp projects. However, the Solidity files in this dataset may not be directly compilable for further analysis. To facilitate automated analysis, we developed a tool capable of automatically identifying dependency relationships within DApp projects and completing missing public libraries. Using this tool, we created DAPPSCAN-BYTECODE dataset, which consists of 6,665 compiled smart contract with 888 SWC weaknesses. Based on DAPPSCAN-BYTECODE, we conducted an empirical study to evaluate the performance of state-of-the-art smart contract weakness detection tools. The evaluation results revealed sub-par performance for these tools in terms of both effectiveness and success detection rate, indicating that future development should prioritize real-world datasets over simplistic toy contracts.
Submission history
From: Jianzhong Su [view email][v1] Mon, 15 May 2023 08:56:13 UTC (399 KB)
[v2] Sat, 18 Nov 2023 07:21:42 UTC (509 KB)
[v3] Thu, 19 Sep 2024 08:48:00 UTC (411 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.