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Abstract
We consider computing a longest palindrome in the streaming model, where the symbols arrive
one-by-one and we do not have random access to the input. While computing the answer exactly
using sublinear space is not possible in such a setting, one can still hope for a good approx-
imation guarantee. Our contribution is twofold. First, we provide lower bounds on the space
requirements for randomized approximation algorithms processing inputs of length n. We rule
out Las Vegas algorithms, as they cannot achieve sublinear space complexity. For Monte Carlo
algorithms, we prove a lower bounds of Ω(M log min{|Σ|,M}) bits of memory; hereM = n/E for
approximating the answer with additive error E, andM = logn

log(1+ε) for approximating the answer
with multiplicative error (1 + ε). Second, we design three real-time algorithms for this problem.
Our Monte Carlo approximation algorithms for both additive and multiplicative versions of the
problem use O(M) words of memory. Thus the obtained lower bounds are asymptotically tight
up to a logarithmic factor. The third algorithm is deterministic and finds a longest palindrome
exactly if it is short. This algorithm can be run in parallel with a Monte Carlo algorithm to ob-
tain better results in practice. Overall, both the time and space complexity of finding a longest
palindrome in a stream are essentially settled.
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1 Introduction

In the streaming model of computation, a very long input arrives sequentially in small
portions and cannot be stored in full due to space limitation. While well-studied in general,
this is a rather recent trend in algorithms on strings. The main goals are minimizing the space
complexity, i.e., avoiding storing the already seen prefix of the string explicitly, and designing
real-time algorithm, i.e., processing each symbol in worst-case constant time. However,
the algorithms are usually randomized and return the correct answer with high probability.
The prime example of a problem on string considered in the streaming model is pattern
matching, where we want to detect an occurrence of a pattern in a given text. It is somewhat
surprising that one can actually solve it using polylogarithmic space in the streaming model,
as proved by Porat and Porat [13]. A simpler solution was later given by Ergün et al. [6],
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while Breslauer and Galil designed a real-time algorithm [3]. Similar questions studied in
such setting include multiple-pattern matching [4], approximate pattern matching [5], and
parametrized pattern matching [9].

We consider computing a longest palindrome in the streaming model, where a palindrome
is a fragment which reads the same in both directions. This is one of the basic questions
concerning regularities in texts and it has been extensively studied in the classical non-
streaming setting, see [1, 7, 11, 12] and the references therein. The notion of palindromes,
but with a slightly different meaning, is very important in computational biology, where
one considers strings over {A, T,C,G} and a palindrome is a sequence equal to its reverse
complement (a reverse complement reverses the sequences and interchanges A with T and C
with G); see [8] and the references therein for a discussion of their algorithmic aspects. Our
results generalize to biological palindromes in a straightforward manner.

We denote by LPS(S) the problem of finding the maximum length of a palindrome in a
string S (and a starting position of a palindrome of such length in S). Solving LPS(S) in the
streaming model was recently considered by Berenbrink et al. [2], who developed tradeoffs
between the bound on the error and the space complexity for additive and multiplicative
variants of the problem, that is, for approximating the length of the longest palindrome with
either additive or multiplicative error. Their algorithms were Monte Carlo, i.e., returned
the correct answer with high probability. They also proved that any Las Vegas algorithm
achieving additive error E must necessarily use Ω( nE log |Σ|) bits of memory, which matches
the space complexity of their solution up to a logarithmic factor in the E ∈ [1,

√
n] range, but

leaves a few questions. Firstly, does the lower bound still hold for Monte Carlo algorithms?
Secondly, what is the best possible space complexity when E ∈ (

√
n, n] in the additive

variant, and what about the multiplicative version? Finally, are there real-time algorithms
achieving these optimal space bounds? We answer all these questions.

Our main goal is to settle the space complexity of LPS. We start with the lower bounds in
Sect. 2. First, we show that Las Vegas algorithms cannot achieve sublinear space complexity
at all. Second, we prove a lower bound of Ω(M log min{|Σ|,M}) bits of memory for Monte
Carlo algorithms; here M = n/E for approximating the answer with additive error E, and
M = logn

log(1+ε) for approximating the answer with multiplicative error (1 + ε). Then, in
Sect. 3 we design real-time Monte Carlo algorithms matching these lower bounds up to a
logarithmic factor. Our real-time Monte Carlo algorithm for LPS with additive error E uses
O(n/E) words of space, and our real time Monte Carlo algorithm for LPS with multiplicative
error ε ≤ 1 uses O

( logn
ε

)
words of space. Finally we present, for any m, a deterministic

O(m)-space real-time algorithm solving LPS exactly if the answer is less than m and detecting
a palindrome of length ≥ m otherwise. The last result implies that if the input stream is
fully random, then with high probability its longest palindrome can be found exactly by a
real-time algorithm within logarithmic space.

Notation and Definitions. Let S denote a string of length n over an alphabet Σ =
{1, . . . , N}, where N is polynomial in n. We write S[i] for the ith symbol of S and S[i..j]
for its substring (or factor) S[i]S[i+ 1] · · ·S[j]; thus, S[1..n] = S. A prefix (resp. suffix) of S
is a substring of the form S[1..j] (resp., S[j..n]). A string S is a palindrome if it equals its
reversal S[n]S[n−1] · · ·S[1]. By L(S) we denote the length of a longest palindrome which is
a factor of S. log stands for the binary logarithm.

We consider the streaming model of computation: the input string S[1..n] (called the
stream) is read left to right, one symbol at a time, and cannot be stored, because the available
space is sublinear in n. The space is counted as the number of O(logn)-bit machine words.
An algorithm is real-time if the number of operations between two reads is bounded by a
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constant. An approximation algorithm for a maximization problem has additive error E
(resp., multiplicative error ε) if it finds a solution with the cost at least OPT − E (resp.,
OPT
1+ε ), where OPT is the cost of optimal solution; here both E and ε can be functions of the
size of the input. In the LPS(S) problem, OPT = L(S).

A Las Vegas algorithm always returns a correct answer, but its memory usage on the
inputs of length n is a random variable. A Monte Carlo algorithm gives a correct answer
with high probability and has deterministic working time. Here we call “high” the probability
greater than 1− 1/n.

2 Lower Bounds

In this section we use Yao’s minimax principle [15] to prove lower bounds on the space
complexity of the LPS problem in the streaming model, where the length n and the alphabet
Σ of the input stream are specified. We denote this problem by LPSΣ[n].

I Theorem 1 (Yao’s minimax principle for randomized algorithms). Let X be the set of inputs
for a problem and A be the set of all deterministic algorithms solving it. Then, for any
x ∈ X and A ∈ A, the cost of running A on x is denoted by c(a, x) ≥ 0.

Let p be the probability distribution over A, and let A be an algorithm chosen at random
according to p. Let q be the probability distribution over X , and let X be an input chosen at
random according to q. Then maxx∈X E[c(A, x)] ≥ mina∈AE[c(a,X)].

We use the above theorem for both Las Vegas and Monte Carlo algorithms. For Las
Vegas algorithms, we consider only correct algorithms, and c(x, a) is the memory usage. For
Monte Carlo algorithms, we consider all algorithms (not necessarily correct) with memory
usage not exceeding a certain threshold, and c(x, a) is the correctness indicator function, i.e.,
c(x, a) = 0 if the algorithm is correct and c(x, a) = 1 otherwise.

Our proofs will be based on appropriately chosen padding. In some cases the padding
requires a larger (but constant) alphabet, which can be always reduced to binary while
increasing the size of the input by a constant factor. For the padding we will often use an
infinite string ν = 011102120313 . . ., or more precisely its prefixes of length d, denoted ν(d).
Here 0 and 1 should be understood as two characters not belonging to the original alphabet.
The longest palindrome in ν(d) has length O(

√
d).

I Theorem 2 (Las Vegas approximation). Let A be a Las Vegas streaming algorithms solving
LPSΣ[n] with additive error E ≤ 0.99n or multiplicative error (1 + ε) ≤ 100 using s(n) bits
of memory. Then E[s(n)] = Ω(n log |Σ|).

Proof. By Theorem 1, it is enough to construct a probability distribution P over Σn such
that for any deterministic algorithm D, its expected memory usage on a string chosen
according to P is Ω(n log |Σ|) in bits.

Consider solving LPSΣ[n] with additive error E. We define P as the uniform distribution
over ν(E2 )x$$yν(E2 )R, where x, y ∈ Σn′ , n′ = n

2 −
E
2 − 1, and $ is a special character not in

Σ. Let us look at the memory usage of D after having read ν(E2 )x. We say that x is “good”
when the memory usage is at most n′

2 log |Σ| and “bad” otherwise. Assume that 1
2 |Σ|

n′ of all
x’s are good, then there are two strings x 6= x′ such that the state of D after having read both
ν(E2 )x and ν(E2 )x′ is exactly the same. Hence the behavior of D on ν(E2 )x$$xRν(E2 )R and
ν(E2 )x′$$xRν(E2 )R is exactly the same. The former is a palindrome of length n = 2n′+E+2,
so D must answer at least 2n′+2, and consequently the latter also must contain a palindrome
of length at least 2n′ + 2. A palindrome inside ν(E2 )x′$$xRν(E2 )R is either fully contained
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within ν(E2 ), x′, xR or it is a middle palindrome. But the longest palindrome inside ν(E2 ) is of
length O(

√
E) < 2n′+ 2 (for n large enough) and the longest palindrome inside x or xR is of

length n′ < 2n′ + 2, so since we have exluced other possibilities, ν(E2 )x′$$xRν(E2 )R contains
a middle palindrome of length 2n′ + 2. This implies that x = x′, which is a contradiction.
Therefore, at least 1

2 |Σ|
n′ of all x’s are bad. But then the expected memory usage of D is at

least n′

4 log |Σ|, which for E ≤ 0.99n is Ω(n log |Σ|) as claimed.
Now consider solving LPSΣ[n] with multiplicative error (1 + ε). An algorithm with

multiplicative error (1 + ε) can also be considered as having additive error E = n · ε
1+ε , so if

the expected memory usage of such an algorithm is o(n log |Σ|) and (1 + ε) ≤ 100 then we
obtain an algorithm with additive error E ≤ 0.99n and expected memory usage o(n log |Σ|),
which we already know to be impossible. J

Now we move to Monte Carlo algorithms. We first consider exact algorithms solving
LPSΣ[n]; lower bounds on approximation algorithms will be then obtained by padding the
input appropriately. We introduce an auxiliary problem midLPSΣ[n], which is to compute
the length of the middle palindrome in a string of even length n over an alphabet Σ.

I Lemma 3. There exists a constant γ such that any randomized Monte Carlo streaming
algorithm A solving midLPSΣ[n] or LPSΣ[n] exactly with probability 1 − 1

n uses at least
γ · n log min{|Σ|, n} bits of memory.

Proof. First we prove that if A is a Monte Carlo streaming algorithm solving midLPSΣ[n]
exactly using less than bn2 log |Σ|c bits of memory, then its error probability is at least 1

n|Σ| .
By Theorem 1, it is enough to construct probability distribution P over Σn such that

for any deterministic algorithm D using less than bn2 log |Σ|c bits of memory, the expected
probability of error on a string chosen according to P is at least 1

n|Σ| .
Let n′ = n

2 . For any x ∈ Σn′ , k ∈ {1, 2, . . . , n′} and c ∈ Σ we define

w(x, k, c) = x[1]x[2]x[3] . . . x[n′]x[n′]x[n′ − 1]x[n′ − 2] . . . x[k + 1]cx[k − 1] . . . x[2]x[1].

Now P is the uniform distribution over all such w(x, k, c).
Choose an arbitrary maximal matching of strings from Σn′ into pairs (x, x′) such that D is

in the same state after reading either x or x′. At most one string per state of D is left unpaired,
that is at most 2bn2 log |Σ|c−1 strings in total. Since there are |Σ|n′ = 2n′ log |Σ| ≥ 2·2bn2 log |Σ|c−1

possible strings of length n′, at least half of the strings are paired. Let s be longest common
suffix of x and x′, so x = vcs and x′ = v′c′s, where c 6= c′ are single characters. Then D
returns the same answer on w(x, n′ − |s|, c) and w(x′, n′ − |s|, c), even though the length
of the middle palindrome is exactly 2|s| in one of them, and at least 2|s|+ 2 in the other
one. Therefore, D errs on at least one of these two inputs. Similarly, it errs on either
w(x, n′ − |s|, c′) or w(x, n′ − |s|, c′). Thus the error probability is at least 1

2n′|Σ| = 1
n|Σ| .

Now we can prove the lemma for midLPSΣ[n] with a standard amplification trick. Say
that we have a Monte Carlo streaming algorithm, which solves midLPSΣ[n] exactly with error
probability ε using s(n) bits of memory. Then we can run its k instances simultaneously and
return the most frequently reported answer. The new algorithm needs O(k · s(n)) bits of
memory and its error probability εk satisfies:

εk ≤
∑
2i<k

(
k

i

)
(1− ε)iεk−i ≤ 2k · εk/2 = (4ε)k/2.

Let us choose κ = 1
6

log(4/n)
log(1/(n|Σ|)) = 1

6
1−o(1)

1+log |Σ|/ logn = Θ( logn
logn+log |Σ| ) = γ· 1

log |Σ| log min{|Σ|, n},
for some constant γ. Now we can prove the theorem. Assume that A uses less than
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κ · n log |Σ| = γ · n log min{|Σ|, n} bits of memory. Then running
⌊ 1

2κ
⌋
≥ 3

4
1

2κ (which holds
since κ < 1

6 ) instances of A in parallel requires less than bn2 log |Σ|c bits of memory. But
then the error probability of the new algorithm is bounded from above by(

4
n

) 3
16κ

=
(

1
n|Σ|

) 18
16

≤ 1
n|Σ|

which we have already shown to be impossible.
The lower bound for midLPSΣ[n] can be translated into a lower bound for solving LPSΣ[n]

exactly by padding the input so that the longest palindrome is centered in the middle. Let
x = x[1]x[2] . . . x[n] be the input for midLPSΣ[n]. We define

w(x) = x[1]x[2]x[3] . . . x[n/2]1 000 . . . 0
n

1x[n/2 + 1] . . . x[n].

Now if the length of the middle palindrome in x is k, then w(x) contains a palindrome of
length at least n+ k + 2. In the other direction, any palindrome inside w(x) of length ≥ n
must be centered somewhere in the middle block consisting of only zeroes and both ones are
mapped to each other, so it must be the middle palindrome. Thus, the length of the longest
palindrome inside w(x) is exactly n+k+2, so we have reduced solving midLPSΣ[n] to solving
LPSΣ[2n + 2]. We already know that solving midLPSΣ[n] with probability 1 − 1

n requires
γ ·n log min{|Σ|, n} bits of memory, so solving LPSΣ[2n+2] with probability 1− 1

2n+2 ≥ 1− 1
n

requires γ · n log{|Σ|, n} ≥ γ′ · (2n+ 2) log min{|Σ|, 2n+ 2} bits of memory. Notice that the
reduction needs O(logn) additional bits of memory to count up to n, but for large n this is
much smaller than the lower bound if we choose γ′ < γ

4 . J

To obtain a lower bound for Monte Carlo additive approximation, we observe that any
algorithm solving LPSΣ[n] with additive error E can be used to solve LPSΣ[n−EE+1 ] exactly
by inserting E

2 zeroes between every two characters, in the very beginning, and in the very
end. However, this reduction requires log(E2 ) ≤ logn additional bits of memory for counting
up to E

2 and cannot be used when the desired lower bound on the required number of
bits Ω( nE log min(|Σ|, nE ) is significantly smaller than logn. Therefore, we need a separate
technical lemma which implies that both additive and multiplicative approximation with
error probability 1

n require Ω(logn) bits of space.

I Lemma 4. Let A be any randomized Monte Carlo streaming algorithm solving LPSΣ[n]
with additive error at most 0.99n or multiplicative error at most n0.49 and error probability
1
n . Then A uses Ω(logn) bits of memory.

Combining the reduction with the technical lemma and taking into account that we are
reducing to a problem with string length of Θ( nE ), we obtain the following.

I Theorem 5 (Monte Carlo additive approximation). Let A be any randomized Monte Carlo
streaming algorithm solving LPSΣ[n] with additive error E with probability 1− 1

n . If E ≤ 0.99n
then A uses Ω( nE log min{|Σ|, nE }) bits of memory.

Proof. Define σ = min{|Σ|, nE }.
Because of Lemma 4 it is enough to prove that Ω( nE log σ) is a lower bound when

E ≤ γ

2 ·
n

logn log σ. (1)

Assume that there is a Monte Carlo streaming algorithm A solving LPSΣ[n] with additive
error E using o( nE log σ) bits of memory and probability 1− 1

n . Let n
′ = n−E/2

E/2+1 ≥
n
E (the
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last inequality, equivalent to n ≥ E · E
E−2 holds because E ≤ 0.99n and because we can

assume that E ≥ 200). Given a string x[1]x[2] . . . x[n′], we can simulate running A on
0Ex[1]0E/2x[2]0E/2x[3] . . . 0E/2x[n′]0E/2 to calculate R (using log(E/2) ≤ logn additional
bits of memory), and then return

⌊
R

E/2+1

⌋
. We call this new Monte Carlo streaming

algorithm A′. Recall that A reports the length of the longest palindrome with additive
error E. Therefore, if the original string contains a palindrome of length r, the new string
contains a palindrome of length E

2 · (r + 1) + r, so R ≥ r(E/2 + 1) and A′ will return at
least r. In the other direction, if A′ returns r, then the new string contains a palindrome of
length r(E/2 + 1). If such palindrome is centered so that x[i] is matched with x[i+ 1] for
some i, then it clearly corresponds to a palindrome of length r in the original string. But
otherwise every x[i] within the palindrome is matched with 0, so in fact the whole palindrome
corresponds to a streak of consecutive zeroes in the new string and can be extended to the
left and to the right to start and end with 0E , so again it corresponds to a palindrome
of length r in the original string. Therefore, A′ solves LPSΣ[n′] exactly with probability
1− 1

(n′(E/2+1)+E/2) ≥ 1− 1
n′ and uses o(n

′(E/2+1)+E/2
E/2 log σ) + logn = o(n′ log σ) + logn bits

of memory. Observe that by Lemma 3 we get a lower bound

γ · n′ log min{|Σ|, n′} ≥ γ

2 · n
′ log σ + γ

2 ·
n

E
log σ ≥ γ

2 · n
′ log σ + logn

(where the last inequality holds because of Eq.(1)). Then, for large n we obtain contradiction
as follows

o(n′ log σ) + logn < γ

2 · n
′ log σ + logn. J

Finally, we consider multiplicative approximation. The proof follows the same basic idea
as of Theorem 5, however is more technically involved. The main difference is that due to
uneven padding, we are reducing to midLPSΣ[n′] instead of LPSΣ[n′].

I Theorem 6 (Monte Carlo multiplicative approximation). Let A be any randomized Monte
Carlo streaming algorithm solving LPSΣ[n] with multiplicative error (1 + ε) with probability
1− 1

n . If n−0.98 ≤ ε ≤ n0.49 then A uses Ω( logn
log(1+ε) log min{|Σ|, logn

log(1+ε)}) bits of memory.

3 Real-Time Algorithms

In this section we design real-time Monte Carlo algorithms within the space bounds matching
the lower bounds from Sect. 2 up to a factor bounded by logn. The algorithms make use
of the hash function known as the Karp-Rabin fingerprint [10]. Let p be a fixed prime
from the range [n3+α, n4+α] for some α > 0, and r be a fixed integer randomly chosen from
{1, . . . , p−1}. For a string S, its forward hash and reversed hash are defined, respectively, as

φF (S) =
(

n∑
i=1

S[i] · ri
)

mod p and φR(S) =
(

n∑
i=1

S[i] · rn−i+1

)
mod p .

Clearly, the forward hash of a string coincides with the reversed hash of its reversal. Thus, if
u is a palindrome, then φF (u) = φR(u). The converse is also true modulo the (improbable)
collisions of hashes, because for two strings u 6= v of length m, the probability that φF (u) =
φF (v) is at most m/p. This property allows one to detect palindromes with high probability
by comparing hashes. (This approach is somewhat simpler than the one of [2]; in particular,
we don’t need “fingerprint pairs” used there.) In particular, a real-time algorithm makes
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Algorithm 1 Algorithm ABasic, ith iteration.
1: if i mod tE = 0 then
2: add I to the beginning of SP
3: read S[i]; compute I(i+ 1) from I; I ← I(i+ 1)
4: for all elements v of SP do
5: if S[v.i..i] is a palindrome and answer.len < i−v.i+1 then
6: answer ← (v.i, i−v.i+1)

O(n) comparisons and thus faces a collision with probability O(n−1−α) by the choice of
p. All further considerations assume that no collisions happen. For an input stream S,
we denote FF (i, j) = φF (S[i..j]) and FR(i, j) = φR(S[i..j]). Let I(i) denote the tuple
(i, FF (1, i−1), FR(1, i−1), r−(i−1) mod p, ri mod p). The proposition below is immediate
from definitions and simple arithmetical manipulations.

I Proposition 7. 1. Given I(i) and S[i], the tuple I(i+1) can be computed in O(1) time.
2. Given I(i) and I(j+1), the string S[i..j] can be checked for palindromicity in O(1) time.

3.1 Additive Error
I Theorem 8. There is a real-time Monte Carlo algorithm solving the problem LPS(S) with
the additive error E = E(n) using O(n/E) space, where n = |S|.

First we present a simple (and slow) algorithm which solves the posed problem, i.e.,
finds in S a palindrome of length `(S) ≥ L(S)− E, where L(S) is the length of the longest
palindrome in S. Later this algorithm will be converted into a real-time one. We store the
sets I(j) for some values of j in a doubly-linked list SP in the decreasing order of j’s. The
longest palindrome currently found is stored as a pair answer = (pos, len), where pos is its
initial position and len is its length. Let tE = bE2 c.

In Algorithm ABasic we add I(j) to the list SP for each j divisible by tE . This allows
us to check for palindromicity, at ith iteration, all factors of the form S[ktE ..i]. We assume
throughout the section that at the beginning of ith iteration the value I(i) is stored in a
variable I.

I Proposition 9. Algorithm ABasic finds in S a palindrome of length `(S) ≥ L(S)−E using
O(n/E) time per iteration and O(n/E) space.

Proof. Both the time and space bounds arise from the size of the list SP , which is bounded
by n/tE = O(n/E); the number of operations per iteration is proportional to this size
due to Proposition 7. Now let S[i..j] be a longest palindrome in S. Let k =

⌈
i
tE

⌉
tE .

Then i ≤ k < i + tE . At the kth iteration, I(k) was added to SP ; then the palindrome
S[k..j−(k−i)] was found at the iteration j − (k − i). Its length is

j − (k− i)− k+ 1 = j − i− 2(k− i) + 1 > (j − i+ 1)− 2tE = L(S)− 2
⌊E

2

⌋
≥ L(S)−E,

as required. J

The resource to speed up Algorithm ABasic stems from the following

I Lemma 10. During one iteration, the length answer.len increases by at most 2 · tE.
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Algorithm 2 Algorithm A, ith iteration.
1: if i mod tE = 0 then
2: add I to the beginning of SP
3: if i = tE then
4: sp← first(SP )
5: read S[i]; compute I(i+ 1) from I; I ← I(i+ 1)
6: sp← previous(sp) . if exists
7: while i− sp.i+ 1 ≤ answer.len and (sp 6= last(SP )) do
8: sp← next(sp)
9: for all existing v in {sp, next(sp)} do

10: if S[v.i..i] is a palindrome and answer.len < i−v.i+1 then
11: answer ← (v.i, i−v.i+1)

Proof. Let S[j..i] be the longest palindrome found at the ith iteration. If i− j + 1 ≤ 2tE
then the statement is obviously true. Otherwise the palindrome S[j+tE ..i−tE ] of length
i−j+1−2tE was found before (at the (i−tE)th iteration), and the statement holds again. J

Lemma 10 implies that at each iteration SP contains only two elements that can increase
answer.len. Hence we get the following Algorithm A.

Due to Lemma 10, the cycle at lines 9–11 of Algorithm A computes the same sequence of
values of answer as the cycle at lines 4–6 of Algorithm ABasic. Hence it finds a palindrome
of required length by Proposition 9. Clearly, the space used by the two algorithms differs by
a constant. To prove that an iteration of Algorithm A takes O(1) time, it suffices to note
that the cycle in lines 7–8 performs at most two iterations. Theorem 8 is proved.

3.2 Multiplicative Error
I Theorem 11. There is a real-time Monte Carlo algorithm solving the problem LPS(S)
with multiplicative error ε = ε(n) ∈ (0, 1] using O

( logn
ε

)
space, where n = |S|.

As in the previous section, we first present a simpler algorithm MBasic with non-linear
working time and then upgrade it to a real-time algorithm. The algorithm must find a
palindrome of length `(S) ≥ L(S)

1+ε . The next lemma is straightforward.

I Lemma 12. If ε ∈ (0, 1], the condition `(S) ≥ L(S)(1− ε/2) implies `(S) ≥ L(S)
1+ε .

We set qε =
⌈
log 2

ε

⌉
. The main difference in the construction of algorithms with the

multiplicative and additive error is that here all sets I(i) are added to the list SP , but then,
after a certain number of steps, are deleted from it. The number of iterations the set I(i) is
stored in SP is determined by the time-to-live function ttl(i) defined below. This function is
responsible for both the correctness of the algorithm and the space bound.

Let β(i) be the position of the rightmost 1 in the binary representation of i (the position
0 corresponds to the least significant bit). We define

ttl(i) = 2qε+2+β(i) . (2)

The definition is illustrated by Fig. 1. Now we state a few properties of the list SP .

I Lemma 13. For any integers a ≥ 1 and b ≥ 0, there exists a unique integer j ∈ [a, a+ 2b)
such that ttl(j) ≥ 2qε+2+b.
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Algorithm 3 Algorithm MBasic, ith iteration.
1: add I to the beginning of SP
2: for all v in SP do
3: if v.i+ ttl(v.i) = i then
4: delete v from SP

5: read S[i]; compute I(i+ 1) from I; I ← I(i+ 1)
6: for all v in SP do
7: if S[v.i..i] is a palindrome and answer.len < i−v.i+1 then
8: answer ← (v.i, i−v.i+1)

464442403836322824168 21 531

Figure 1 The state of the list SP after the iteration i = 53 (qε = 1 is assumed). Black
squares indicate the numbers j for which I(j) is currently stored. For example, (2) implies
ttl(28) = 21+2+2 = 32, so I(28) will stay in SP until the iteration 28 + 32 = 60.

Proof. By (2), ttl(j) ≥ 2qε+2+b if and only if β(j) ≥ b, i.e., j is divisible by 2b by the
definition of β. Among any 2b consecutive integers, exactly one has this property. J

Figure 1 shows the partition of the range (0, i] into intervals having lengths that are
powers of 2 (except for the leftmost interval). In general, this partition consists of the
following intervals, right to left:

(i−2qε+2, i], (i−2qε+3, i−2qε+2], . . . , (i−2k, i−2k−1], (0, i−2k], where k = dlogne−1. (3)

Lemma 13 and (2) imply the following lemma on the distribution of the elements of SP .

I Lemma 14. After each iteration, the first interval (resp., the last interval; each of the
remaining intervals) in (3) contains 2qε+2 (resp., at most 2qε+1; exactly 2qε+1) elements of
the list SP .

The number of the intervals in (3) is O(logn), so from Lemma 14 and the definition of qε

I Lemma 15. After each iteration, the size of the list SP is O
( logn

ε

)
.

I Proposition 16. Algorithm MBasic finds a palindrome of length `(S) ≥ L(S)
1+ε using O( logn

ε )
time per iteration and O( logn

ε ) space.

Proof. Both the time per iteration and the space are dominated by the size of the list SP .
Hence the required complexity bounds follow from Lemma 15. For the proof of correctness,
let S[i..j] be a palindrome of length L(S). Further, let d = blogL(S)c.

If d < qε + 2, the palindrome S[i..j] will be found exactly, because I(i) is in SP at the
jth iteration:

i+ ttl(i) ≥ i+ 2qε+2 ≥ i+ 2d+1 > i+ L(S) > j .

Otherwise, by Lemma 13 there exists a unique k ∈ [i, i+ 2d−qε−1) such that ttl(k) ≥ 2d+1.
Hence at the iteration j− (k− i) the palindrome S[i+(k−i)..j−(k−i)] will be found, because
I(k) is in SP at this iteration:

k + ttl(k) ≥ i+ ttl(k) ≥ i+ 2d+1 > j ≥ j − (k − i) .
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The length of this palindrome satisfies the requirement of the proposition:

j−(k−i)−(i+(k−i))+1 = L(S)−2(k−i) ≥ L(S)−2d−qε ≥ L(S)− L(S)
2qε ≥ L(S)

(
1− ε2

)
.

The reference to Lemma 12 finishes the proof. J

Now we speed up Algorithm MBasic. It has two slow parts: deletions from the list SP
and checks for palindromes. By Lemmas 17, 18, O(1) checks is enough at each iteration.

I Lemma 17. Suppose that at some iteration the list SP contains consecutive elements
I(d), I(c), I(b), I(a). Then b− a ≤ d− b.

Proof. Let j be the number of the considered iteration. Note that a < b < c < d. Consider
the interval in (3) containing a. If a ∈ (j − 2qε+2, j], then b − a = 1 and d − b = 2, so
the required inequality holds. Otherwise, let a ∈ (j − 2qε+2+x, j − 2qε+2+x−1]. Then by (2)
β(a) ≥ x; moreover, any I(k) such that a < k ≤ j and β(k) ≥ x is in SP . Hence, b− a ≤ 2x.
By Lemma 14 each interval, except for the leftmost one, contains at least 2qε+1 ≥ 4 elements.
Thus each of the numbers b, c, d belongs either to the same interval as a or to the previous
interval (j − 2qε+2+x−1, j − 2qε+2+x−2]. Again by (2) we have β(b), β(c), β(d) ≥ x− 1. So
c−b, d−c ≥ 2x−1, whence the result. J

We call an element v of SP valuable at ith iteration if i − v.i + 1 > answer.len and
S[v.i..i] can be a palindrome. (That is, Algorithm MBasic does not store enough information
to predict that the condition in its line 7 is false for v.)

I Lemma 18. At each iteration, SP contains at most three valuable elements. Moreover, if
I(d′), I(d) are stored in consecutive elements of SP and i− d′ < answer.len ≤ i− d, where
i is the number of the current iteration, then the valuable elements are consecutive in SP ,
starting with the one containing I(d).

Proof. Let d be as in the condition of the lemma and v be the element containing I(d). If v
is followed in SP by at most two elements, we are done. If it is not the case, let the three
next elements be v1, v2, v3, containing I(c), I(b), I(a) respectively. If S[v3.i..i] = S[a..i] is a
palindrome then S[a+(b−a)..i−(b−a)] is also a palindrome. At the iteration i−(b−a) the
set I(b) was in SP , so this palindrome was found. Hence, at the ith iteration the value
answer.len is at least the length of this palindrome, which is i − a + 1 − 2(b − a). By
Lemma 17, b− a ≤ d− b, implying answer.len ≥ i− a+ 1− (b− a)− (d− b) = i− d+ 1.
This inequality contradicts the definition of d; hence, S[a..i] is not a palindrome. By the
same argument, the elements following v3 in SP do not produce palindromes as well. Thus,
only the elements v, v1, v2 are valuable. J

Now we turn to deletions. The function ttl(x) has the following nice property.

I Lemma 19. The function x→ x+ ttl(x) is injective.

Lemma 19 implies that at most one element is deleted from SP at each iteration. To
perform this deletion in O(1) time, we need an additional data structure. By BS(x) we
denote a linked list of maximal segments of 1’s in the binary representation of x. For example,
the binary representation of x = 12345 and BS(x) are as follows:

13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 0 0 0 1 1 1 0 0 1 BS(12345) = {[0, 0], [3, 5], [10, 10], [12, 13]}

Clearly, BS(x) uses O(log x) space. The following lemma is easy.
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Algorithm 4 Algorithm M, ith iteration.
1: add I to the beginning of SP
2: if i = 1 then
3: sp← first(SP )
4: compute BS[i] from BS; BS ← BS[i]; compute β(i) from BS

5: if QU(β(i)) is not empty then
6: v ← element of SP pointed by first(QU(β(i)))
7: if v = sp then
8: sp← next(sp)
9: delete v; delete first(QU(β(i)))

10: add pointer to first(SP ) to QU(β(i))
11: read S[i]; compute I(i+ 1) from I; I ← I(i+ 1)
12: sp← previous(sp) . if exists
13: while i− sp.i+ 1 ≤ answer.len and sp 6= last(SP ) do
14: sp← next(sp)
15: for all existing v in {sp, next(sp), next(next(sp))} do
16: if S[v.i..i] is a palindrome and answer.len < i−v.i+1 then
17: answer ← (v.i, i−v.i+1)

I Lemma 20. Both β(x) and BS(x+ 1) can be obtained from BS(x) in O(1) time.

Thus, if we support one list BS which is equal to BS(i) at the end of the ith iteration,
we have β(i). If I(a) should be deleted from SP at this iteration, then β(a) = β(i) (see
Lemma 19). The following lemma is trivial.

I Lemma 21. If a < b and ttl(a) = ttl(b), then I(a) is deleted from SP before I(b).

By Lemma 21, the information about the positions with the same ttl (in other words,
with the same β) are added to and deleted from SP in the same order. Hence it is possible
to keep a queue QU(x) of the pointers to all elements of SP corresponding to the positions
j with β(j) = x. These queues constitute the last ingredient of our real-time Algorithm M.

Proof of Theorem 11. After every iteration, Algorithm M has the same list SP (see Fig. 1)
as Algorithm MBasic, because these algorithms add and delete the same elements. Due
to Lemma 18, Algorithm M returns the same answer as Algorithm MBasic. Hence by
Proposition 16 Algorithm M finds a palindrome of required length. Further, Algorithm M
supports the list BS of size O(logn) and the array QU containing O(logn) queues of total
size equal to the size of SP . Hence, it uses O( logn

ε ) space in total by Lemma 15. The cycle
in lines 13–14 performs at most three iterations. Indeed, let z be the value of sp after the
previous iteration. Then this cycle starts with sp = previous(z) (or with sp = z if z is the
first element of SP ) and ends with sp = next(next(z)) at the latest. By Lemma 20, both
BS(i) and β(i) can be computed in O(1) time. Therefore, each iteration takes O(1) time. J

I Remark. Since for ε ≤ 1 the classes O
( logn

log(1+ε)
)
and O

( logn
ε

)
coincide, Algorithm M uses

space within a logn factor from the lower bound of Theorem 6. Further, let ε = ε(n) be a
growing function. Algorithm M can be transformed, with some additional technicalities, into
a real-time algorithm which solves LPS(S) with the multiplicative error ε using O

( logn
log(1+ε)

)
space. The basic idea of transformation is to replace all binary representations with those in
base proportional to 1 + ε, and thus shrink the size of the lists SP and BS.
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3.3 The Case of Short Palindromes
A typical string contains only short palindromes, as Lemma 22 below shows (for more
on palindromes in random strings, see [14]). Knowing this, it is quite useful to have a
deterministic real-time algorithm which finds a longest palindrome exactly if it is “short”,
otherwise reporting that it is “long”. This idea is formalized in Theorem 23. Its proof is based
on a modification of the Manacher’s algorithm with a sliding window and lazy computation.

I Lemma 22. If an input stream S ∈ Σ∗ is picked up uniformly at random among all strings
of length n, where n ≥ |Σ|, then for any positive constant c the probability that S contains a
palindrome of length greater than 2(c+1) logn

log |Σ| is O(n−c).

I Theorem 23. Let m be a positive integer. There exists a deterministic real-time algorithm
working in O(m) space, which solves LPS(S) exactly if L(S) < m, and otherwise finds a
palindrome of length m or m+1 as an approximate solution to LPS(S).

I Remark. Lemma 22 and Theorem 23 show a “practical” way to solve LPS. For example,
one can run Algorithm M and Algorithm E, both in O(logn) space, in parallel. Then either
Algorithm E will give an exact answer (which happens with high probability if the input
stream is a “typical” string) or both algorithms will produce approximations: one of fixed
length and one with an approximation guarantee (modulo the hash collision).
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