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Abstract
Questions of noise stability play an important role in hardness of approximation in computer
science as well as in the theory of voting. In many applications, the goal is to find an optimizer
of noise stability among all possible partitions of Rn for n ≥ 1 to k parts with given Gaussian
measures µ1, . . . , µk. We call a partition ε-optimal, if its noise stability is optimal up to an
additive ε. In this paper, we give an explicit, computable function n(ε) such that an ε-optimal
partition exists in Rn(ε). This result has implications for the computability of certain problems
in non-interactive simulation, which are addressed in a subsequent work.
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1 Introduction

1.1 Isoperimetric Theory and Noise Stability
Isoperimetric problems have been studied in mathematics since antiquity. The solution to
the isoperimetric problem in the two dimensional Euclidean plane was known in ancient
Greece. The study of isoperimetric problems is central in modern mathematics and theoretical
computer science. Some central examples include the study of expanders and mixing of
Markov chains.

Our interest in this work is in a central modern isoperimetric problem, i.e, the problem
of noise stability. This problem, originally studied by Borell in relation to the study of the
heat equation in mathematical physics [3], has emerged as a central problem in theoretical
computer science [13], as well as in combinatorics and in voting theory [11] as we elaborate
below.

The fundamental question in this area is to find a partition of Gaussian space (with
prescribed measures) which maximizes the noise stability of the partition. We equip Rn
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10:2 Noise Stability Is Computable and Approximately Low-Dimensional

with the standard Gaussian measure γn, i.e. the measure with density (2π)−n/2 exp(−|x|2/2),
where |x| denotes the Euclidean norm. The Ornstein-Uhlenbeck operator Pt is defined for
t ∈ [0,∞) and (sufficiently integrable) f : Rn → R by

(Ptf)(x) =
∫
y∈Rn

f(e−t · x+
√

1− e−2t · y)dγn(y).

The resulting notion of noise stability is defined by Stabt(f) := E[fPtf ], where the expectation
is with respect to γn. If f denotes the indicator function of a set (call it Af ), then Stabt(f)
is the probability that two e−t-correlated Gaussian random variables x, y both fall in Af .
In the limit t→ 0, noise stability captures the Gaussian surface area of the set Af [15]. In
particular, we have the following relation for any set:

GAS(Af ) = lim
t↓0

√
2π

arccos(e−t) ·E[f · (f − Ptf)],

where GAS(Af ) denotes the Gaussian surface area of the set Af .

1.2 Halfspaces are most stable sets
For both noise stability and surface area, halfspaces are known to be the optimal sets [2, 20,
3, 1]. We will state this fact in a slightly convoluted way, in order to more easily generalize
it. Let ∆k denote the probability simplex in Rk (i.e. the convex hull formed by the standard
unit vector {e1, . . . , ek}). Any function with range [k] := {1, . . . , k} naturally embeds in
∆k by identifying i ∈ [k] with ei. Moreover, we extend the Ornstein-Uhlenbeck operator
to act on vector valued functions in the obvious way: if f = (f1, . . . , fk) : Rn → Rk then
Ptf = (Ptf1, . . . , Ptfk). Finally, say that f = (f1, f2) : Rn → ∆2 is a halfspace if there exist
a, b ∈ Rn such that f1(x) = 1{〈x−a,b〉≤0}, where 〈·, ·〉 denotes the Euclidean inner product.

I Theorem 1 (Borell). For any g : Rn → ∆2, a halfspace f : Rn → ∆2 with E[f ] = E[g]
satisfies

E[〈f, Ptf〉] ≥ E[〈g, Ptg〉].

Theorem 1 has many applications in computational complexity. Most famously, it
can be combined with an invariance principle [16] in order to prove a number of tight
hardness-of-approximation results under the unique games conjecture [12].

1.3 More parts?
It is straightforward to extend the notion of noise stability to partitions with many parts.
Namely, a partition of Rn can be described by f : Rn → [k]. Identifying [k] with {e1, . . . , ek}
as above, we define the noise stability of such a partition by E[〈f, Ptf〉]. One may then ask
for an analogue of Theorem 1, but where ∆2 is replaced by ∆k for some k ≥ 3.

Even the three-part version of Theorem 1 turns out to be rather harder than the two-part
one. We will try to explain why, by analogy with isoperimetric problems. First of all, in the
limit as t ↓ 0, the Euclidean analogue of Theorem 1 for k = 3 is known as the “double bubble”
problem. The well-known “double bubble conjecture” states that the minimum total surface
area of two bodies separating and enclosing two given (Lebesgue) volumes is achieved by
two spheres meeting at 120◦. After being open for more than a century, this problem was
settled rather recently in R2, R3, and R4 [9, 10, 19]. For the Gaussian space, [4] showed that
for some small but positive constant c > 0, the Gaussian surface area of three partitions is
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minimized by the “standard simplex partition” as long as the measures of all the three parts
is within 1/3± c; a standard simplex partition is one with three flat boundaries which meet
at a single point at 120◦ angles.

Since halfspaces both maximize noise stability and minimize Gaussian surface area, and
since the standard simplex partition is known to minimize multi-part Gaussian surface area
in certain cases, it seems natural to guess that the standard simplex partition also maximizes
multi-part noise stability. This was explicitly conjectured in [12], in the special case that all
of the parts in the partition have equal measure. However, a somewhat surprising (at least
to the authors) recent work [7] showed that the standard simplex partition fails to maximize
multi-part noise stability unless all of the parts have equal measure. On the other hand,
there is also some support for the conjecture in the equal-measure case: Heilman [8] showed
that the conjecture is true in Rn for n ≤ n0(t).

1.4 Approximate noise stability of multipartitions?
In light of the uncertainty about optimal partitioning for k ≥ 3, one can ask a more modest
question. Given k ≥ 3, t > 0, and prescribed measures for the k parts, let αn be the optimal
noise stability that can be obtained in Rn under these constraints. Since the Gaussian
measure is a product measure, αn is clearly non-increasing in n. Since it is bounded below
by zero, it has a limit as n→∞.

Our main result is that there is an explicitly computable n0 = n0(k, t, ε) such that
αn0 ≥ αm − ε for all m ∈ N. Although the bound on n0 that we give is not particularly
good, the key point is that it is explicitly computable. As a consequence, up to error ε, the
noise stable partition is also explicitly computable. We conclude the introduction by an open
question:

I Question. Does there exists n0 such that αn0 = αn for n > n0?

Our current techniques are not suitable for addressing the question above.

2 Main theorem and overview of proof technique

In order to state the main theorem, we first need to recall the notion of a polynomial threshold
function. A function f : Rn → {0, 1} is said to be a degree-d PTF if there exists a polynomial
p : Rn → R of degree d such that f(x) = 1 if and only if p(x) > 0. We will need a k-ary
generalization of this definition. We note that there are several possible ways to generalize
the notion of PTFs to k-ary PTFs and our particular choice is dictated by the convenience of
using the relevant results from [5].

I Definition 2. A function f : Rn → [k] is said to be a multivariate PTF if there exist
polynomials p1, . . . , pk : Rn → R such that

f(x) =
{
j if pj(x) > 0 and for i 6= j, pi(x) ≤ 0 ,
1 otherwise .

In this case, we denote f = PTF(p1, . . . , pk). Further, f is said to be a degree-d multivariate
PTF if p1, . . . , pk are degree d polynomials.

We now state the main theorem of this paper. We set the convention, that unless explicitly
mentioned otherwise, the underlying distribution is γn, the standard n-dimensional Gaussian
measure. Likewise, given any random variable X over Rk, E[X] denotes its (vector-valued)
expectation and Var(X) denotes its covariance matrix.
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I Theorem 3. Let f : Rn → [k] such that E[f ] = µ ∈ Rk. Then, given any t > 0, ε > 0,
there exists an explicitly computable n0 = n0(t, k, ε) and d = d(t, k, ε) such that there is a
degree-d PTF g : Rn0 → [k] such that:
1. ‖E[f ]−E[g]‖1 ≤ ε,
2. E[〈g, Ptg〉] ≥ E[〈f, Ptf〉]− ε.

Note that the above theorem automatically implies that a function g satisfying the above
properties can be explicitly computed (up to some additional error ε). This is because the
set of degree-d PTFs on Rn0 admits a finite sized explicitly enumerable ε-cover.

2.1 From general partitions to PTF
The first step in the proof of Theorem 3 is to show that given any f : Rn → [k], there
is a multivariate PTF g′ : Rn → [k] which meets the two criteria in Theorem 3 and
has degree d = d(t, k, ε), for some explicit function d(t, k, ε). In other words, g′ satisfies
‖E[f ]−E[g′]‖1 ≤ ε and Stabt(g′) ≥ Stabt(f ′)− ε. Note that the main difference between the
desired conclusion of Theorem 3 and what is accomplished in this step is that the ambient
dimension remains n as opposed to a bounded dimension n0.

Why is this true? The basic intuition is that if f is noise stable then it should have most
of its Hermite expansion weight at low degree. Therefore we should be able to replace f
with the PTF where the polynomial is the truncated expansion of f . There are a number of
challenges in formalizing this intuition:
1. We cannot rule out that a positive fraction of the weight of f is at high degrees (perhaps

as large as n);
2. it is not clear that the PTF obtained this way is noise stable; nor that
3. it has the right expected value.

Our analysis proceeds as follows. We would like to construct g′ from f by “rounding” Ptf
for some small t. The advantage of Ptf over f is that Ptf is guaranteed to have decaying
tails. The rounding of Ptf can be performed given some a ∈ Rn by considering the function
ga : Rn → [k] which takes the value i whenever i is the largest coordinate of Ptf − a. It is
not hard to prove that it is possible to choose a such that E[ga] = E[f ]; moreover, one can
show that this function ga has better noise stability than f does. The main obstacle is that
the function ga is not a PTF. Unfortunately the Hermite decay of Ptf does not translate
to Hermite decay of ga. Instead we use smoothed analysis to show that for most a’s, ga
has Hermite decay and can therefore be well approximated by PTF. The smoothed analysis
argument uses the co-area formula and gradient bounds and draws on ideas from [17, 14].

2.2 From PTF in dimensionn to a small PTF of bounded degree
polynomials

Given the function g′ : Rn → [k] of degree d = d(t, k, ε), our next goal is show it is possible
to obtain a PTF g on some n0 = n0(t, k, ε) variables such that (i) ‖E[g]−E[g′]‖1 ≤ ε and
(ii) Z|〈g, Ptg〉 − 〈g′, Ptg′〉| ≤ ε. This part builds on and extends the theory and results of [5].
The key notion introduced in [5] is that of an eigenregular polynomial. Namely, a polynomial
is said to be δ-eigenregular if for the canonical tensor Ap associated with the polynomial, the
ratio of the maximum singular value to its Frobenius norm is at most δ (the tensor notions
are explicitly defined later).

The key advantage of this definition is that as shown in [5], when δ → 0, the distribution
of p (under γn) converges to a normal. In other words, eigenregular polynomials obey a



A. De, E. Mossel, and J. Neeman 10:5

central limit theorem. In fact, given k polynomials p1, . . . , pk which are δ-eigenregular, they
also obey a multidimensional central limit theorem.

The regularity lemma from [5] implies that the polynomials p1, . . . , pk can be jointly
expressed as bounded (in terms of t, k and ε) size polynomials in eigenregular homogenous
polynomials {In(ps,q,`)} where 1 ≤ s ≤ k, 1 ≤ q ≤ d and 1 ≤ ` ≤ num(s, q). In other words,
we may write ps = Out(ps)({In(ps,q,`)}q∈[d],`∈[num(s,q)]), where num(s) =

∑d
q=1 num(s, q) is

bounded in terms of t, k and ε and all the Inner polynomials are δ-eigenregular.
[5] used the statement above to conclude that the joint distribution of p1, . . . , pk can be

approximated in a bounded dimension as we can replace each of the inner polynomials by a
one dimensional Gaussian. For our application things are more delicate, as we are not only
interested in the joint distribution of p1, . . . , pk but also in the noise stability of p1, . . . , pk.
For this reason it is important for us to maintain the degrees of the inner polynomials (each
of which is homogenous) and not replace them with Gaussians.

2.3 A small PTF representation
In the final step of the proof, we maintain Out(ps) and show how that polynomials {In(ps,q,`)}
can be replaced by a collection of polynomials {In(rs,q,`)} in bounded dimensions (in t, k
and ε) thus completing the proof. The fact that a collection of homogenous polynomials
can be replaced by polynomials in bounded dimensions is a tensor analogue of the fact that
for any k vectors in Rn, there exist k vectors in Rk with the same matrix of inner products.
Once such polynomials are found, it is not hard to construct eigenregular polynomials from
them by averaging the polynomials over independent copies of random variables.

3 Applications

Given the wide applicability of Borell’s isoperimetric result to combinatorics and theoretical
computer science, we believe that Theorem 3 will also be widely applicable. We will now
point out some applications of this theorem. First, by combining Theorem 3 with the
invariance principle [16], we derive a weak k-ary analogue of “Majority is Stablest”. The
analogue of the Ornstein-Uhlenbeck operator is the so-called Bonami-Beckner operator
defined as follows: for ρ ∈ [−1, 1] and x ∈ {−1, 1}n, let Dρ(x) be the product distribution
over {−1, 1}n such that for y ∼ Dρ(x), for all 1 ≤ i ≤ n, E[xiyi] = ρ. Then, for any
f : {−1, 1}n → Rk, Tρf(x) = Ey∼Dρ(x)[f(y)]. Likewise, for any i ∈ [n] and z ∈ {−1, 1}n−1,
let fz,−i : {−1, 1} → Rk denote the function obtained by restricting all but the ith coordinate
to z. Then, Var(fz,−i) = Ez[‖fz,−i −Ez[fz,−i]‖2

2]. Define the influence of the ith coordinate
on f by

Infi(f) = Ez∈{−1,1}n−1 [Var(fz,−i)].

I Theorem 4. Given any k ∈ N and ρ ∈ [0, 1], ε > 0, ∃n0 = n0(k, ε, ρ), C = C(k, ε, ρ) (which
is explicitly computable) such that the following holds: For any µ = (µ1, . . . , µk) ∈ ∆k and
n ≥ n0, there is an explicitly computable g = gµ,ρ,ε : {−1, 1}n → [k] such that maxi Infi(g) ≤
C/
√
n and |Prx∈{−1,1}n0 [g(x) = i]− µi| ≤ C/

√
n and for any f : {−1, 1}n → [k] such that

|Prx∈{−1,1}n [f(x) = i]− µi| ≤ ε and maxi Infi(f) ≤ ε,

E[〈f, Tρf〉] ≤ E[〈g, Tρg〉] + 2kε.

We give a brief sketch of the proof, which is a straightforward consequence of the invariance
principle in one direction and the central limit theorem in the other. First, the invariance

CCC 2017



10:6 Noise Stability Is Computable and Approximately Low-Dimensional

principle implies that the discrete noise stability cannot be much larger than the best Gaussian
noise stability. It remains, then, to construct a boolean function g whose noise stability is
almost the same as the best possible Gaussian noise stability. For this, suppose that n = n1n2
(for some n1 and n2 that will need to be sufficiently large), and let h : Rn1 → [k] have almost
optimal Gaussian noise stability. Then define the boolean function g(x) = h(z(x)), where
z ∈ Rn1 has ith coordinate n−1/2

2
∑(i+1)n2
j=in2+1 xj . When n2 is sufficiently large, the central

limit theorem implies that the boolean noise stability of g is approximately the Gaussian
noise stability of h, and so it is almost optimal.

The same result holds for other domains, for example for f, g : [k]n → [k]. In particular,
the case where (µ1, . . . , µk) = (1/k, . . . , 1/k) implies that in a tied elections between k

alternatives, we can find an ε-optimally robust noise stable voting rule, where the stability is
with respect of each candidate randomizing their vote independently with probability 1− ρ.

3.1 Relationship to rounding of SDPs
To the best of our knowledge our results are independent of the the results of Raghavendra
and Steurer [18] who showed that for any CSP, there is an a rounding algorithm that is
optimal up to ε, whose running time is polynomial in the instance size and doubly exponential
in 1/ε. It is natural to suspect that the two results are related, since there are well-known
connections between SDP rounding and Gaussian noise stability.

However, the usual analysis relating rounding to Gaussian noise stability seems to require
that halfspaces maximize noise stability for all possible values of the noise. In our results,
this property does not necessarily hold.

In the other direction, it is tempting to try to cast the noise stability problem as
an optimization problem on Gaussian graphs and then apply the results of Steurer and
Raghavendra to obtain explicit bounds on the dimension where an almost optimal solution
can be achieved. It is hard to implement this approach for two reasons: first, we do not
know the SDP solution for the Gaussian graph; second, we are interested in the optimal
solution and it is not clear what is the relation between the best integral solution and the
SDP solution for the Gaussian graph.

While we do not see how to formally relate the two works, connecting the two (if possible)
would surely yield important insights.

3.2 Non-interactive correlation distillation
Next, we talk about a basic problem in information theory and communication complexity
which was recently considered in the work of Ghazi, Kamath and Sudan [6]. Let there be two
non-communicating players Alice and Bob who have access to independent samples from a
joint distribution P = (X,Y) on the set A×B. In other words, Alice (resp. Bob) have access
to (x1, x2, . . . , ) (resp. (y1, y2, . . .)) such that xi ∈ A, yi ∈ B and for each i ∈ N, (xi, yi) is
distributed according to P, and the random variables {(xi, yi)}ni=1 are mutually independent.
Let µ = (µ1, . . . , µk) ∈ ∆k and ν = (ν1, . . . , νk) ∈ ∆k. What is the maximum κ ∈ [0, 1] such
that Alice and Bob can non-interactively jointly sample a distribution Q on [k]× [k] such
that the distribution of the marginals of Alice and Bob are µ and ν respectively and they
sample the same output with probability κ?

To formulate this problem more precisely, we introduce some notation. Let Xn =
(X1, . . . ,Xn) and Yn = (Y1, . . . ,Yn), where (Xi,Yi) are independently drawn from P.
Now, note that a non-interactive protocol for Alice and Bob is equivalent to a pair (f, g)
where f : An → [k] and g : Bn → [k] (for some n ∈ N). In this terminology, the question
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now becomes the following: given µ, ν, do there exist n and f : An → [k] and g : Bn → [k]
such that f(Xn) ∼ µ, g(Yn) ∼ ν, and Pr(f(Xn) = g(Yn)) = κ?

Before we state the main result of [6] and our extension, we consider a motivating example.
Let A = B = R and let P = (X,Y) be two ρ-correlated standard Gaussians. Let k = 2
and µ = ν. Then, Borell’s isoperimetric theorem (Theorem 1) states that the maximum
achievable κ is given by

κ = Pr
X,Y

[f(X) = f(Y)],

where f : R → ∆2 is a halfspace with measure µ. Thus, in the above case, n = 1 suffices
and f = g is the halfspace whose measure is µ. We now state the main result of [6]. For
the result below, for probability distribution P, we let |P| denote the size of some standard
encoding of P.

I Theorem 5. [Ghazi-Kamath-Sudan] Let (A×B,P) be a probability space, and let Xn and
Yn be as above. There is an algorithm running in time O|P|,δ(1) such that given µ and ν in
∆2 and a parameter κ ∈ [0, 1], it distinguishes between the following two cases:
1. There exist n ∈ N, f : An → {0, 1} and g : Bn → {0, 1} such that f(Xn) ∼ µ, g(Yn) ∼ ν,

and Pr(f(Xn) = g(Yn)) ≥ κ− δ. In this case, there is an explicit n0 = n0(|P|, δ) such
that we may choose n ≤ n0. Further, the functions f and g are explicitly computable.

2. For any n ∈ N and f : An → {0, 1} and g : Bn → {0, 1}, if g : Bn → {0, 1} satisfy
f(Xn) ∼ µ and g(Yn) ∼ ν then Pr(f(Xn) = g(Yn)) ≤ κ− 8δ.

In other words, the above theorem states that there is an algorithm which, given P, target
marginals µ, ν, and correlation κ, can distinguish between two cases: (a) In the first case, it
is possible for Alice and Bob to non-interactively simulate a distribution which has the correct
marginals and achieves the correlation κ up to δ. In this case, there is an explicit bound
on the number of copies of P required and the algorithm also outputs the functions f, g
used for the non-interactive simulation. (b) In the second case, no non-interactive protocol
between Alice and Bob can simulate a distribution that has the correct marginals and target
correlation to error at most 8δ.

We remark that the requirement for the marginals to match exactly is unimportant.
Indeed, any protocol where the marginals match approximatly can be “fixed” to have exact
marginals, with a small loss in the correlation.

The main restriction of Theorem 5 is that the output of the non-interactive protocol
is a pair of bits. Theorem 3 immediately implies the following modification of Theorem 5:
we may replace {0, 1} by [k] wherever it appears, provided that we also assume that P is
a Gaussian measure. In the best of both worlds, we would be able to replace {0, 1} by [k]
without adding the assumption that P is a Gaussian measure. Using the methods we develop
here, this also turns out to be possible; we provide details in a follow-up work.

4 Reduction from arbitrary functions to PTFs

In this section, we will prove that given any k-ary function with a given set of measures for
each of the k-partitions, there is a multivariate PTF with nearly the same measures for the
induced partitions which is a multivariate PTF and (up to an error ε), no less noise stable at
a fixed noise rate t. This is the first step (“from general partitions to PTF”) of the proof
sketch in Section 2.

For technical reasons, we will also require the PTFs to satisfy a property which we refer
to as (d, δ)-balanced defined below.

CCC 2017
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I Definition 6. A degree-d multivariate PTF f = PTF(p(1), . . . , p(k)) is said to be (d, δ)-
balanced if each p(i) has variance 1 and |E[p(i)]| ≤ logd/2(k · d/δ).

We ask the reader to observe that the first condition (namely, Var(p(i)) = 1) can be achieved
without loss of generality by simply scaling all the polynomials to have variance 1. This
scaling does not change the value of the PTF at any point x. While the condition on
expectation is non-trivial, the next proposition says that any multivariate PTF can be
assumed to be (d, δ)-balanced while only changing the value of the PTF at δ-fraction of
places.

I Lemma 7. Let f : Rn → [k] defined as f = PTF(p(1), . . . , p(k)). Then, there is a
(d, δ)-balanced multivariate PTF g : Rn → [k] defined as g = PTF(q(1), . . . , q(k)) such that
Prx[g(x) 6= f(x)] ≤ δ. Further, Prx[x ∈ Collision(g)] ≤ Prx[x ∈ Collision(f)] + δ. In fact, the
polynomials {q(i)} are linear translations of the polynomials {p(i)}.

The proof of the lemma is deferred to the full version of the paper. The next theorem is the
main result of this section namely, that given any function f : Rn → [k], it is possible to
obtain a multivariate (d, ε) balanced PTF g (for some explicit d = Oε,k(1)) such that the
resulting PTF g has nearly the same partition sizes and noise stability. Further, Collision(g)
has small probability.

I Theorem 8. Let f : Rn → [k] satisfy E[f ] = µ where µ = (µ1, . . . , µk). Then, for every
ε > 0, there exists a multivariate PTF g : Rn → [k] of degree d = d(k, ε) such that
‖E[g]− µ‖1 ≤ ε,
〈g, Ptg〉 ≥ 〈f, Ptf〉 − ε,
Pr[x ∈ Collision(g)] ≤ ε, and
g is (d, ε)-balanced.

We will prove Theorem 8 in two parts. The first step is to show that we can replace f by
a function with explicit Hermite decay:

I Lemma 9. For every f : Rn → [k] and every ε > 0, there exists a function h : Rn → [k]
satisfying the following:

E[h] = E[f ],
〈h, Pth〉 ≥ 〈f, Ptf〉 − ε,
W>d[h] ≤ ε for some explicit d = d(k, ε).

The second step in the proof of Theorem 8 goes from explicit Hermite decay to an actual
PTF:

I Lemma 10. Let h : Rn → [k] such that W>d[h] ≤ ε. Then, there is a PTF g : Rn → [k]
of degree d such that Ex[g(x) 6= h(x)] ≤ k2 · ε. Further, Prx[x ∈ Collision(h)] ≤ k2 · ε.

It is easy to see that Theorem 8 follows in a straightforward way by combining Lemma 9 and
Lemma 10. Note that the condition of g being (d, ε)-balanced is obtained by simply applying
Proposition 7.

While we defer the proof of both Lemma 9 and Lemma 10 to the full version, as the proof
of Lemma 9 is more non-standard, we give a brief overview here. The first observation is that
bounding E[|∇h|] implies a bound on W>d[h]. This follows a standard spectral argument
stated below.

I Lemma 11. Let f : Rn → [0, 1] be of bounded variation. Then,

W≥d[f ] ≤ O
(

1√
d

)
·E[|∇f |].
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The second observation is that the function h obtained by thresholding Ptf at a suitable
value (chosen, for example, so that E[h] = E[f ]) satisfies 〈h, Pth〉 ≥ 〈f, Ptf〉. This is stated
below.

I Lemma 12. Let f : Rn → {e1, . . . , ek} and take t > 0. If g ∈ Tz(f) for some z ∈ Rk
satisfies E[g] = E[f ] then Stabt(g) ≥ Stabt(f).

Based on the previous paragraph, it seems like we would like to bound E[|∇h|] where h is
obtained by thresholding Ptf ; let a ∈ Rk be the desired threshold value, so that thresholding
Ptf at a produces a partition with the right measures. It turns out, unfortunately, that for h
defined in this way, E[|∇h|] could be arbitrarily large. A key insight of [14] is that (using the
co-area formula and gradient bounds on Ptf) the partition produced by thresholding at a
random value near a has bounded expected surface area. In particular, although thresholding
exactly at a might be a bad idea, there exist many good nearby values at which to threshold.
Based on this observation, we construct h in two steps. In the first step, we define h by
thresholding Ptf , but only on the set of x ∈ Rn for which Ptf(x) is not too close to a. By
choosing “not too close” in a suitable random way, the observation of [14] implies that this
step only contributes a bounded amount to E[|∇h|]. Since the first step is almost the same
as just thresholding Ptf at a, it is consistent with our desire that 〈h, Pth〉 ≥ 〈f, Ptf〉 − ε.

In the second step, we partition the remaining part of Rn by chopping it with halfspaces
of the correct size. Since halfspaces have a bounded surface area, this also contributes a
bounded amount to E[|∇h|]. Crucially, this step does not destroy the value of 〈h, Pth〉;
fundamentally, this is because Ptf is almost constant on the set we are partitioning. The
actual details of the proof of Lemma 10 can be found in the full version. Let us now move to
the second major technical ingredient of this paper.

5 Reduction from PTFs to PTFs on a constant number of variables

The second big technical ingredient required in the paper is the following:

I Theorem 13. Let f : Rn → [k] be a degree-d, (d, ε)-balanced PTF with Ex[f(x)] = µ where
µ = (µ1, . . . , µk). Further, let us assume that Pr[x ∈ Collision(f)] ≤ ε/(40k2). Then, for
every ε > 0, there exists a degree-d PTF fjunta : Rn0 → [k] such that:
‖Ex[fjunta(x)]− µ‖1 ≤ ε,
〈fjunta, Ptfjunta〉 ≥ 〈f, Ptf〉 − ε.

Further, n0 = n0(d, k, ε) is an explicitly defined function.

The above theorem states that given a degree-d multivariate PTF over n variables, there
is another multivariate PTF which induces approximately the same partition sizes and has
approximately the same noise stability (at any fixed noise rate t) but the new PTF is only
over some (explicitly defined) Od,t(1) variables. The main workhorse for proving this thoerem
are two structural theorems for low-degree polynomials proven in [5]. Unfortunately, even
stating these theorems require significantly cumbersome technical definitions. In particular,
we will need to define the relation between polynomials and tensors and then define the
notion of an ε-eigenregular polynomial. We avoid doing that in this version of the paper and
refer the reader to the full version of the paper. However, we observe that Theorem 3 follows
very easily by combining Theorem 13 and Theorem 8.

Proof of Theorem 3

Let us us assume that given measure µ = (µ1, . . . , µk) and noise rate t > 0, the most
noise stable partition is f : Rn → [k]. Then, applying Theorem 8 (with error parameter
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ε/(40k2)), we obtain a PTF g1 of degree d = Ok,ε(1) such that it is (d, ε/2) balanced and
Pr[x ∈ Collision(g1)] ≤ ε/(40k2). Further, note that ‖E[g1]−E[f ]‖1 ≤ ε/2 and 〈g1, Ptg1〉 ≥
〈f, Ptf〉 − ε/2.

We next apply Theorem 13 on this function g1 to obtain fjunta which is a degree-d
PTF on n0 = Od,ε,k(1) variables such that ‖E[g1]−E[fjunta]‖1 ≤ ε/2 and 〈fjunta, Ptfjunta〉 ≥
〈g1, Ptg1〉 − ε/2.

Combining these two facts, we obtain ‖E[g1] − E[fjunta]‖1 ≤ ε and 〈fjunta, Ptfjunta〉 ≥
〈f, Ptf〉 − ε. Setting g = fjunta concludes the proof.
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