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Abstract
In this paper, we consider asynchronous programs consisting of multiple recursive threads running
in parallel. Each of the threads is equipped with a multi-set. The threads can create tasks and
post them onto the multi-sets or read a task from their own. In addition, they can synchronise
through a finite set of locks. In this paper, we show that the reachability problem for such class
of asynchronous programs is undecidable even under the nested locking policy. We then show
that the reachability problem becomes decidable (Exp-space-complete) when the locks are not
allowed to be held across tasks. Finally, we show that the problem is NP-complete when in
addition to previous restrictions, threads always read tasks from the same state.
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1 Introduction

Asynchronous programming is widely used in building efficient and responsive software. Jobs
are decomposed in tasks that are delegated to different threads running in parallel. These
threads share a global memory, and they also have their own local memory. In addition, each
thread has an unbounded buffer where the tasks posted to the thread are stored. These tasks
are handled by the thread in a serial manner, i.e., by running each task until completion before
taking another one. Each task corresponds to the execution of a sequential program that
can access both (thread-)local and global variables, call (potentially recursive) procedures,
and create new tasks that are posted to designated threads.

The behaviours of asynchronous programs can be extremely intricate and unpredictable
due to the dynamic creation of concurrent tasks. This makes the reasoning about asynchronous
programs extremely hard.

Therefore, developing automated techniques for the verification of asynchronous programs
is an important and challenging research topic. In the case of single-thread asynchronous
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11:2 Verification of Asynchronous Programs with Nested Locks

programs, it has been shown that the reachability problem is decidable and EXPSPACE-
complete (assuming that the data domain is finite) [2,5]. However, this problem is undecidable
in general, and this is the case even for two threads handling only one task each [11]. Therefore,
decidable instances of this problem can be obtained only by considering either under-
approximations for bug detection using, e.g., bounded analyses [1, 4,10], or by considering
over-approximations for establishing absence of bugs, using abstract analyses that focus on
relevant aspects.

In the context of abstract analyses of concurrent programs, one useful approach is
abstracting away the content of the shared variables carrying data while keeping precise the
content of the control variables, such as locks, that are used for synchronisation. Indeed,
concurrency bugs are in general due to a misuse of synchronisation allowing unexpected
interleavings of concurrent actions. Therefore, assuming that locks are the only shared
variables between threads retains the relevant information, without being too coarse, when
reasoning about the existence of, e.g., data races and deadlocks. This approach has been
introduced in [8], where it has been shown that, for multi-thread programs with locks (and
no task creation), the reachability problem is undecidable in general, and that this problem
becomes decidable when locks are used (i.e., acquired and released) in a well-nested manner.
This problem has been investigated further for larger classes of programs by other authors,
e.g., in [6,9]. In particular, it has been shown that for dynamic networks of pushdown systems
(modelling concurrent programs with thread creation), which is a class of models with a
decidable reachability problem [3] that is incomparable with asynchronous programs, the
extension with well-nested locking preserves the decidability of the reachability problem [6].
The goal of this paper is to investigate the decidability and the complexity of the reachability
problem for asynchronous programs with nested locking.

We first prove that, surprisingly, the reachability of asynchronous programs with nested
locks is undecidable as soon as four threads are considered (two with unbounded call stacks,
and two being finite-state). However, we provide a condition on the use of locks by threads
across task handling phases that leads to decidability. In fact, we found that the source of
undecidability (even under nested locking) is the transfer of locks between tasks executed
successively on a single thread. Therefore, we require that (1) a thread should not hold any
lock when it starts handling a task, and (2) all locks acquired during the execution of a task
must be released before completion of the task, i.e., when the handling of a task is completed,
the set of locks held by the thread must be again empty. Technically, we define a task-locking
policy that requires that every thread should not hold any lock when its stack is empty. We
prove that under this policy, the reachability problem of asynchronous programs with nested
locks is in EXPSPACE. The proof is by a polynomial reduction to the case of single-thread
asynchronous programs using a nontrivial serialisability argument. Importantly, despite the
high worst case complexity, there are existing work for solving efficiently the reachability
problem of single-threaded asynchronous programs in practice [7].

Moreover, we consider an interesting and practically relevant case for which we establish
a better complexity. In fact, we consider that while tasks should be allowed to communicate
and synchronise through the shared global memory, they should not communicate through
the thread-local shared memory. Indeed, this would assume that the tasks rely on the order
they are scheduled, which is in general not under the control of the programmer. So, it is
quite natural to assume that before termination, a task can put the result of its computation
in the shared memory, and it can also create a new task that will be its continuation (when
it will be scheduled later), but that the thread does not transfer any information to the next
task it executes. (Actually, asynchronous programs have typically User Interface threads
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(UI’s) that consist of loops receiving jobs (or reacting to events), and creating for them
handlers running in parallel.) Technically, we consider that a thread always starts handling
tasks in the same state. Interestingly, we prove that under this assumption the reachability
problem becomes in NP. The proof is by a reduction to the reachability problem in the case
where the number of task handling phases is polynomially bounded.

To summarise, we prove that by forbidding transfers of locks between tasks executing
on a same thread, the reachability problem of multithreaded asynchronous programs with
nested locks is EXPSPACE-complete. Furthermore, we prove that by forbidding transfers of
local states between tasks executing on a same thread, the reachability problem becomes
NP-complete. Our results open the door to the development of efficient and complete methods
for verifying asynchronous programs against concurrency bugs.

2 Preliminaries

Let Σ be a finite alphabet. We use Σ∗ and Σ+ to denote the set of all finite words and
non-empty finite words, respectively. We use ε to denote the empty word. We write Σε to
denote Σ ∪ {ε}. For w = a1a2 . . . an ∈ Σ∗, we let |w| = n, w[i] = ai and w[i, j] to denote the
length of w, the ith letter ai and the subword ai . . . aj , respectively. Given a word w ∈ Σ
and Σ′ ⊆ Σ, we let w ↓Σ′ to denote the projection of w onto Σ′ .

A multi-set over Σ is a function M : Σ 7→ N. We denote by M [Σ] the set of all multi-
sets over Σ and by ∅ the empty multi-set. Given two multi-sets M and M ′, we write
M ′ ≤ M iff M ′(a) ≤ M(a) for all a ∈ Σ. We denote by M + M ′ the multi-set formed by
(M +M ′)(a) = M(a) +M ′(a) for all a ∈ Σ. For M ≥ M ′, M −M ′ is defined in a similar
manner. For any word w ∈ Σ∗, we denote by bwc the multi-set formed by counting the
number of occurrences of each letter from Σ in w.

A pushdown automaton (PDA) is a tuple P = (Q,Γ,Σ, δ, s0, α0) where Q is the finite
set of states, Γ is the finite stack alphabet, Σ is the finite input alphabet, s0 ∈ Q is the
initial state, α0 ∈ Γ is the initial stack symbol, and δ is the transition relation. We assume
that Γ contains the special stack bottom symbol ⊥. The transition set δ is a subset of
Q× Γ×Σε × Γ∗ ×Q with the restrictions that: (1) if τ = (q, α, a, β, q′) ∈ δ then |β| ≤ 2 and
(2) β ∈ {b⊥ | b ∈ Γε} when α = ⊥. We use Src(τ) = q (resp. Dest(τ) = q′ ) to refer to the
head (resp. tail) state q (resp. q′) of the transition τ , and λ(τ) to denote the label a.

A configuration of P is a pair (q, γ) with q ∈ Q and γ ∈ ((Γ \ {⊥})∗ · {⊥}). Given a
configuration c = (q, γ), we use Stt(c) (resp. Stk(c)) to refer to the state q (resp. the stack
component γ). The initial configuration of P is defined by the pair (s0, α0⊥). The transition
relation τ−→P, with τ ∈ δ, relating pairs of configurations, is defined as the smallest relation
satisfying the following condition: (q, αγ) τ−→P (q′, βγ) if τ is of the form (q, α, a, β, q′). This
transition corresponds to the pop of the symbol α and the push of the word β.

We often omit the reference to P and write τ−→ when P is clear from the context.
Sometimes, we omit τ and simply write −→ when the reference to τ is not important. We
write (q, γ) σ−→ (q′, γ′) for σ = τ1 . . . τn ∈ δ∗ to mean that there is a sequence of transitions
of the form (q, γ) = (q0, γ0) τ1−→ (q1, γ1) τ2−→ . . .

τn−1−−−→ (qn−1, γn−1) τn−→ (qn, γn) = (q′, γ′).
Given two configurations c1, c2, we use L(P, c1, c2) to denote the set of words w such that
there is τ1, . . . , τn ∈ δ with c1

τ1τ2···τn−−−−−→ c2 and w = λ(τ1)λ(τ2) · · ·λ(τn). We use L(P, c2) to
denote L(P, c1, c2) where c1 = (s0, α0⊥) is the initial configuration.
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3 Model

Multiset PushDown Systems (MPDS) have been introduced by Sen and Viswanathan as
a formal model for asynchronous programs [12]. An MPDS model consists of a pushdown
automaton equipped with a multiset. The multiset is used to store pending tasks (i.e., stack
symbols). When the stack is empty, a pending task is taken, in non-deterministic manner,
from the multiset and put into the stack. Then, the system starts the execution of the
chosen task following the pushdown transition rules with the ability to create new tasks
(that will be added to the multiset). In this paper, we consider a generalization of multi-set
pushdown systems (MPDS) called N -Multi-set Pushdown Systems (N -MPDS) where N ∈ N
denotes the (fixed) number of threads executing in parallel. An N -MPDS consists of a
collection of pushdown automata (each one comes with its own multi-set). When the stack of
a pushdown automaton is empty, a task is taken from its associated multi-set and executed.
During the execution of a task, newly created tasks are added to a pre-determined multi-set.
Furthermore, the pushdown automaton can communicate through a finite set of locks (i.e.,
each pushdown automaton can acquire and release a given particular lock). Thus, an MPDS
(resp. pushdown automata communicating via locks [8]) corresponds to the particular case
where we have one pushdown automaton (i.e., N = 1) (resp. there is no task creation).

I Definition 1. An N -MPDS over the (finite) set of locks L is a tuple A = (Σ,P,L), where
Σ is a finite set of tasks and P = {Pi | 1 ≤ i ≤ N} is a collection of pushdown automata (or
threads) Pi = (Qi,Γi,Oi, δi, si, αi), where Oi = {i!j(a), i?a | a ∈ Σ, 1 ≤ j ≤ N} ∪ {lcki(l),
reli(l) | l ∈ L}. Here i!j(a) means that the thread i creates a task labeled by a and adds it to
the multi-set of thread j. While i?a means that the thread i picks a pending task labeled by a
from its multi-set. Furthermore, lcki(l)/reli(l) corresponds to acquiring / releasing of the lock
l by the thread i. We assume that the sets δi, 1 ≤ N , are disjoint and let δ =

⋃
1≤i≤N δi. We

also require that (1) δi∩ (Qi× (Γi \{⊥})×{i?a | a ∈ Σ}×Γ∗i ×Qi) = ∅ for all i ∈ {1, . . . , N}
(i.e., the execution of pending tasks can only be performed when the stack is empty), and (2)
if a transition is of the form (q,⊥, b, β⊥, q′) is in δ, with β ∈ Σ, then b is of the form i?β for
some i ∈ {1, . . . , N} (i.e., the thread i picks a pending task β and adds it to its empty stack).

A configuration of an N -MPDS A is a triple of functions (c,m, l) where, for each
1 ≤ i ≤ N , c(i) is a configuration of Pi, m(i) is a multi-set over Σ (representing the set
of tasks waiting to be executed by the thread i) and l(i) ⊆ L is the set of locks held by
thread i. We require that l(i) ∩ l(j) = ∅ for all i 6= j. The initial configuration is defined
(c0,m0, l0), where c0(i) = (si,⊥),m0(i) = bαic and l0(i) = ∅ for all i, 1 ≤ i ≤ N (i.e., the
stack of each thread is empty and there is only one pending task per thread and all locks are
free). Observe that the definition of the initial configuration is equivalent to the one where
each pushdown automaton is in its initial configuration, there is no pending task and all
locks are free. We only use the former for the sake of simplicity.

Observe that an MPDS [12] can be defined as a 1-MPDS A = (Σ,P,L) whose set of
locks is empty (i.e., L = ∅) and set of threads P consists of only one pushdown automaton
P1 = (Q1,Γ1,O1, δ1, s1, α1). To simplify the presentation, we use (Σ,P1) to denote the
MPDS A. Further, we use (c(1),m(1)) to denote a configuration of A instead of (c,m, l).

Given two configurations (c,m, l) and (c′,m′, l′) and a transition τ ∈ δ, we use (c,
m, l) τ−→A (c′,m′, l′) to denote that there is an index i ∈ {1, . . . , N} such that τ ∈ δi,
c(i) τ−→Pi c′(i), ∀j 6= i we have c(j) = c′(j) and further one of the following holds:

λ(τ) = i!j(a): m′(j) = m(j) + bac, m(k) = m′(k) for all k 6= j and l = l′. (The thread
i creates a task of type a and adds it to the multiset of the thread j.)
λ(τ) = i?a: m(i)(a) > 1, m′(i) = m(i) − bac, m(j) = m′(j) for all k 6= i, and l = l′.
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(The thread i picks a task a from its multiset and adds it to its stack. Recall that removing
a task from the multiset is possible only if the stack is empty.)
λ(τ) = lcki(l): l 6∈

⋃
1≤k≤N l(k), l′(i) = l(i) ∪ {l}, m(i) = m′(i), l(k) = l′(k) and

m(k) = m′(k) for all k 6= i. (The thread i acquires the lock l if it is not already held.)
λ(τ) = reli(l): l ∈ l(i), l′(i) = l(i) \ {l}, m(i) = m′(i), l(k) = l′(k) and m(k) = m′(k)
for all k 6= i. (The thread i releases the lock l.)

An execution π of A is an alternating sequence (c1,m1, l1) · τ1 · (c2,m2, l2) · τ2 · · · (cn−1,

mn−1, ln−1) · τn−1 · (cn,mn, ln) of configurations and transitions such that (ci,mi, li)
τi−→A

(ci+1,mi+1, li+1), ∀i ∈ {1, . . . , n− 1}. For configurations (c,m, l) and (c′,m′, l′), we write
(c,m, l) σ−→A (c′,m′, l′) to denote that there is an execution π = (c1,m1, l1) · τ1 · (c2,

m2, l2) · τ2 · · · (cn−1,mn−1, ln−1) · τn−1 · (cn,mn, ln) such that σ = τ1τ2 · · · τn−1, (c1,m1,

l1) = (c,m, l) and (cn,mn, ln) = (c′,m′, l′). Sometimes we write the execution π as
(c1,m1, l1) τ1−→A (c2,m2, l2) . . . (cn−1,mn−1, ln−1) τn−1−−−→A (cn,mn, ln).

Reachability problem. Given a N -MPDS A = (Σ,P,L,∆) (as defined above) and a
function r (referred to as the destination) that assigns to each i : 1 ≤ i ≤ N a state from
Qi\{si}, the reachability problem asks if there is an execution of the form (c0,m0, l0) σ−→A (c,
m, l), with (c0,m0, l0) is the initial configuration, for some c,m and l such that for all
i : 1 ≤ i ≤ N , we have Stt(c(i)) = r(i).

First note that, without the assumption of removing a pending task from the multi-set
when the stack of the thread is empty, we can simulate the intersection of two pushdown
automata by a 2-MPDS, without any locks, by using the multi-sets as a synchronizing
mechanism. Given two pushdown automata over an alphabet Σ, we construct a 2-MPDS
with task alphabet Σ ∪ {#}. The simulation proceeds as follows: The first thread guesses a
letter a, simulates a step of the first PDS, posts this letter a as a task to the second thread
and waits for a task of type #. The second thread nondeterministically guesses the next
letter a, picks up a task of this type from its multi-set, simulates a step and then posts
the task # to the first thread. Thus, we may simulate both the pushdowns on the same
input word and the reachability problem for 2-MPDS without locks is rendered undecidable.
Observe that, in this simulation, values are removed from the multi-sets at will and this goes
against the spirit of our model: the multi-sets were introduced to hold the tasks that await
execution. A thread should execute these (recursive) tasks one after another. In particular a
task should be removed from the multi-set for execution only when the previous task has
completed. When a task is completed, the call stack of the thread should be empty.

Second, the reachability problem for 2-MPDS without multi-sets is undecidable in the
presence of locks. This follows from the undecidability of the reachability problem for
pushdown automata synchronizing using locks [11]. Thus, we need restrictions on the usage
of locks as well. One well-known restriction that yields decidability for networks of pushdown
automata is that of nested locking. Nested locking, introduced by Kahlon et al. [8], requires
that locks be released in the same order as they are acquired. This is formalized as follows.

Nested Locking. Given an execution of the form (c,m, l) τ1−→A (c1,m1, l1) τ2−→A (c2,m2,

l2) . . . (cn−1,mn−1, ln−1) τn−→A (c′,m′, l′), we say positions i, j ∈ {1, . . . , n} form a acquire-
release pair if some lock l is acquired in the ith transition and released by the jth transition and
this lock is not acquired or released in between i.e. there is a k : 1 ≤ k ≤ N , and l ∈ L such that
λ(τi) = lckk(l), λ(τj) = relk(l) and ∀r ∈ {i+1, . . . , j−1}, λ(τr) /∈

⋃
1≤m≤N{lckm(l), relm(l)}.

We write iyk j to indicate this. An execution of the form π = (c0,m0, l0) σ−→ (c,m, l) is
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said to be well-nested iff there are no positions i, j, i′, j′ such that i < i′ < j < j′ and iyk j

and i′ yk j
′ for some k, 1 ≤ k ≤ N .

An N -MPDS A is said to be well-nested if all its executions of the form π = (c0,m0,

l0) σ−→ (c,m, l) are well-nested. Recall that (c0,m0, l0) is the initial configuration. As
indicated earlier, Kahlon et al. [8] show that the reachability problem restricted to nested
locking is decidable for networks of pushdown automata with locks. However, in the presence
of multi-sets and locks, the nested locking assumption is still insufficient to obtain decidability.

4 Undecidability of the Reachability Problem for Well-Nested
N -MPDSs

In this section we show that the reachability problem for N -MPDSs remains undecidable
even when assuming the well nested locking policy. In particular we prove:

I Theorem 2. The reachability problem for well-nested 4-MPDSs is undecidable.

Proof sketch. Let P 1 and P 2 be two pushdown automata over an alphabet Σ. We construct
a 4-MPDS A that simulates joint executions of P 1 and P 2. In the following, we assume
w.l.o.g. that there are no ε moves in P 1 and P 2 (the undecidability result holds even with
such an assumption). The MPDS A has four components P1, P2, P3 and P4 where P1 and P2
simulate P 1 and P 2 respectively, using the agents P3 and P4 to ensure that the simulations
follow the same input word. In fact, P3 and P4 will not use their respective stacks.

The system A uses two locks l1 and l2 and the set of tasks is given by Σ ∪ {a, b, r, l}.
The simulation begins with an initialization step and this is followed by a sequence of steps,
where in each step the threads P1 and P2 simulate a run of P 1 and P 2 on one letter.

In the initialization step, the thread P3 acquires the lock l1 and sends the task b to both
P1 and P2 instructing them to begin the simulation. Both threads P1 and P2 await for the
task b and begin their simulation on receiving this task. At the end of this initialization step
(and at the beginning of each of the subsequent steps) the lock l1 is with P3 and l2 is free
and all the task multi-sets are empty.

In each step, the thread Pi, 1 ≤ i ≤ 2, does the following: takes lock l2, continues the
simulation of P i by reading a letter c ∈ Σ, posts the task c to the thread P3, releases lock
l2 and then waits to take lock l1. When available it takes l1 and releases it immediately to
complete its execution of the step.

In each step, the thread P3 does the following: guesses a task type c ∈ Σ, removes two
copies of c from its multi-set (ensuring that P1 and P2 have carried out simulations on the
same letter), sends the task l to the thread P4 (instructing it to take the lock l2), waits for
the task a (an acknowledgment from P4 that it has indeed taken the lock l2), releases the
lock l1 (to enable P1 and P2 to complete the concluding part of their execution of this step),
retakes lock l1, sends the task r to P4 (instructing it to release the lock l2) and waits for the
task a (an acknowledgment from P4 that it has indeed released the lock l2).

In each step, the thread P4 awaits the task l, then takes the lock l2, sends the task a to
P3 in acknowledgment, awaits the task r, then releases lock l2 and sends the task a to P3.

It is clear that in each step, the simulation of both pushdowns is extended by a run on
the same letter from Σ. We still have to argue that this protocol ensures that the threads
proceed step by step (i.e., some of them cannot go ahead before the others are ready to
participate in the next step). In each step, after simulating a run of the pushdowns both
threads P1 and P2 have to wait for lock l1 to be released. This is possible only after P3
has verified that they have both used identical letters in their simulation. When the lock
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l1 is available for them to complete their executions of this step, the lock l2 is guaranteed
to be held by P4 (since P3 releases l1 only after confirmation from P4 that the lock l2 has
been taken). Thus after completing the current step P1 and P2 cannot proceed to the next
step of the simulation (until l2 is free). The thread P3 takes back the lock l1 before l2 is
released by P4 and thus the locks are returned to the required state before the next step in
the simulation begins.

It is possible that the lock l1 is taken back by P3 before P1 or P2 (or both) complete their
final operations in the step. In this case, the system deadlocks since the thread that failed to
complete will wait for l1 while P3 will wait for a task from Σ to be posted by this waiting
thread. Thus the simulating threads can neither get ahead nor fall behind in each step. J

5 Well-Nested N -MPDS under the Task Locking Policy

As we have seen, allowing the transfer of locks, even in a nested manner, from a task to
another task leads to the undecidability of the reachability problem for N -multi-set pushdown
systems. Therefore, we consider an additional constraint on the locking policy. The new
constraint consists in requiring that threads do not hold any locks when their stack is empty.
This restriction can be understood as follows: the threads can be thought of as schedulers
that pick and execute tasks. As tasks are executed to completion, a new task is picked only
when the stack is empty, this amounts to requiring that it is mainly the tasks that use locks
and not threads. However, since the thread and the tasks share the local state space, the
thread is still allowed to pass a finite amount of local state information to the tasks, but it is
not allowed to pass or receive locks. We shall return to this point in the next section.

Task Locking Policy. Let A = (Σ,P,L) be an N -MPDS. We say that an execution
(c,m, l) τ1−→A (c1,m1, l1) τ2−→A (c2,m2, l2) . . . (cn−1,mn−1, ln−1) τn−→A (cn,mn, ln) is a
task-locking execution if for each i : 1 ≤ i ≤ n and for each j : 1 ≤ j ≤ N , if Stk(ci(j)) = ⊥
then li(j) = ∅. The N -MPDS A is under the task-locking policy if all its executions of the
form π = (c0,m0, l0) σ−→A (c,m, l) are task-locking executions.

Our main result is that the reachability problem for well-nested N -MPDSs under the
task-locking policy is decidable and is Expspace-Complete.

I Theorem 3. The reachability problem for well-nested MPDSs under the task-locking policy
is Expspace-Complete.

The lower bound follows immediately from the Expspace-hardness of MPDS [12]. The
rest of this section is dedicated to prove the upper-bound (namely that the reachability
problem for well-nested N -MPDSs under the task-locking policy is in Expspace). As a first
step, we show that one may serialize each execution of the system in such a way that (i)
completed tasks can be executed atomically (ii) incomplete tasks (which are at most one
per thread) can broken up in a bounded number of segments such that each segment can be
executed atomically. This will be used in the next step to polynomially reduce our problem
to the reachability in a (single) pushdown system with multi-sets.

For the rest of the section, let us fix an N -MPDS A = (Σ,P,L,∆) where P = {Pi |
1 ≤ i ≤ N} with Pi = (Qi,Γi,Oi, δi, si, αi). We will further assume w.l.o.g. that in the
N -MPDS A, every thread starts its execution by removing a task from the multi-set. Note
that any N -MPDS can be easy transformed into an equivalent one of that form.
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11:8 Verification of Asynchronous Programs with Nested Locks

5.1 Serialized Executions

Consider an execution ρ = (c,m, l) σ−→ (c′,m′, l′) of A starting at the initial configuration
(i.e., (c,m, l) = (c0,m0, l0)). Let σi be the projection of σ on the set δi, that is, it is
the sequence of transitions executed by thread i along the execution ρ. Then, σi can be
decomposed uniquely into a sequence of the form: τ1α2τ2 . . . αjτjβ where, τ1, . . . , τj are the
transitions in σi that remove a task from the multi-set (i.e., λ(τm), with m ∈ [1..j], is of the
form i?a). Observe that at the configurations of ρ where the transitions τm, are executed,
the stack of thread i is empty and furthermore the thread i does not hold any locks.

We also decompose β uniquely as β1τ
′
1β2τ

′
2 . . . βkτ

′
kγ, where τ ′m, 1 ≤ m ≤ k ∈ δi are the

transitions in β which acquire a lock that is not subsequently released. That is, τ ′m is a lock
transition on some lock lm and it is the last transition involving lock lm in β. We observe
that in the configurations of ρ where the transitions τ ′m, 1 ≤ m ≤ k are executed, the set
of locks held by thread i must be exactly the set {lr | r < m}. (Clearly these locks are
held, by the definition of τ ′r’s. No other lock is held as it would violate the nested locking
assumption.)

Thus σi = (τ1α1)(τ2α2) . . . (τjβ1)(τ ′1β2) . . . (τ ′kγ). We refer to this as the phase decompos-
ition of σ w.r.t. thread i. We further refer to (τ1α1), (τ2α2), . . . (τj−1αj−1) as task phases,
(τjβ1) as the boundary phase and (τ ′1β2), (τ ′2β3) . . . (τ ′kγ) as lock-holding phases of thread i.
Note that there may be no lock-holding phases or even task phases for some threads. A phase
of σ is a phase of some thread in σ (and similarly with task, boundary and lock phases).

Given a phase γ in σ we define its index in σ to be the position of the first transition of
γ in the sequence σ and write i(γ) to denote this number. Clearly i defines a linear order on
the phases of γ and this allows us to list these phases as γ1, γ2, . . . , γm where i(γi) < i(γj)
whenever i < j. We call this the occurrence ordering of phases. The following Lemma
establishes the serialization result we desire.

I Lemma 4. Let ρ = (c,m, l) σ−→A (c′,m′, l′) be a run from the initial configuration. Let
γ1, γ2, . . . γm be the listing of the all phases of σ in the occurrence order. Then, there is a
run ρ′ = (c,m, l) γ1γ2...γm−−−−−−→A (c′,m′, l′). That is, we can execute the phases of σ atomically
(without interleaving) and in their occurrence order.

5.2 From N -MPDS to 1-MPDS

We are now ready to use the serialization lemma to show that reachability for N -MPDS can
be reduced to reachability in an 1-MPDS (or simply MPDS). We will outline the main ideas
behind our construction, refining them as we go along, before proceeding to the details.

The multi-set pushdown system that we construct has to maintain the local state of each
of the threads. Similarly, it also needs information on the set of locks held by each thread.
However notice that by assumption, all valid executions of the system only admits well-nested
locks. Hence it is enough to store the first taken lock (that will be released) to know if there
are pending locks or if no locks are taken. Thus, each state of the MPDS is of the form
(q, l, z), where q(i) denotes the state of thread i and l(i) stores the first lock that was taken
(and will be released) by the thread i or is empty if none is taken. The component z holds
additional information, such as the identity of the thread being executed (more details will
be provided as we go along). We observe that while the N -MPDS has a multi-set per thread,
we are only allowed to use a single multi-set in the constructed MPDS. We resolve this by
the indexation of each task in the multi-set of the MPDS with the id of the thread it belongs
to (i.e., the multi-set alphabet of the MPDS is set to be Σ× {1, 2, . . . , N} × Y where a value
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(a, i, y) stands for a value a in the multi-set belonging to thread i, with some additional
information y that will be explained later).

A configuration of the MPDS is of the form (((q, l, z), α),M) and as explained above it
encodes the local states and lock state of a configuration of the N -MPDS. Further, the value∑
y∈Y M(a, i, y) represents m(i)(a), the number of tasks of type a in the multi-set of thread

i. Thus, the only unrepresented part of the configuration of the N -MPDS is its collection of
stacks, one per thread. Since we have only one stack in the MPDS, we have to manage the
simulation of this collection of stacks using this single stack. We shall return to this soon.

Omitting, for the moment, the effect of transitions on the stack (and unexplained parts
z and y), the definition of the transitions is easy to see: Simulating a transition of thread
i that takes the lock l, involves storing it in the state if it is the very first lock taken by
the process (i.e. change the local state component). Unlocking of that transition is handled
similarly. Observe that there is no need to keep track of all the taken locks per thread due
to the serialization (since the set of available locks at the beginning and end of each phase is
already known). To simulate a move posting task a on to thread j, the MPDS posts the
value (a, j, y) to its multi-set. Scheduling a task a on thread j corresponds to removing a
message of the form (a, j, y) from the multi-set and so on.

We now turn our attention to dealing with the multiple stacks of the N -MPDS. As an
immediate consequence of our serialization Lemma, it suffices to simulate the executions of
the N -MPDS along executions where each phase is executed atomically. Observe that task
phases of any thread begins and ends with the empty stack (in that thread) and empty set of
locks. Thus, our MPDS can use its single stack to simulate any sequence of task phases (one
after the other). However, the boundary phase does not necessarily end with an empty stack
and the lock-holding phases need not begin or end with an empty stack. Consider a sequence
of phases of the form β1β2β3β4β5β6 where β1 is a boundary phase of thread i, β3 and β6
are lock-holding phases of thread i, β2 is the boundary phase of task j, β5 is a lock-holding
phase of thread j and β4 is a phase (of any type) of thread k. The contents of the stack of
the thread i must be preserved from the completion of β1 to the beginning of β3 and then
on to the beginning of β6, while that of thread j is to be preserved from the completion β2
to the beginning of β5. We also need to execute the phase β4 in between. There is no direct
way to achieve this using a single stack. However, we can exploit the fact that there are only
a bounded number of boundary and lock-holding phases (actually their number is bounded
by the number of threads and the number of locks in the system respectively) to show that
we may execute them out of order in a consistent manner using a single stack.

We illustrate the issues involved using the example from the previous paragraph. Suppose
β3, β5 and β6 take the locks l3, l5 and l6 respectively and these are never released subsequently.
In order to avoid storing the stack contents at the end of a phase (which we cannot), we
would like to execute all the lock-holding phases of a task atomically. While it may seem
tempting to run β4 (say if it is a task phase) first, this may not be possible as this task may
be created during the execution of β1 or β2 or β3. This kind of causality does not pose a
problem as it is handled by the multi-sets. However, we cannot postpone β4 to completion
ahead of the other phases, as β4 may require the use of lock l3 which is no longer available
after the execution of β3.

The key idea, is to divide the entire global execution into segments. An initial segment
where only task phases are executed (where all locks are available for any phase that is
executed) followed by the segment that involves a boundary phase together with task phases,
the segment that involves another boundary phase or from the first lock-taking phase to the
second (where exactly one lock is unavailable for any phase) together with task phases, the
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segment that corresponds to a boundary phase or from the second locking taking phase to
the third (where exactly two locks are unavailable for any phase) together with task phases
and so on. The number of segments into which any execution breaks up is bounded by the
number of locks.

Our MPDS guesses a priori a sequence w ∈ ((L ∪ {∅}) × [1..N ])∗ called the guiding
sequence (which represents the partition of the global execution into segments). A tuple of
the form (∅, i) in the guiding sequence indicates the position of the boundary segment of
the thread i. Similarly a tuple of the form (l, i) indicates the positions of the lock-taking
segment where the thread i acquires the lock l and never releases it. We call a guiding
sequence valid-guiding-sequence if all locks occur at-most once in the sequence and if for
each thread, the boundary segment precedes the lock-taking segment. Formally, we call a
sequence w = (l1, i1) . . . (lk, ik) ∈ ((L ∪ {∅})× [1..N ])∗ a valid guiding sequence if it has the
following properties: 1) For all i ∈ [1..N ], we have w ↓(L∪{∅})×{i}∈ (∅, i).(L × {i})∗, 2) Let
w ↓L×[1..N ]= (s1, j1) · · · (sm, jm). We have su 6= sv for all u 6= v. (i.e. Locks occur only once)

We are only interested in valid guiding sequences and hence, here onwards we will refer to
them simply as guiding sequences. We start by guessing a valid sequence and then construct
its corresponding MPDS. (Observe that the number of valid sequences is at most exponential
in the size of the N -MPDS). As part of the component z of that MPDS, we store the segment
number (i.e., the position into the guiding sequence ). Initially, the sequence number is
initialized to 0 indicating that no part of the guiding sequence is processed. The MPDS
begins the simulation with a sequence of task phases that constitute segment 0. When
chooses to initiate segment 1. If segment 1 is of the form (∅, i1) then it picks the thread i1,
executes its boundary phase followed by the execution of all the subsequent phases of thread
i1, each of which must necessarily initiate a segment.

Suppose these segments belonging to the thread i1 are 1 < j1 < j2 . . . < jm. Let the
entry in the guiding sequence at position jr be (ljr , i1). Then, the MPDS verifies that, while
executing the phase of thread i1 initiating segments jr, 1 ≤ r ≤ m, that the lock ljr

is taken
by the first transition and never released, no lock from {l|∃j < jr, p ∈ [1..N ] : w[j] = (l, p)}
is taken during that phase and that any other lock taken is released within the phase. Thus,
we execute not just the boundary phase of i1 but all the subsequent phases of this thread as
well. Further, while doing this we ensure that the phases executed out of turn use only the
appropriate set of locks available to them if they were executed in the right order. We also
ensure that this thread is never scheduled again and this can be taken care of by looking at
the current segment number stored in the state. We do not schedule a thread p ∈ [1..N ] if
the current segment in the state is j and w[k] = (∅, p) for some k < j. We also ensure that
the desired final state is reached during such an execution. After this simulation of thread i1
we increase the segment number to 2 and proceed (if it does not belong to the thread i1).
We do a similar contiguous execution, of the boundary phase and all the subsequent phases
of a thread, every time we decide to switch segments and encounter a segment of the form
(∅, i). We skip any segment that has been already processed. Such executions ensure the
correct usage of the locks using the lock-thread pair sequence. However, we have lost the
causal relationship between task creation and execution. For instance, while completing the
full execution of i1 we may create tasks during the execution of segment j4, but then we can
schedule such a task in an earlier segment (with a incorrect lock environment to make it
worse). But this problem is solved as follows: we tag the tasks inserted into the multi-set
not only with the thread identity but also the segment in which the task is to be scheduled
(explaining the third component y in the alphabet of the multi-set alphabet). This target
segment of each task is chosen non-deterministically, with a number greater than or equal to
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that of the posting transition, tagged with this value and then inserted into the multi-set.
Then, a task is picked up from the multi-set only if its segment number tag matches the
current segment number. This ensures that tasks are scheduled after their creation (and
executed with the right set of locks).

Thus overall the execution of the MPDS may be summarized as the following:
The initialization part of our MPDS initializes the multi-set to hold the initial multi-set

symbol for each process. The segment value in the initial state is set to 0. At the beginning
of each step the stack is empty. The MPDS can increment the stored segment number in
non-deterministic manner. We will refer to the current segment number stored in the state
by j. At the beginning of each simulation of a segment (except when j = 0), the MPDS
removed a task of the form (a, i, j) and executed it as a boundary phase while making sure
that the j-th entry in the guiding sequence is of the form (∅, i). Suppose that the sequence of
segments corresponding to thread j in the guiding sequence is (∅, i).(l1, i) . . . (lm, i), then the
boundary phase is first simulated. Subsequently the first locking phase is executed. Then,
the MPDS continues the process till the simulation of the last locking phase while making
sure that the execution reaches the desired final state of the thread i. On completion, the
stack is emptied and we are now allowed to simulate task phases of the from (a, k, j). In this
case the task (a, k, j) is executed till the stack is empty again.

During the simulation of a boundary/task phase, the state is tagged with the information
on whether the set of locks temporary taken (i.e., will be released) is empty or not. Initially,
the state is marked with ∅ to indicate that there are no locks temporarily held. As soon as a
lock is taken (and will be released), the identity of this lock is recorded in the state in place
of the empty set ∅. If the state is already tagged with a lock, subsequent held locks are not
stored. When the lock l is released from a state which is tagged with a lock l, the value is
reset to ∅ indicating no more locks are temporarily held at that point.

Observe, that we construct one such automaton per guiding sequence. We run them one
after the other to solve the reachability problem for the N -MPDS.

This construction is exponentially large even for a given guiding sequence. We now refine
this construction further, making it polynomial — the key idea is to transfer large sections
of the control states to the multi-set. This will lead to an automaton whose state space and
multi-set alphabet are both polynomial in the size of the original system.

The exponential blow in the state space arises due to the product of the local state spaces
and locks that are maintained in the state. During start of a task or a boundary phase, the
set of locks held can easily be determined from the guiding sequence. Hence we only need
record for the currently active thread, whether the locks held are empty or the identity of
the first lock taken for that thread. The key step to eliminate blow up due to product of
local state space is to expand the multi-set alphabet to include

⋃
1≤i≤N Qi × {i}. That is,

we keep the current state of each thread, other than the currently executing thread, in the
multi-set (transferring the state to the multi-set while switching threads).

With this change we obtain a polynomial sized MPDS, that verifies reachability via runs
obeying the given guiding sequence. This results in a Expspace decision procedure per
guiding sequence. Since the number of guiding sequences is only exponential, we can run
through all candidate sequences and obtain a Expspace procedure overall.

6 Stateless Well-Nested N -MPDS under the Task Locking Policy

Typically asynchronous concurrent software has threads that wait for a task in a while loop.
On receipt of a task, they execute it and go back to a waiting state. Motivated by this, we
propose a model in which each thread can remove tasks from its multiset only in a particular
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state. Formally, let A = (Σ,P,L) be an N -MPDS (as defined in Section 3) and s be a state
function that assigns to each index i ∈ [1..N ] a state from Qi (i.e. s(i) = qi where qi is a state
of the thread i). We say that A is s-stateless if δi∩

⋃
a∈Σ(Qi\{s[i]}×Γ∗i ×{i?a}×Γ∗i ×Qi) = ∅.

We say that an N -MPDS A is stateless if there is a state function s such that A is s-stateless.
In this section, we show that the reachability problem for stateless well-nested N -MPDS

under the task locking policy is NP-complete.

I Theorem 5. The reachability problem for stateless well-nested MPDSs under the task-
locking policy is NP-complete.

The lower bound is proved by reduction from the satisfiability problem of a given 3-SAT
formula. In the following, we sketch the proof that establishes the upper-bound. To that
aim, let us fix a well-nested N -MPDS A = (Σ,P,L) (as defined in Section 3) under the
task-locking policy. Let us assume that the N -MPDS is s-stateless for some state function s.
Further, we assume w.l.o.g. that the only enabled move from the initial state of any thread
is a transition that removes a task from the multi-set. In the following, we will show that
there is an NP algorithm to solve the reachability problem for A. Towards this, we will
show that for any execution of the 1-MPDS, there is a shorter execution that involves only a
polynomial number of tasks and reaches the same stack and lock configurations.

I Lemma 6. Let ρ = (c,m, l) σ−→A (c′,m′, l′) be an execution from the initial configuration.
Then, there is another execution ρ′ = (c,m, l) σ′−→ (c′,m′′, l′) such that σ′ can be decomposed
into phases as σ′ = γ1 · · · γm where m = O(N × ((N + |L|)× |Σ|) +N + |L|).

We now define K-bounded reachability for an MPDS. Given an MPDS A = (Σ, (Q,Γ,
O, δ, s1, α1)) and a state q ∈ Q, the K-bounded reachability asks if there is an execution
(s1, w1,M1) σ−→A (q, w,M), where (s1, w1,M1) is the initial configuration, for some w and
M such that |σ ↓{1!1(a),1?a|a∈Σ} | ≤ K (i.e., the total number of created and removed tasks
is bounded by K). From lemma 6 and the construction in previous section, we get:

I Corollary 7. The reachability problem for stateless well-nested N -MPDSs under the task
locking policy can be polynomially reduced to the K-bounded reachability for MPDSs, where
K is polynomial in the size of the given N -MPDS.

Proof. The proof of the above corollary uses the same reduction as the one used in Section
5.2. In that construction, the number of operations that remove tasks from the multi-sets of
the N -MPDS is the same as the number of operations that remove tasks in the constructed
MPDS. By Lemma 6, this number of removed tasks is bounded by a constant K ′ which is
polynomial in the size of the N -MPDS. Furthermore, for any transition (say (p, α, 1!1(a), β,
p′)) of the constructed MPDS that creates a task we add to the MPDS another copy of the
transition that omits the creation of the task (namely a transition of the form (p, α, ε, β, p′)).
Since the total number of removed tasks bounds the total number of the tasks that need to
be created we get our bound K which can be set to 2K ′. J

We will now prove that the K-bounded reachability for MPDSs is in NP. This automat-
ically gives us an NP algorithm for the reachability problem.

I Lemma 8. Given an MPDS A and a state q, there is an non-deterministic polynomial
time algorithm that decides whether q is K-bounded reachable in A.

Proof. The NP algorithm starts by guessing the sequence of multi-set operations that create
or remove tasks. Observe that the size of such a sequence is bounded by K. Then, the
algorithm checks if the guessed sequence is valid (i.e., for every prefix of the guessed sequence,
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the number of created tasks of a type a is larger that the number of removed tasks of type
a). This can be easily checked in polynomial time. Now, if the guessed sequence is valid, the
algorithm checks if this sequence can lead to an execution of the MPDS that reaches the state
q. This is done by seeing the MPDS A = (Σ, (Q,Γ,O, δ, s1, α1)) as a pushdown automaton
P = (Q,Γ,O, δ, s1, α1) over the alphabet {1!1(a), 1?a | a ∈ Σ}. Finally, checking whether the
guessed sequence can lead to an execution of the MPDS that reaches q can be reduced to
checking if the guessed sequence can be accepted by the pushdown automaton. J
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