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Abstract
We consider opacity questions where an observation function provides to an external attacker
a view of the states along executions and secret executions are those visiting some state from
a fixed subset. Disclosure occurs when the observer can deduce from a finite observation that
the execution is secret, the ε-disclosure variant corresponding to the execution being secret with
probability greater than 1−ε. In a probabilistic and non deterministic setting, where an internal
agent can choose between actions, there are two points of view, depending on the status of
this agent: the successive choices can either help the attacker trying to disclose the secret, if
the system has been corrupted, or they can prevent disclosure as much as possible if these
choices are part of the system design. In the former situation, corresponding to a worst case,
the disclosure value is the supremum over the strategies of the probability to disclose the secret
(maximisation), whereas in the latter case, the disclosure is the infimum (minimisation). We
address quantitative problems (comparing the optimal value with a threshold) and qualitative
ones (when the threshold is zero or one) related to both forms of disclosure for a fixed or finite
horizon. For all problems, we characterise their decidability status and their complexity. We
discover a surprising asymmetry: on the one hand optimal strategies may be chosen among
deterministic ones in maximisation problems, while it is not the case for minimisation. On the
other hand, for the questions addressed here, more minimisation problems than maximisation
ones are decidable.
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1 Introduction

Opacity. Opacity of an information system is a key security property: an external user
should not, by observing an execution of a system, acquire the guarantee that it is a secret
one. This property was first formalised for labelled transition systems [7], by specifying
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Figure 1 When strategies help (or not) to disclose a secret.

a subset of secret paths and requiring that, for any secret path, there is a non-secret one
with the same observation. The disclosure set of a system is then the set of (secret) paths
violating opacity.

Opacity raises challenging research issues like (1) formal specification in various frame-
works [13, 7], (2) the design of mechanisms to ensure opacity while preserving functionality
and performance [2], and (3) the verification of opacity properties [14, 7].

Attacks against opacity. In order to quantify the size of the leak, various measures for
the disclosure set, called probabilistic disclosure, were introduced in [17, 3, 5, 4]. For
probabilistic and non deterministic systems like Markov Decision Processes (MDP), where an
internal agent can choose between several actions, the disclosure can be either maximised or
minimised depending on the status of the agent. In previous works, the situation considered
corresponded to maximisation, where the system has been corrupted (e.g., by a virus), and
the internal agent cooperates with the attacker to disclose the secret. In [3], the set of secret
paths is specified by some deterministic automaton and the attacker does not know which
strategy is applied, hence the set of executions leaking the secret is fixed by the structure of
the system and does not vary according to the strategies. This is illustrated in Figure 1a with
an MDP where actions a and b are possible from state q0. Action a (resp. b) has a uniform
distribution over states q1 and q2 (resp. q3 and q4). States q1 and q3 produce observation
o1, while q2 and q4 produce o2. The secret paths are those in q0q

ω
2 ∪ q0q

ω
3 (reaching either

q2 or q3, in grey). If the observer is not aware of the strategy and thus has to consider all
possible paths whatever the strategy, the non secret paths are q0q

ω
1 and q0q

ω
4 , hence there is

no disclosing path, leading to a null disclosure (as in [3]). On the other hand, if the observer
is aware of the strategy, assuming that initially a is chosen produces a maximal disclosure
of 1

2 . This example also shows that deterministic strategies are not sufficient to achieve
minimisation: value 0 for the disclosure can only be obtained by randomised strategies,
choosing a with probability p and b with probability 1− p (for 0 < p < 1) in q0.

In contrast, Figure 1b represents an MDP where both actions a and b have the same
support in state q0, hence choosing a or b does not change the states that can be reached.
Under a strategy which always plays a, the disclosure is equal to 2

3 which is the probability
of reaching q1.

Given some ε > 0, a path could alternatively be considered as disclosing the secret, if
the measure of the set of paths with same observation that are not secret is less than ε.
This notion is called ε-disclosure. For instance in Figure 1a with ε < 1

2 in order to achieve
a minimal ε-disclosure of 0 the strategy must select p between ε and 1 − ε. However in
Figure 1b for every ε > 0 the ε-disclosure is equal to 1 as the probability to be in a secret
state converges to 1 on every path.
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Table 1 Complexity results for maximisation and minimisation of disclosure.

Disclosure General Limit-sure Almost-sure
Maximisation finite horizon undecidable undecidable EXPTIME-c
Minimisation finite horizon PSPACE-hard ≤ Min ≤ EXPTIME
Maximisation fixed horizon PSPACE-c. PTIME PTIME
Minimisation fixed horizon PSPACE-c PSPACE-c PSPACE-c

This figure also illustrates the drastic restriction used in [4] where no edge in an MDP
can be blocked by a strategy. With this restricted power of the internal component, the
authors can assume that the observer knows the strategy, which is an important requirement
since the security of a system should not be based on hiding its design. The model used
in [4] is in fact a restricted case of Interval Markov Decision Processes (IMDPs) so that after
some transformation, the problem boils down to IMDP model checking [10]. The general
decidability status of the disclosure problem is left open.

Contributions. Here we focus on several problems in MDPs under partial observation that
cannot be formalised as problems for classical POMDPs (Partially Observable MDPs). The
notion of disclosure is defined with respect to a fixed subset Sec of states: A (finite or infinite)
path is secret if it has visited some state of Sec. Other variants of secret path specifications
have been proposed with deterministic finite automata accepting finite or infinite paths. The
former case can be easily translated in our setting while we believe that the latter one is
debatable: a system is not really vulnerable if the attacker can only know the secret at
infinite horizon!

Once a strategy is fixed, the behaviour of the system is described by a possibly infinite
partially observable Markov chain, so we start in Section 2 by establishing several results on
the semantical aspects of disclosure in Markov chains. In addition, we prove undecidability
for the positive ε-disclosure problem (deciding if ε-disclosure is positive) within finite horizon.
We then consider two different settings depending on the status of the strategies. Like in
previous work, maximisation of disclosure corresponds to the internal agent cooperating with
the attacker to disclose a secret. Dually, minimisation is interesting to study during the
system design process, in order to optimise the choices of the internal agent to defend the
system. We address various problems in these settings, for a finite horizon but also for a fixed
horizon (given in unary representation), corresponding to real-time constraints requiring the
number of steps to be fixed in advance. The quantitative decision problem asks whether the
disclosure is above or below some threshold, while qualitative problems consider extremal
values (0 or 1) of the disclosure. We prove that observation-based strategies (i.e., which only
depend on the sequence of observations and the current state) are dominant in both cases.

The main complexity results for decision problems are gathered in Table 1. For the
maximisation objective (Section 3), we show that deterministic strategies are dominant. We
answer negatively to the decidability issues left open in [4], proving that both the quantitative
problem and the limit-sure problem (asking whether the supremum over all strategies is
1) are undecidable for a finite horizon. Then, we show that the almost-sure problem
(asking whether there is a strategy producing a value 1 for disclosure) is EXPTIME-complete.
For minimisation (Section 4), we introduce families of randomised strategies, necessary to
asymptotically reach minimal disclosure, even within fixed horizon. For finite horizon, we
show that the computation and decision problems belong to EXPTIME. Hence surprisingly,
although the problem seems more difficult due to the necessity of randomised strategies, the
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disclosure problem for minimisation is decidable whereas it is not for maximisation. Section 5
is devoted to the fixed horizon problems. For maximisation, we prove that the disclosure value
can be computed in PSPACE (while its associated strategy can be computed in EXPTIME) and
also establish that the corresponding decision problem is PSPACE-complete. The almost-sure
and limit-sure decision problem however are easier and can be solved in PTIME. Refining the
techniques to take randomised strategies into account, we obtain PSPACE-completeness of
the various decision problems for minimisation.

2 Specification

We denote by N the set of natural numbers. For a finite alphabet Σ, we denote by Σ∗ (resp.
Σω) the set of finite (resp. infinite) words over Σ, with Σ∞ = Σ∗ ∪Σω and ε the empty word.
The length of a word w is denoted by |w| ∈ N∪ {∞} and for n ∈ N, Σn is the set of words of
length n. A word u ∈ Σ∗ is a prefix of v ∈ Σ∞, written u ≤ v, if v = uw for some w ∈ Σ∞.
The prefix is strict if w 6= ε. Given a countable set Z, a distribution on Z is a mapping
µ : Z → [0, 1] such that

∑
z∈Z µ(z) = 1. The support of µ is Supp(µ) = {z ∈ Z | µ(z) > 0}.

If Supp(µ) = {z} is a single element, µ is a Dirac distribution on z written 1z. We denote
by Dist(S) the set of distributions on S.

2.1 Opacity for Markov chains
For the purpose of opacity questions, the models are equipped with a labelling function on
states, called observation function, describing what an external observer can see. We first
define observable Markov chains (MCs for short).

I Definition 1 (Markov chains). An observable Markov chain (MC) over alphabet Σ is a
tupleM = (S, p,O) where S is a countable set of states, p : S → Dist(S) is the transition
function, and O : S → Σ ∪ {ε} is the observation function.

We write p(s′|s) instead of p(s)(s′) to emphasise the probability of going to state s′ condi-
tionned by being in state s. Given a distribution µ0 on S, we denote byM(µ0) the chain with
initial distribution µ0. An infinite path ofM(µ0) is a sequence of states ρ = s0s1 . . . ∈ Sω
such that µ0(s0) > 0 and for each i ≥ 0, p(si+1|si) > 0. A finite path of length n is
a prefix ρ = s0s1 . . . sn of an infinite path, ending in state last(ρ) = sn. We denote by
Path(M(µ0)) (resp. FPath(M(µ0))) the set of infinite (finite) paths ofM(µ0). The obser-
vation of path ρ = s0s1 . . . is the word O(ρ) = O(s0)O(s1)... ∈ Σ∞. For a set R of paths,
O(R) = {O(ρ) | ρ ∈ R} and for a set W of observations, O−1(W ) = {ρ | O(ρ) ∈ W}. The
observation function is called non erasing if O(S) ⊆ Σ (all states are visible).

A probability measure PM(µ0) is defined on Path(M(µ0)), where the measurable sets
are generated by the cylinders Cyl(ρ), for ρ ∈ FPath(M(µ0)), containing the infinite paths
having ρ as prefix. Then PM(µ0) is inductively defined by: PM(µ0)(s) = µ0(s) for s ∈ S and
for ρ′ = ρs′, with last(ρ) = s, PM(µ0)(Cyl(ρ′)) = PM(µ0)(Cyl(ρ))p(s′|s). We sometimes write
PM(µ0)(ρ) instead of PM(µ0)(Cyl(ρ)) for ρ ∈ FPath(M) and for w ∈ Σ∗, PM(µ0)(w) instead
of PM(µ0)(∪ρ∈O−1(w)Cyl(ρ)).

We consider here the particular case where the secret is given by a subset of states
Sec ⊆ S of the model: a (finite of infinite) path s0s1 . . . is secret if si ∈ Sec for some i. We
first define a probabilistic version of disclosure w.r.t. some ε > 0 to answer the question:
Is there non-zero probability of observing some w that has probability more than 1− ε of
coming from a secret path?
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I Definition 2 (ε-Disclosure). Given an MCM = (S, p,O), an initial distribution µ0, Sec ⊆ S
and an observation w ∈ Σ∗, the proportion of secret paths with observation w is:

PsecM(µ0)(w) =
PM(µ0)({ρ ∈ O−1(w) | ρ is secret})

PM(µ0)(w) .

For ε > 0, w is ε-min-disclosing if PsecM(µ0)(w) > 1 − ε and no prefix of w satisfies
this inequality. Writing Dε

min for the set of ε-min-disclosing observations, the ε-disclosure is
defined by Discε(M(µ0)) =

∑
w∈Dεmin

PM(µ0)(w). The positive ε-disclosure problem consists
in deciding if Discε(M(µ0)) > 0.

While being the most realistic notion of probabilistic disclosure, unfortunately the problem
is already undecidable for Markov chains:

I Theorem 3. The positive ε-disclosure problem is undecidable for MCs.

Like in further proofs, we use a reduction from a problem on Probabilistic Automata (PA).
Recall that a PA is a tuple A = (Q, q0,Act, T, F ) where Q is a finite set of states with q0 ∈ Q
the initial state, Act is a finite set of actions, T : Q×Act→ Dist(Q) is the transition function
and F ⊆ Q is the set of final states.

For a finite path ρ = q0
(−→ a1)q1 . . .

(−→ an)qn of A, the word a1 . . . an ∈ Act∗ is called the
trace of ρ and denoted by tr(ρ). Writing FPath(w, q) = {ρ ∈ FPath | tr(ρ) = w and last(ρ) =
q} for w ∈ Act∗ and q ∈ Q, we define Pq

A(w) = PA(∪ρ∈FPath(w,q)Cylρ), PF
A(w) =

∑
q∈F Pq

A(w)
and val(A) = supw∈Act∗PF

A(w).
Given a threshold θ ∈ [0, 1[, we set L>θ(A) = {w ∈ Act∗ | PF

A(w) > θ}. The strict
emptiness problem for A, asking whether this set is empty or not, is known to be undecidable
for θ > 0 [16]. The value 1 problem, asking whether val(A) = 1 is undecidable as well [11].

Sketch of Proof. Given a PAA, we build a Markov chainMA with initial distribution µ0 and
secret Sec such that for any ε, 0 < ε < 1, L>1−ε(A) is not empty iff Discε(MA(µ0)) > 0. J

This leads us to return to the simpler case where the disclosure is the probability of the
set of paths leaking the secret, i.e., such that all paths with the same observation are secret.
The ω-disclosure (corresponding to measures in [3, 5, 4]) was defined for a Markov chain
M = (S, p,O) with initial distribution µ0 by considering a measurable set of secret paths
SPath ⊆ Path(M(µ0)). Here, as mentioned above, SPath is Reach(Sec), the set of infinite
paths visiting a state from Sec, and an infinite observation w ∈ Σω discloses the secret if all
paths ρ ∈ O−1(w) are secret. Setting SPath = Path(M(µ0)) \ SPath, we define:

I Definition 4 (ω-Disclosure). For an MCM = (S, p,O), an initial distribution µ0 and a
subset Sec ⊆ S, with SPath = Reach(Sec), the ω-disclosure is defined by:

Discω(M(µ0)) = PM(µ0)(SPath \ O−1(O(SPath))).

To obtain measures directly related to the finite observation of a possible attacker, we
assume that M = (S, p,O) is convergent: each infinite path ρ has an infinite observation
O(ρ) ∈ Σω. Two measures can then be defined, when considering a fixed or finite horizon. In
the former case, we consider a non-erasing function O to obtain real-time observations.

I Definition 5 (Disclosure of MCs). LetM = (S, p,O) be an MC, µ0 an initial distribution
and Sec ⊆ S. A finite observation w ∈ Σ∗ discloses the secret if all paths ρ ∈ O−1(w) are
secret. It is min-disclosing if it discloses the secret and no strict prefix of w does.
n-disclosure: When O is non-erasing, we denote by Dn, for n ∈ N, the set of disclosing

observations of length n. The n-disclosure is Discn(M(µ0)) =
∑
w∈Dn PM(µ0)(w);

FSTTCS 2017
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Figure 2 An infinitely branching MC with Sec = {qs}, Discω = 1
2 and Disc = 0.

Disclosure: Writing Dmin for the set of min-disclosing observations, the disclosure (w.r.t.
finite horizon) is defined by Disc(M(µ0)) =

∑
w∈Dmin

PM(µ0)(w).

Note that if D is the set of disclosing observations, and V(µ0) = ∪w∈D ∪ρ∈O−1(w) Cyl(ρ)
the set of paths disclosing the secret, then Disc(M(µ0)) is also equal to PM(µ0)(V(µ0)).
I Remark. Without loss of generality, we can assume that once a secret state has been
reached by an execution, all subsequent states remain secret. For this, a new Markov
chainM′ = (S′, p′,O′) is defined fromM by: S′ = Sec ] ((S \ Sec)× {0, 1}), where (s, 0)
represents state s where the secret has not been visited while (s, 1) represents the opposite
situation. The transitions are then duplicated accordingly: (1) p′((s′, i)|(s, i)) = p(s′|s) for
all s, s′ ∈ S \ Sec, and i = 0, 1, (2) p′((s′, 1)|s) = p(s′|s) for all s ∈ Sec, and s′ ∈ S \ Sec, (3)
p′(s′|(s, i)) = p(s′|s) for all s ∈ S \ Sec, i = 0, 1, and s′ ∈ Sec, and (4) p′(s′|s) = p(s′|s) for
all s, s′ ∈ Sec. The observation function is extended by O′((s, i)) = O(s) for all s ∈ S \ Sec
and i = 0, 1 and the new set of secrets is Sec ] ((S \ Sec) × {1}). There is a one-to-one
probability-preserving correspondence between the paths inM and those inM′.

We show that disclosure and ω-disclosure may be different by consider the infinitely
branching MC of Figure 2, with initial distribution 1q0 , Sec = {qs} hence SPath = {q0q

ω
s },

O(SPath) = o+
1 o

ω
2 . Then Discω = 1

2 but since no finite observation is disclosing, Disc = 0.
However, both notions coincide for convergent finitely branching MCs.

I Lemma 6 (Comparison of Disclosure Notions). LetM = (S, p,O) be a Markov chain, µ0 an
initial distribution and Sec ⊆ S. For SPath = Reach(Sec), Disc(M(µ0)) ≤ Discω(M(µ0))
and equality holds ifM is convergent and finitely branching.

2.2 Opacity for Markov Decision Processes
We now turn to MDPs that combine non determinism with probabilistic transitions.

I Definition 7 (MDP). A Markov Decision Process (MDP) over alphabet Σ is a tuple
M = (S,Act, p,O) where S is a finite set of states, Act = ∪s∈SA(s) where A(s) is a finite
non-empty set of actions for each state s ∈ S, p : S×Act→ Dist(S) is the (partial) transition
function defined for (s, a) when a ∈ A(s) and O : S → Σ ∪ {ε} is the observation function.

As before, we write p(s′|s, a) instead of p(s, a)(s′). Given an initial distribution µ0, an infinite
path of M is a sequence ρ = s0a0s1a1 . . . where µ0(s0) > 0 and p(si+1|si, ai) > 0, for si ∈ S,
ai ∈ A(si), for all i ≥ 0. Finite paths (ending in a state) and observation of a path are
defined like for Markov chains, and we use similar notations for the various sets of paths.
For decidability and complexity results, we assume that all probabilities occurring in the
model (transition probabilities and initial distribution) are rationals.
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Nondeterminism is resolved by strategies. Given a finite path ρ with last(ρ) = s, a
decision rule for ρ is a distribution on the possible actions in A(s) chosen at this point. For
such a decision rule δ, we write p(s′|s, δ) =

∑
a∈A(s) δ(a)p(s′|s, a).

I Definition 8 (Strategy). A strategy of MDP M = (S,Act, p,O) with initial distribution µ0
is a mapping σ : FPath(M(µ0))→ Dist(Act) associating with ρ a decision rule σ(ρ).

Given a strategy σ, a path ρ = s0a0s1a1 . . . of M is σ-compatible if for all i, ai ∈
Supp(σ(s0a0s1a1 . . . si)). A strategy σ is deterministic if σ(ρ) is a Dirac distribution for
each finite path ρ. In this case, we denote by σ(ρ) the single action a ∈ A(last(ρ)) such that
σ(ρ) = 1a. A strategy σ is observation-based if for any finite path ρ, σ(ρ) only depends on
the observation sequence O(ρ) and the current state last(ρ), writing σ(O(ρ), last(ρ)) for σ(ρ).

Let σ be a strategy and ρ be a σ-compatible path. We define Bσρ the belief of ρ w.r.t. σ
about states corresponding to the last observation as follows:

Bσρ = {s | ∃ρ′ σ-compatible, O(ρ′) = O(ρ) ∧ s = last(ρ′) ∧O(s) 6= ε}

A strategy σ is belief-based if for all ρ, σ(ρ) only depends on its belief Bσρ and its current
state last(ρ). Observe that a belief-based strategy is observation-based since Bσρ only depends
on w = O(ρ). So we also write Bσw for Bσρ . A strategy σ is memoryless if σ(ρ) only depends
on last(ρ) for all ρ.

A strategy σ on M(µ0) defines a (possibly infinite) Markov chain Mσ(µ0) with set
of states FPath(Mσ(µ0)) (the finite σ-compatible paths), that can be equipped with the
observation function associating O(last(ρ)) with the finite path ρ. The transition function
pσ is defined for ρ ∈ FPath(Mσ(µ0)) and ρ′ = ρas′ by pσ(ρ′|ρ) = σ(ρ)(a)p(s′|s, a) and we
denote by PMσ(µ0) (or Pσ for short when there is no ambiguity) the associated probability
measure. Writing Vσ(µ0) for the set of paths disclosing the secret in Mσ(µ0), we have
Disc(Mσ(µ0)) = PMσ(µ0)(Vσ(µ0)).

Disclosure values for MDPs are defined according to the status of the strategies, by
considering them as adversarial or cooperative with respect to the system (we only consider
ε-disclosure for fixed horizon in view of the undecidability result of Theorem 3).

I Definition 9 (Disclosure of an MDP). Given an MDP M = (S,Act, p,O), an initial
distribution µ0 and a secret Sec ⊆ S, the maximal disclosure of Sec in M is discmax(M(µ0)) =
supσ disc(Mσ(µ0)) and the minimal disclosure is discmin(M(µ0)) = infσ disc(Mσ(µ0)) for
disc ∈ {Disc,Discn, Discεn}, n ∈ N and 0 < ε < 1.

Note that the construction ensuring that once a secret state is visited, the path remains
secret forever, extends naturally from Markov chains to MDPs. We consider only MDPs of
this form in the sequel. We now show that for disclosure problems we can restrict strategies
to observation-based ones.

I Proposition 10 (Observation-based strategies). Given an MDP, a secret and a strategy σ,
there exists an observation-based strategy σ′ with the same disclosure values.

Erasing observations leads to technical and cumbersome developments. In order to avoid
them in the design of procedures for the finite horizon case, we apply the preliminary trans-
formation described in the next proposition. We precisely state the size of the transformed
MDP in view of complexity results.

I Proposition 11 (Avoiding erasing observations). Given an MDP M = (S,Act, p,O), an
initial distribution µ0 and a secret Sec, one can build in exponential time an MDP M′ =

FSTTCS 2017
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(S′,Act′, p′,O′), an initial distribution µ′0 and a secret Sec′ where O′ is non-erasing and for
disc ∈ {Discmin, Discmax} disc(M(µ0)) = disc(M′(µ′0)). In addition, the size of S′, p′ and
µ′0 is polynomial w.r.t. those of S′, p′ and µ′0. The size of Act′ is polynomial w.r.t. the size
of Act and exponential w.r.t. the size of S.

We study the following problems over MDPs:
Computation problems. The value problem: compute the disclosure and the strategy
problem: compute an optimal strategy whenever it exists;
Quantitative decision problems. The disclosure problem: Given M and a threshold
θ ∈ [0, 1], is disc(M) ./ θ? with ./ = ≥ for maximisation and ./ = ≤ for minimisation,
and the more demanding strategy decision problem: does there exist a strategy σ such
that disc(Mσ) ./ θ?
Qualitative decision problems. The limit-sure disclosure problem: the disclosure
problem when θ = 1 for maximisation and θ = 0 for minimisation and the almost-sure
disclosure problem: the strategy decision problem with the same restrictions.

For the complexity results regarding a fixed horizon n, we will assume that n is written
in unary representation or bounded by a polynomial in the size of the model where the
polynomial is independent of the model as done in classical studies (see for instance [15]).

3 Maximisation with finite horizon

While strategies may be randomised, this additional power is not necessary for maximisation:

I Proposition 12 (Dominance of deterministic strategies). Given an MDP, a secret and an
observation-based strategy σ there exists a deterministic observation-based strategy σ′ with
greater or equal disclosure of the secret.

Sketch of Proof. The Lemma 1 of [8] (or alternatively [12]) does not directly give the result
as, contrary to the objectives used in their paper, disclosure depends on the strategy. However,
as a disclosing path for a randomised strategy is also a disclosing path for a deterministic
strategy that does not introduce new paths, we can use parts of their proof to show our
result. J

An edge can be completely blocked by some strategy, modifying the set of paths that
disclose the secret. This was illustrated in Figure 1a, where choosing action a in state q0
removes the edges to q3 and q4. This situation was excluded in the disclosure computation
from [4], where the general problem was left open for Interval Markov Chains (IMCs). We
answer negatively by proving undecidability of the disclosure problem, hence the disclosure
cannot be computed in general. Undecidability also holds for limit-sure disclosure.

Writing I for the set of intervals in [0, 1], an IMC (with observation) is a tuple M =
(S, sinit, I,O) where S is the set of states, sinit is the initial state, I : S → IS associates
with any state s ∈ S a mapping from S into I, and O : S → Σ ∪ {ε} is the observation
function. An IMC can be transformed into an (exponentially larger) MDP where actions are
the basic feasible solutions of the linear program specified by the constraints associated with
intervals [18]. Thus undecidability results for IMCs also hold for MDPs.

I Theorem 13 (Undecidability of maximal finite horizon disclosure). The maximal finite horizon
disclosure problem is undecidable for MDPs, even when the secret is reached with probability
1 and for a non-erasing observation function.
The maximal finite horizon disclosure problem when restricted to finite-memory strategies is
also undecidable (with the same additional assumptions).
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Sketch of Proof. Starting from a PA A, we build an IMC MA = (S, s0, I,O) such that there
exists a word w ∈ {a, b}∗ with PF

A(w) > 1
2 if and only if Discmax(MA) > 1

4 . While similar
to the one of Theorem 3, the proof is more involved because the strategies must be taken
into account. J

As a consequence, we obtain:

I Corollary 14. The maximal finite horizon disclosure of an MDP cannot be computed.

Using a reduction of the value 1 problem in PA, we also have:

I Theorem 15 (Undecidability of maximal finite horizon limit-sure disclosure). The maximal
finite horizon limit-sure disclosure problem is undecidable for MDPs.

Fortunately the maximal finite-horizon almost-sure disclosure problem is decidable. The
proof relies on results for partially observable MDPs (POMDPs): a POMDP is an MDP
where the strategies resolving the non determinism only depend on the observation sequence
and do not take the current state into account.

I Theorem 16 (Decidability of maximal finite-horizon almost-sure disclosure). The maximal
finite-horizon almost-sure disclosure problem in MDPs is EXPTIME-complete. Moreover, if
the system is almost-surely disclosing, one can build a belief-based strategy with disclosure 1.

Sketch of Proof. We reduce the almost-sure disclosure problem for maximisation in MDPs
to almost-sure reachability in a POMDP. The POMDP we build is exponential in the size
of the original MDP and the algorithm to solve almost-sure reachability is exponential in
the size of the POMDP [9]. This gives an EXPTIME algorithm as those two exponentials do
not stack. The hardness is obtained by a reduction from the safety problem in games with
imperfect information that was shown to be EXPTIME-complete in [6]. J

4 Minimisation with finite horizon

Recall from the example illustrated in Figure 1a of introduction, that randomised strategies
are necessary for minimisation. To address this issue we introduce families of almost
deterministic strategies based on ε-decision rules, that will be used in the decision procedures.

I Definition 17. Let δ be the deterministic decision rule for state s selecting action a ∈ A(s).
Then δε ∈ Dist(A(s)) is a (randomised) ε-decision rule, said to favour a, and defined by:
1. If |A(s)| > 1 then δε(a) = 1− ε and for all b ∈ A(s) \ {a}, δε(b) = ε

|A(s)|−1 ;
2. Else δε(a) = 1.

I Definition 18. Let σ be an observation-based deterministic strategy. Then {σε}ε>0 is
a family of observation-based almost deterministic strategies defined for any state s and
w ∈ Σn, an observation of length n ∈ N, by: σε(w, s) = σ(w, s)2−nε.

Using Proposition 11, we assume that the observation function O is non-erasing. The
complexity of the transformation does not affect the results since the complexities are all
polynomial in the number of actions. To compute the minimal disclosure value, we build from
an MDP M, another MDP Mmin which is a “correct abstraction” (as stated by Proposition 19)
for reducing minimal disclosure problems to minimal reachability problems, by enlarging
states with the maximal belief that can occur independently of the action that has been
selected.
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Given a set of potential current states B and a new observation o, we define the maximal
set of potential next states NextMax(B, o) over decision rules applied to B by:

NextMax(B, o) = {s′ ∈ O−1(o) | ∃s ∈ B ∃a ∈ A(s) p(s′|s, a) > 0}

Observe that given a family of almost deterministic strategies {σε} and a path ρas of M
with O(s) = o, one has Bσερas = NextMax(Bσερ , o). Then Mmin is formally defined as follows:

Smin, the set of states, is defined by: Smin = {(s,B) | s ∈ B ⊆ O−1(O(s))};
Let (s,B) ∈ Smin. Then A(s,B) = A(s);
Let (s,B), (s′, B′) ∈ Smin. If B′ = NextMax(B,O(s′)) then p((s′, B′)|(s,B), a) = p(s′|s, a)
else p((s′, B′)|(s,B), a) = 0.

Given µ0 an initial distribution over S, the associated initial distribution µmin over Smin is
defined by µmin(s, Supp(µ0) ∩ O−1(O(s))) = µ0(s) and µmin(s,B) = 0 for all other B. We
define the subset Avoid(Sec) ⊆ Smin by Avoid(Sec) = {(s,B)|B ⊆ Sec}.

I Proposition 19. The minimal disclosure value for Sec in M(µ0) is equal to the minimal
probability to reach Avoid(Sec) in Mmin(µmin). Furthermore it is asymptotically reached by a
family of belief-based almost deterministic strategies.

Since minimal reachability probability in MDPs can be computed in polynomial time
we immediately obtain the first part of the next theorem. We establish the second part
(PSPACE-hardness) in the proof of Theorem 23.

I Theorem 20. The minimal disclosure value of M(µ0) can be computed in EXPTIME. The
associated decision problem is PSPACE-hard.

We now turn to the existence of a strategy that achieves the minimal value and establish
that it can be analysed without additional complexity. The main ingredient of the proof is
an equation system over states of the MDP whose unique solution is the minimal reachability
probability vector.

Notations. Given µ a distribution over states and ~δ a vector of decision rules over states in
the support of µ, we define NextDist(µ,~δ) the next distribution over S when applying ~δ by:

NextDist(µ,~δ)(s′) =
∑

s∈Supp(µ)

µ(s)p(s′|s, ~δ[s]) for any s′ ∈ S.

For a distribution µ over S and o ∈ Σ, we write µ(o) for µ(O−1(o)). If Supp(µ)∩O−1(o) 6=
∅, the relative distribution µo over O−1(o) is defined by: µo(s) = µ(s)

µ(o) for s ∈ O−1(o) and
µo(s) = 0 otherwise.

We have Discmin(M(µ)) =
∑
o∈Σ µ(o)Discmin(M(µo)). For use in the next proof, we

define disc∗(M(s,B)) as the minimal disclosure value when starting in M in state s with belief
B. Given some belief B and some decision rule vector ~δ over B we introduce the possible
successors of B when applying ~δ: Next(B,~δ) = {s′ | ∃s ∈ B ∃a ∈ Supp(~δ[s]) p(s′|s, a) > 0}
and Next(B,~δ, o) = Next(B,~δ) ∩ O−1(o).

I Theorem 21. The existence of a strategy that achieves the minimal disclosure value can
be decided in EXPTIME. In the positive case, this strategy can be computed in EXPTIME.

Proof. The algorithm simultaneously solves the existence and the synthesis problem.
Using proposition 19, the algorithm computes for all (s,B) ∈ Smin, disc∗(M(s,B)).
Then it maintains a set Win of beliefs initially set to all beliefs from which it iteratively
eliminates items and stops when no more elimination is possible.
Given B ∈Win, it looks for a decision rule vector ~δ over B such that:
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for all o ∈ O(Next(B,~δ)), Next(B,~δ, o) ∈Win;
for all s ∈ B, disc∗(M(s,B)) =

∑
o∈Σ

∑
s′∈O−1(o) p(s′|s, ~δ[s])disc∗(M(s′,Next(B,~δ, o))).

If such a ~δ does not exist then B is eliminated from Win. Each iteration can be performed
in polynomial time w.r.t. |Smin| and the number of iterations is at most |Smin|. Observe
that when a belief is eliminated, it should not be “reached” by a strategy that obtains the
minimal disclosure value. So the elimination is sound.
When the elimination stops, the algorithm answers positively iff for all o ∈ O(Supp(µ0)),
Supp(µ0) ∩ O−1(o) ∈Win. Thus by the soundness of the elimination step, if the answer is
negative there is no optimal strategy for minimal disclosure value.
If the answer is positive, let us consider the belief-based strategy σ defined by applying the
decision rules obtained during the last iteration of the algorithm. On the one hand, under σ
when visiting a state s with belief B such that disc∗(M(s,B)) = 0, one never leaves such kind
of pairs of states and beliefs. So the secret is never disclosed, showing that the disclosure
value obtained by σ for such (s,B) is null. Under σ the disclosure value of all the other
pairs of state and belief fulfill the equations of the elimination step. It is known that the
single solution of this system is the vector of minimal reachability probabilities of Avoid in
Mmin(µmin) (see [1] for instance) which yields the result. J

5 Fixed horizon problems

5.1 Maximal disclosure
In order to compute the value of the maximal disclosure within a fixed horizon, one could
build the POMDP described in the proof of Theorem 16 then use pre-existing results on
POMDPs. This would result in an EXPTIME algorithm, whereas we obtain in the result
below an algorithm with a better complexity in PSPACE.

I Theorem 22 (Computation of the maximal disclosure value within fixed-horizon). The fixed-
horizon maximal value (when the horizon n is described in unary representation) is computable
in PSPACE and the fixed-horizon maximal disclosure problem is PSPACE-complete.

Sketch of proof - value and membership. We first order the observation alphabet Σ. Then
a non deterministic decision procedure operating in PSPACE orderly reads every observation
sequence of length n while maintaining the sets of states that were possible after every prefix
of this observation, the actions that were chosen nondeterministically in those states and
values used in the computation of the disclosure. The information kept is of polynomial size
and when every observation has been read, one of the values computed will be exactly the
disclosure of the system at time n. We then remove the non determinism using Savitch’s
Theorem. In order to get the value we observe that we can compute the polynomially sized
denominator of this value and then we proceed by iterations of the decision algorithm. J

As can be seen in the proof, the optimal strategy could be computed when solving the value
problem. However the size of this strategy may be exponential due to the beliefs and thus
this strategy is computable in EXPTIME.

For the hardness result, we reduce the truth of a Quantified Boolean Formula (QBF).
Recall that QBFs are extension of propositional formulas where boolean variables can be
quantified. Syntactically, the formulas are described by the following grammar:

φ ::= ψ | ∃x.φ | ∀x.φ
ψ ::= x | ψ ∧ ψ | ψ ∨ ψ | ¬ψ | true

FSTTCS 2017
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A QBF is closed if every boolean variable is bound by a quantifier. Deciding if a closed
QBF is equivalent to true is PSPACE-hard [19].

Sketch of proof - hardness. Given φ a closed QBF (w.l.o.g. in 3CNF with n variables and
m clauses), we build an MDP M such that φ is true iff the disclosure of M is greater or equal
to 1

22n in 2(n+m) + 3 steps. In fact, 1
22n is exactly the measure of paths reaching the secret

in 2(n+m) + 3 steps, thus every path reaching the secret must be disclosing. Such a path
discloses the secret iff a boolean variable of φ and its negation (x and ¬x for example) do
not occur in its observation.

In M, during the first 2n steps, an assignment will be ‘given’ to each boolean variable:
(i) for each existentially quantified boolean variable x, the strategy chooses whether x or
¬x occurs in the observation and (ii) for each universally quantified boolean variable y, by
a random choice with probability 1

2 . During the last 2m steps, the strategy must trigger
a boolean variable in every clause of φ so that if a clause is not satisfied by the current
assignment, then a boolean variable will be observed as both true and false during the path.
Thus the observation would not disclose the secret. J

The existence of an optimal strategy here implies that the limit-sure and the almost-sure
problem are equivalent. Moreover, the secret being revealed with probability 1 in a given
number of steps implies that every path reaches the secret in this number of steps. Therefore
the almost-sure problem can be seen as a reachability problem in an MDP which can be
solved in polynomial time.

The proof of hardness can be adapted for ε-disclosure, but the algorithm for membership
can not be directly applied. The ε-disclosure could however be computed by minimising an
exponential system of equations, resulting in an exponential time algorithm.

5.2 Minimal disclosure
The proofs of the two first assertions of the next theorem are similar to the proof of Theorem 22.
However in order to get the same complexity for the last assertion, we establish that when a
randomised decision rule must be selected in the optimal strategy, it can always be uniformly
distributed over its support.

I Theorem 23 (Minimal disclosure within fixed horizon). The fixed horizon minimal value is
computable in PSPACE. The fixed horizon minimal disclosure problem is PSPACE-complete.
In addition, the strategy decision problem is also decidable in PSPACE.

The above proof implies PSPACE-completeness for the limit-sure and almost-sure problem
for minimisation. The remark on ε-disclosure of the previous subsection holds again here.

6 Conclusion

We revisit the problems of disclosure for MDPs by (1) taking into account general actions
contrary to previous work and (2) considering both maximisation and minimisation problems.
We almost fully characterise the decidability and complexity of those problems establishing
an asymmetry between minimisation and maximisation problems: the former ones being
easier although they require families of randomised strategies for reaching the optimal value.

There remains a complexity gap (PSPACE versus EXPTIME) for the finite-horizon minim-
isation problem that we want to fill. From a qualitative point of view, observe that disclosure
is a hyperproperty as its truth value is defined relatively to a set of paths. Thus we plan to
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address such kinds of properties in a restricted setting in order to get other decidability results.
Another direction would be to strengthen the requirement for approximate ε-disclosure to
regain decidability within finite horizon.
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