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Abstract
This paper is a sequel of “Forward Analysis for WSTS, Part I: Completions” [STACS 2009, LZI
Intl. Proc. in Informatics 3, 433–444] and “Forward Analysis for WSTS, Part II: Complete WSTS”
[Logical Methods in Computer Science 8(3), 2012]. In these two papers, we provided a framework
to conduct forward reachability analyses of WSTS, using finite representations of downwards-
closed sets. We further develop this framework to obtain a generic Karp-Miller algorithm for
the new class of very-WSTS. This allows us to show that coverability sets of very-WSTS can be
computed as their finite ideal decompositions. Under natural assumptions on positive sequences,
we also show that LTL model checking for very-WSTS is decidable. The termination of our
procedure rests on a new notion of acceleration levels, which we study. We characterize those
domains that allow for only finitely many accelerations, based on ordinal ranks.
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1 Introduction

Context. A well-structured transition system (WSTS) is an infinite well-quasi-ordered set
of states equipped with transition relations satisfying one of various possible monotonicity
properties. WSTS were introduced in [16] for the purpose of capturing properties common to
a wide range of formal models used in verification. Since their inception, much of the work
on WSTS has been dedicated to identifying generic classes of WSTS for which verification
problems are decidable. Such problems include termination, boundedness [16, 17, 21] and
coverability [1, 2, 6, 7]. In general, verifying safety and liveness properties corresponds
respectively to deciding the coverability and the repeated control-state reachability problems.
Coverability can be decided for WSTS by two different algorithms: the backward algorithm [1,
2] and by combining two forward semi-procedures, one of which enumerates all downwards-
closed invariants [25, 6, 7]. Repeated control-state reachability is undecidable for general
WSTS, but decidable for Petri nets by use of the Karp-Miller coverability tree [29] and the
detection of positive sequences. That technique fails on well-structured extensions of Petri
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nets: generating the Karp-Miller tree does not always terminate on ν-Petri nets [36], on reset
Petri nets [11], on transfer Petri nets, on broadcast protocols, and on the depth-bounded
π-calculus [28, 35, 41] which can simulate reset Petri nets. This is perhaps why little research
has been conducted on coverability tree algorithms and model checking of liveness properties
for general WSTS. Nonetheless, some recent Petri nets extensions, e.g. ω-Petri nets [24] and
unordered data Petri nets [27], benefit from algorithms in the style of Karp and Miller. Hence,
there is hope of finding a general framework of WSTS with Karp-Miller-like algorithms.

The Karp-Miller coverability procedure. In 1967, Karp and Miller [29] proposed what
is now known as the Karp-Miller coverability tree algorithm, which computes a finite
representation (the clover) of the downward closure (the cover) of the reachability set of a
Petri net. In 1978, Valk extended the Karp-Miller algorithm to post-self-modifiying nets [38],
a strict extension of Petri nets. In 1987, the second author proposed a generalization of the
Karp-Miller algorithm that applies to a class of finitely branching WSTS with strong-strict
monotonicity, and having a WSTS completion in which least upper bounds replace the
original Petri nets ω-accelerations [16, 17]. In 2004, Finkel, McKenzie and Picaronny [20]
applied the framework of [17] to the construction of Karp-Miller trees for strongly increasing
ω-recursive nets, a class generalizing post-self-modifiying nets. In 2005, Verma and the third
author [40] showed that the construction of Karp-Miller trees can be extended to branching
vector addition systems with states. In 2009, the second and the third authors [19] proposed
a non-terminating procedure that computes the clover of any complete WSTS; this procedure
terminates exactly on so-called cover-flattable systems. Recently, this framework has been
used for defining computable accelerations in non-terminating Karp-Miller algorithms for
both the depth-bounded π-calculus [28] and for ν-Petri nets; terminating Karp-Miller trees
are obtained for strict subclasses.

Model checking WSTS. In 1994, Esparza [14] showed that model checking the linear
time µ-calculus is decidable for Petri nets by using both the Karp-Miller algorithm and a
decidability result due to Valk and Jantzen [39] on infinite T -continual sequences in Petri
nets. LTL is undecidable for Petri net extensions such as lossy channel systems [3] and lossy
counter machines [37]. In 1998, Emerson and Namjoshi [12] studied the model checking of
liveness properties for complete WSTS, but their procedure is not guaranteed to terminate.
In 2004, Kouzmin, Shilov and Sokolov [30] gave a generic computability result for a fragment
of the µ-calculus; in 2006 and 2013, Bertrand and Schnoebelen [4, 5] studied fixed points in
well-structured regular model checking; both [30] and [5] are concerned with formulas with
upwards-closed atomic propositions, and do not subsume LTL. In 2011, Chambart, Finkel
and Schmitz [9, 10] showed that LTL is decidable for the recursive class of trace-bounded
complete WSTS; a class which does not contain all Petri nets.

Our contributions.
We define very-well-structured transition systems (very-WSTS); a class defined in terms of
WSTS completions, and which encompasses models such as Petri nets, ω-Petri nets, post-
self-modifying nets and strongly increasing ω-recursive nets. We show that coverability
sets of very-WSTS are computable as finite sets of ideals.
The general clover algorithm of [19], based on the ideal completion studied in [18], does
not necessarily terminate and uses an abstract acceleration enumeration. We give an
algorithm, the Ideal Karp-Miller algorithm, which organizes accelerations within a tree.
We show that this algorithm terminates under natural order-theoretic and effectiveness



M. Blondin, A. Finkel, and J. Goubault-Larrecq 16:3

conditions, which we make explicit. This allows us to unify various versions of Karp-Miller
algorithms in particular particular classes of WSTS.
We identify the crucial notion of acceleration level of an ideal, and relate it to ordinal
ranks of sets of reachable states in the completion. We show, notably, that termination is
equivalent to the rank being strictly smaller than ω2. This classifies WSTS into those
with high rank (the bad ones), among which those whose sets of states consist of words
(e.g., lossy channel systems) or multisets; and those with low rank (the good ones), among
which Petri nets and post-self-modifying nets.
We show that the downward closure of the trace language of a very-WSTS is computable,
again as a finite union of ideals. This shows that downward traces inclusion is decidable
for very-WSTS.
Finally, we prove the decidability of model checking liveness properties for very-WSTS
under some effectiveness hypotheses.

Differences between very-WSTS and WSTS of [17]. The class of WSTS of [17, Def. 4.17]
is reminiscent of very-WSTS. It requires WSTS to be finitely branching and strictly monotone,
whereas our definition allows infinite branching and requires the completion to be strictly
monotone. Moreover, [17, Thm. 4.18], which claims that its Karp-Miller procedure terminates,
is incorrect since it does not terminate on transfer Petri nets and broadcast protocols [15],
which are finitely branching and strictly monotone WSTS. Finally, some assumptions required
to make the Karp-Miller procedure of [17] effective are missing.

Due to space constraints, some proofs are deferred to an extended version of this paper
freely available online under the same title.

2 Preliminaries

We write ⊆ for set inclusion and ⊂ for strict set inclusion. A relation ≤ ⊆ X×X over a set X
is a quasi-ordering if it is reflexive and transitive, and a partial ordering if it is antisymmetric
as well. It is well-founded if it has no infinite descending chain. A quasi-ordering ≤ is a
well-quasi-ordering (resp. well partial order), wqo (resp. wpo) for short, if for every infinite
sequence x0, x1, · · · ∈ X, there exist i < j such that xi ≤ xj . This is strictly stronger than
being well-founded.

One example of well-quasi-ordering is the componentwise ordering of tuples over N. More
formally, Nd is well-quasi-ordered by ≤ where, for every x,y ∈ Nd, x ≤ y if and only if
x(i) ≤ y(i) for every i ∈ [d]. We extend N to Nω

def= N ∪ {ω} where n ≤ ω for every n ∈ Nω.
Ndω ordered componentwise is also well-quasi-ordered. Let Σ be a finite alphabet. We denote
the set of finite words and infinite words over Σ respectively by Σ∗ and Σω. For every
u, v ∈ Σ∗, we write u � v if u is a subword of v, i.e. u can be obtained from v by removing
zero, one or multiple letters. Σ∗ is well-quasi-ordered by �.

Transition systems. A (labeled and ordered) transition system is a triple S = (X, Σ−→,≤) such
that X is a set, Σ is a finite alphabet, a−→ ⊆ X×X for every a ∈ Σ, and ≤ is a quasi-ordering
on X. Elements of X are called the states of S, each a−→ is a transition relation of S, and ≤ is
the ordering of S. A class C of transition systems is any set of transition systems. We extend
transition relations to sequences over Σ, i.e. for every x, y ∈ X, x ε−→ x, and x wa−−→ y if there
exists x′ ∈ X such that x w−→ x′

a−→ y. We write x ∗−→ y (resp. x +−→ y) if there exists w ∈ Σ∗
(resp. w ∈ Σ+) such that x w−→ y. The finite and infinite traces of a transition system S from
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a state x ∈ X are respectively defined as TracesS(x) def= {w ∈ Σ∗ : x w−→ y for some y ∈ X}
and ω-TracesS(x) def= {w ∈ Σω : x w1−−→ x1

w2−−→ · · · for some x1, x2, . . . ∈ X}.
We define the immediate successors and immediate predecessors of a state x under

some sequence w ∈ Σ∗ as PostS (x,w) def= {y ∈ X : x w−→ y} and PreS (x,w) def= {y ∈ X :
y

w−→ x}. The successors and predecessors of x ∈ X are Post∗S (x) def= {y ∈ X : x ∗−→ y}
and Pre∗S (x) def= {y ∈ X : y ∗−→ x}. These notations are naturally extended to sets, e.g.
PostS (A,w) def= {PostS (x,w) : x ∈ A}. We say that S is deterministic if |PostS (x, a) | ≤ 1
for every x ∈ X and a ∈ Σ. When S is deterministic, each a ∈ Σ induces a partial function
ta : X → X such that ta(x) = y for each x ∈ X such that PostS (x, a) = {y}. For readability,
we simply write a for ta, i.e. a(x) = ta(x). For every w ∈ Σ∗, we write w(x) for PostS (x,w)
if PostS (x,w) 6= ∅.

Well-structured transition systems. A (labeled and ordered) transition system S = (X, Σ−→
,≤) is a well-structured transition system (WSTS) if ≤ is a well-quasi-ordering and S is
monotone, i.e. for all x, x′, y ∈ X and a ∈ Σ such that x a−→ y and x′ ≥ x, there exists y′ ∈ X
such that x′ ∗−→ y′ and y′ ≥ y. Many other types of monotonicities were defined in the
literature (see [21]), but, for our purposes, we only need to introduce strong monotonicities.
We say that S has strong monotonicity if for all x, x′, y ∈ X and a ∈ Σ, x a−→ y and x′ ≥ x
implies x′ a−→ y′ for some y′ ≥ y. We say that S has strong-strict monotonicity1 if it has
strong monotonicity and for all x, x′, y ∈ X and a ∈ Σ, x a−→ y and x′ > x implies x′ a−→ y′

for some y′ > y.

Verification problems. We say that a target state y ∈ X is coverable from an initial state
x ∈ X if there exists z ≥ y such that x ∗−→ z and z ≥ y. The coverability problem asks
whether a target state y is coverable from an initial state x. The repeated coverability problem
asks whether a target state y is coverable infinitely often from an initial state x; i.e. whether
there exist z0, z1, · · · ∈ X such that x ∗−→ z0

+−→ z1
+−→ · · · and zi ≥ y for every i ∈ N.

3 An investigation of the Karp-Miller algorithm

In order to present our Karp-Miller algorithm for WSTS, we first highlight the key components
of the Karp-Miller algorithm for vector addition systems. A d-dimensional vector addition
system (d-VAS) is a WSTS V = (Nd, T−→,≤) induced by a finite set T ⊆ Zd and the rules:

x
t−→ y

def⇐⇒ y = x + t, for all x,y ∈ Nd, t ∈ T.

Vector addition systems are deterministic and have strong-strict monotonicity. Given a
d-VAS and a vector xinit ∈ Nd, the Karp-Miller algorithm initializes a rooted tree whose root
is labeled by xinit. For every t ∈ T such that x + t ≥ 0, a child labeled by x + t is added to
the root. This process is repeated successively to the new nodes. If a newly added node c : x

has an ancestor c′ : x′ such x = x′, then it is not explored furthermore. If a newly added
node c : x has an ancestor c′ : x′ such x > x′, then c is relabeled by the vector y ∈ Ndω such
that y(i) def= x(i) if x(i) = x′(i) and y(i) def= ω if x(i) > x′(i). The latter operation is called
an acceleration of c.

1 Strong-strict monotonicity should not be confused with strong and strict monotonicities. Here strongness
and strictness have to hold at the same time.
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A vector xtgt is coverable from xinit if and only if the resulting tree T contains a node
c : x such that x ≥ xtgt. Similarly, xtgt is repeatedly coverable from xinit if and only if T
contains a node c : x that has an ancestor that was accelerated, and such that x ≥ xtgt.

3.1 Ideals and completions
One feature of the Karp-Miller algorithm is that it works over Ndω instead of Nd. Intuitively,
vectors containing some ω correspond to “limit” elements. For a generic WSTS S = (X, Σ−→,
≤), a similar extension of X is not obvious. Let us present one, called the completion of S in
[19]. Instead of operating over X, the completion of S operates over the so-called ideals of
X. In particular, the ideals of Nd are isomorphic to Ndω.

Let X be a set quasi-ordered by ≤. The downward closure of D ⊆ X is defined as
↓D def= {x ∈ X : x ≤ y for some y ∈ D}. A subset D ⊆ X is downwards-closed if D = ↓D.
An ideal is a downwards-closed subset I ⊆ X that is additionally directed: I is non-empty
and for all x, y ∈ I, there exists z ∈ I such that x ≤ z and y ≤ z (equivalently, every finite
subset of I has an upper bound in I). We denote the set of ideals of X by Idl(X), i.e.
Idl(X) def= {D ⊆ X : D = ↓D and D is directed}.

It is known that Idl(Nd) = {A1 × · · · ×Ad : A1, . . . , Ad ∈ {↓n : n ∈ N} ∪ {N}} . There-
fore, every ideal of Nd is naturally represented by some vector of Ndω, and vice versa.
We write ω-rep(I) for this representation, for every I ∈ Idl(Nd). For example, the ideal
I = N× ↓ 8× ↓ 3× N is represented by ω-rep(I) = (ω, 8, 3, ω).

Downwards-closed subsets can often be represented by finitely many ideals:

I Theorem 1 ([13, 8, 33, 34, 23, 31]). Let X be a well-quasi-ordered set. For every downwards-
closed subset D ⊆ X, there exist I1, I2, . . . , In ∈ Idl(X) s.t. D = I1 ∪ I2 ∪ · · · ∪ In.

This theorem gives rise to a canonical decomposition of downwards-closed sets. The
ideal decomposition of a downwards-closed subset D ⊆ X is the set of maximal ideals
contained in D with respect to inclusion. We denote the ideal decomposition of D by
IdealDecomp(D) def= max⊆{I ∈ Idl(X) : I ⊆ D}. By Theorem 1, IdealDecomp(D) is finite,
and D =

⋃
I∈IdealDecomp(D) I. In [19, 6], the notion of ideal decomposition is used to define

the completion of unlabeled WSTS. We slightly extend this notion to labeled WSTS:

I Definition 2. Let S = (X, Σ−→,≤) be a labeled WSTS. The completion of S is the labeled
transition system Ŝ = (Idl(X), Σ

 ,⊆) such that I a
 J if, and only if,

J ∈ IdealDecomp(↓PostS (I, a)).

The completion of a WSTS enjoys numerous properties. In particular, it has strong
monotonicity, and it is finitely branching [6], i.e. PostŜ (I, a) is finite for every I ∈ Idl(X)
and a ∈ Σ. Note that if S has strong-strict monotonicity, then this property is not necessarily
preserved by Ŝ [6]. Moreover, the completion of a WSTS may not be a WSTS since Idl(X)
is not always well-quasi-ordered by ⊆. However, for the vast majority of models used in
verification, Idl(X) is well-quasi-ordered, and hence completions remain well-structured.
Indeed, Idl(X) is well-quasi-ordered if and only if X is a so-called ω2-wqo, and all known
wqos, except possibly graphs under minor embedding, are ω2-wqo, as discussed in [19]. The
traces of a WSTS are closely related to those of its completion:

I Proposition 3 ([6]). The following holds for every WSTS S = (X, Σ−→,≤):
1. For all x, y ∈ X and w ∈ Σ∗, if x w−→ y, then for every ideal I ⊇ ↓x, there exists an ideal

J ⊇ ↓ y such that I w
 J .

FSTTCS 2017
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2. For all I, J ∈ Idl(X) and w ∈ Σ∗, if I w
 J , then for every y ∈ J , there exist x ∈ I, y′ ∈ X

and w′ ∈ Σ∗ such that x w′

−→ y′ and y′ ≥ y. If S has strong monotonicity, then w′ = w.
3. if S has strong monotonicity, then

⋃
J∈Post

Ŝ
(I,w) J = ↓PostS (I, w) for all I ∈ Idl(X)

and w ∈ Σ∗.
4. if S has strong monotonicity, then TracesS(x) = TracesŜ (↓x) and ω-TracesS(x) ⊆

ω-TracesŜ (↓x) for every x ∈ X.

It is worth noting that if S is infinitely branching, then an infinite trace of Ŝ from ↓x
is not necessarily an infinite trace of S from x (e.g. see [6]). Whenever the completion of a
WSTS S is deterministic, we will often write w(I) for PostŜ (I, w) if the latter is nonempty
and if there is no ambiguity with PostS (I, w).

3.2 Levels of ideals
The Karp-Miller algorithm terminates for the following reasons: Ndω is well-quasi-ordered
and ω’s can only be added to vectors along a branch at most d times. Loosely speaking,
the latter property means that Idl(Nd) has d+ 1 “levels”. Here, we generalize this notion.
We say that an infinite sequence of ideals I0, I1, . . . ∈ Idl(X) is an acceleration candidate if
I0 ⊂ I1 ⊂ · · · .

I Definition 4. For every n ∈ N, the nth level of Idl(X) is defined as

Accn(X) =
{

Idl(X) if n = 0,{⋃
i∈N Ii : I0, I1, . . . ∈ Accn−1(X) is an acceleration candidate

}
if n > 0.

We observe that Accn+1(X) ⊆ Accn(X) for every n ∈ N. Moreover, as expected:

Accn(Nd) = {I ∈ Idl(Nd) : ω-rep(I) has at least n occurrences of ω}.

We say that Idl(X) has finitely many levels if there exists n ∈ N such that Accn(X) = ∅. For
example, Accd+1(Nd) = ∅.

3.3 Accelerations
The last key aspect of the Karp-Miller algorithm is the possibility to accelerate nodes. In
order to generalize this notion, let us briefly develop some intuition. Recall that a newly added
node c : x is accelerated if it has an ancestor c′ : x′ such that x > x′. Consider the non-empty
sequence w labeling the path from c′ to c. Since d-VAS have strong-strict monotonicity, both
over Nd and Ndω, wn(x) is defined for every n ∈ N. For example, if (5, 0, 1) w−→ (5, 1, 3) is
encountered, (5, 1, 3) is replaced by (5, ω, ω). This represents the fact that for every n ∈ N,
there exists some reachable marking y ≥ (5, n, n). Note that an acceleration increases the
number of occurrences of ω. In our example, the ideal I = ↓ 5× ↓ 1× ↓ 3, which is of level 0,
is replaced by I ′ = ↓ 5× N× N, which is of level 2. Based on these observations, we extend
the notion of acceleration to completions:

I Definition 5. Let S = (X, Σ−→,≤) be a WSTS such that Ŝ is deterministic and has
strong-strict monotonicity, let w ∈ Σ+ and let I ∈ Idl(X). The acceleration of I under w is
defined as:

w∞(I) def=
{⋃

k∈N w
k(I) if I ⊂ w(I),

I otherwise.
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Note that for every ideal I, w∞(I) is also an ideal. As for Idl(Nd), any successor J of an
ideal I belongs to the same level of I, and accelerating an ideal increases its level.

I Proposition 6. Let S = (X, Σ−→,≤) be a WSTS such that S has strong monotonicity, and
Ŝ is deterministic and has strong-strict monotonicity. For every I ∈ Idl(X) and w ∈ Σ+,
1. if PostŜ (I, w) 6= ∅ and I ∈ Accn(X) for some n ∈ N, then w(I) ∈ Accn(X);
2. if I ⊂ w(I) and I ∈ Accn(X) for some n ∈ N, then w∞(I) ∈ Accn+1(X).

4 The Ideal Karp-Miller algorithm

We may now present our generalization of the Karp-Miller algorithm. To do so, we first
define the class of WSTS that enjoys all of the properties introduced in the previous section:

I Definition 7. A very-WSTS is a labeled WSTS S = (X, Σ−→,≤) such that:
S has strong monotonicity,
Ŝ is a deterministic WSTS with strong-strict monotonicity,
Idl(X) has finitely many levels.

The class of very-WSTS includes vector addition systems, Petri nets, ω-Petri nets [24],
post-self-modifying nets [38] and strongly increasing ω-recursive nets [20]. However, very-
WSTS do not include transfer Petri nets, since Ŝ does not have strict monotonicity, and
unordered data Petri nets, since Idl(X) has infinitely many levels. Note that Ŝ may be
deterministic (and finitely branching) even when S is not, and even when S is not finitely
branching, as the example of ω-Petri nets shows.

We present the Ideal Karp-Miller algorithm (IKM) for this class in Algorithm 4.1. The
algorithm starts from an ideal I0, successively computes its successors in Ŝ and performs
accelerations as in the classical Karp-Miller algorithm for VAS. Note that we do not allow
for nested accelerations. For every node c : 〈I, n〉 of the tree built by the algorithm, we write
ideal(c) for I, and num-accel(c) for n, which will be the number of accelerations made along
the branch from the root to c (inclusively). Let us first show that the algorithm terminates.

Algorithm 4.1: Ideal Karp-Miller algorithm.
1 initialize a tree T with root r : 〈I0, 0〉
2 while T contains an unmarked node c : 〈I, n〉 do
3 if c has an ancestor c′ : 〈I ′, n′〉 s.t. I ′ = I then mark c

4 else
5 if c has an ancestor c′ : 〈I ′, n′〉 s.t. I ′ ⊂ I
6 and n′ = n /* no acceleration occurred between c′ and c */

then
7 w ← sequence of labels from c′ to c
8 replace c : 〈I, n〉 by c : 〈w∞(I), n+ 1〉
9 for a ∈ Σ do

10 if a(I) is defined then
11 add arc labeled by a from c to a new child d : 〈a(I), n〉
12 mark c

13 return T

I Theorem 8. Algorithm 4.1 terminates for very-WSTS.
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Proof. We note the following invariants: (1) for every node c : 〈I, n〉 of T , I is in Accn(X);
(2) at line 2, i.e., each time control returns to the beginning of the loop, all unmarked nodes
of T are leaves; (3) num-accel(c) is non-decreasing on each branch of T , that is: for every
branch c0 : 〈I0, n0〉, c1 : 〈I1, n1〉, . . . , ck : 〈Ik, nk〉 of T , we have n1 ≤ n2 ≤ · · · ≤ nk. (1) is
by Proposition 6, (2) is an easy induction on the number of times through the loop, and (3)
is also by induction, noticing that by (2) only nk can increase when line 8 is executed.

The rest of the argument is as for the classical Karp-Miller algorithm. Suppose the
algorithm does not terminate. Let Tn be the finite tree obtained after n iterations. The
infinite sequence T0, T1, . . . defines a unique infinite tree T∞ =

⋃
n∈N Tn. Since Ŝ is finitely

branching, T∞ is also finitely branching. Therefore, T∞ contains an infinite path c0 : 〈I0, n0〉,
c1 : 〈I1, n1〉, . . . , ck : 〈Ik, nk〉, . . . , by König’s lemma. By (1), and since Idl(X) has finitely
many levels, the numbers nk assume only finitely many values. Let N be the largest of those
values. Using (3), there is a k0 ∈ N such that nk = N for every k ≥ k0. Since Ŝ is a WSTS,
hence Idl(X) is wqo, we can find two indices i, j with k0 ≤ i < j and such that Ii ⊆ Ij . If
Ii = Ij , then line 3 of the algorithm would have stopped the exploration of the path. Hence
Ii ⊂ Ij , but then line 8 would have replaced num-accel(cj) = N by N + 1, contradiction. J

4.1 Properties of the algorithm
Let TI denote the tree induced by the set of nodes returned by Algorithm 4.1 on input (S, I).
Let DI

def=
⋃
c∈TI

ideal(c). We claim that DI = ↓Post∗S (I). Instead of proving this claim
directly, we take traces into consideration and prove a stronger statement. We define two
word automata that will be useful for this purpose.

I Definition 9. The stuttering automaton2 is the finite word automaton AI obtained by
making all of the states of TI accepting, by taking the root r as the initial state, and by
taking the arcs of TI as transitions, together with the following additional transitions:

If a leaf c of TI has an ancestor c′ such that ideal(c) = ideal(c′), then a transition from c

to c′ labeled by ε is added to AI .
The Karp-Miller automaton is the automaton KI obtained by extending AI as follows:

If a node c of TI has been accelerated because of an ancestor c′, then a transition from c

to c′ labeled by ε is added to KI .

Both AI and KI can be computed from TI . Moreover, they give precious information
about the traces of S. Let L(AI) and L(KI) denote the language over Σ accepted by AI and
KI . We will show the following theorem:

I Theorem 10. For every very-WSTS S = (X, Σ−→,≤) and I ∈ Idl(X),

DI = ↓Post∗S (I), TracesS(I) ⊆ L(AI) and L(KI) ⊆ ↓� TracesS(I).

In particular, for every x ∈ X, D↓x = ↓Post∗S (x), ↓� L(K↓x) = ↓�TracesS(x), and
↓�TracesS(x) is a computable regular language.

The proof of Theorem 10 follows from the forthcoming Prop. 11 describing the relations
between traces of AI and KI with traces of S and Ŝ . We write c w

99KT c′, c w
99KA c′ and

c
w
99KK c′ whenever node c′ can be reached by reading w from c in TI , AI and KI respectively.

2 We use the term stuttering as paths of the automaton correspond to stuttering paths of [24].
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I Proposition 11. Let S = (X, Σ−→,≤) be a very-WSTS and let I0 ∈ Idl(X).
1. For every y, z ∈ X, w ∈ Σ∗ and c ∈ AI0 , if y

w−→ z and y ∈ ideal(c), then there exists
d ∈ AI0 such that c w

99KA d and z ∈ ideal(d).
2. For every z ∈ X, w ∈ Σ∗ and c, d ∈ KI0 , if c

w
99KK d and z ∈ ideal(d), then there exist

y ∈ ideal(c), w′ � w and z′ ≥ z such that y w′

−→ z′.

Proof. We only prove (2). The proof is by induction on |w|. If |w| = 0, then w = ε. We stress
the fact that even though w is empty, d might differ from c since KI0 contains ε-transitions.
However, by definition of KI0 , we know that ideal(d) ⊆ ideal(c). Therefore, z ∈ ideal(c), and
we are done since z ε−→ z.

Suppose that |w| > 0. Assume the claim holds for every word of length less than |w|.
There exist u, v ∈ Σ∗, a ∈ Σ and d′ ∈ KI0 such that w = uav, c u

99KK d′
a
99KK d

v
99KK d and

d′ is the parent of d in TI0 . Let I
def= ideal(c), J def= ideal(d′), K def= ideal(d), and K ′ def= a(J).

By induction hypothesis, there exist yK ∈ K, v′ � v and z′ ≥ z such that yK
v′

−→ z′.
If K = K ′, then J a

 K. By definition of a
 , there exist yJ ∈ J and y′K ≥ yK such that

yJ
a−→ y′K . By induction hypothesis, there exist yI ∈ I, u′ � u and y′J ≥ yJ such that

yI
u′

−→ y′J . By strong monotonicity of S, there exists z′′ ≥ z′ such that yI
u′av′

−−−→ z′′. We
are done since u′av′ � uav.
If K 6= K ′, then K was obtained through an acceleration. Therefore, K = σ∞(K ′) for
some σ ∈ Σ+. This implies that yK ∈ σk(K ′) for some k ∈ N. Let L def= σk(K ′). Note
that J a

 K ′
σk

 L. By Prop. 3(2), there exist yJ ∈ J and y′K ≥ yK such that yJ
aσk

−−→ y′K .
By induction hypothesis, there exist yI ∈ I, u′ � u and y′J ≥ yJ such that yI

u′

−→ y′J . By
strong monotonicity of S, there exists z′′ ≥ z′ such that yI

u′avkv′

−−−−−→ z′′. J

4.2 Effectiveness of the algorithm

The Ideal Karp-Miller algorithm can be implemented provided that (1) ideals can be effectively
manipulated, (2) inclusion of ideals can be tested, (3) PostŜ (I) can be computed for every
ideal I, and (4) w∞(I) can be computed for every ideal I and sequence w. A class of
WSTS satisfying (1–3) is called completion-post-effective, and a class satisfying (4) is called
∞-completion-effective. By Theorem 10, we obtain the following result:

I Theorem 12. Let C be a completion-post-effective and ∞-completion-effective class of very-
WSTS. The ideal decomposition of ↓Post∗S (x) can be computed for every S = (X,−→,≤) ∈ C
and x ∈ X. In particular, coverability for C is decidable.

5 A characterization of acceleration levels

We pause for a moment, and give a precise characterization of ideals that have finitely many
levels. We shall then discuss some extensions briefly, beyond the finitely many level case.

Let Z be a well-founded partially ordered set, abstracting away from the case Z = Idl(X).
The rank of z ∈ Z, denoted rk z, is the ordinal defined inductively by rk z def= sup{rk y + 1 :
y < z}, where sup(∅) def= 0. The rank of Z is defined as rkZ def= sup{rk z + 1 : z ∈ Z}. We say
that a sequence z0, z1, . . . ∈ Z is an acceleration candidate if z1 < z2 < · · · < zi < · · · . Such
an acceleration candidate goes through a set A if zi ∈ A for some i ∈ N, and is below z ∈ Z
if zi ≤ z for every i ∈ N. We define a family of sets Aα(Z) closely related to levels of ideals:
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I Definition 13. Let Z be a partially ordered set. Let A0(Z) def= ∅. For every ordinal α > 0,
Aα(Z) is the set of elements z ∈ Z such that every acceleration candidate below z goes
through Aβ(Z) for some β < α.

Observe that Aα(Z) ⊆ Aβ(Z) for every α ≤ β, and that An(Ndω) is the set of d-tuples
with less than n components equal to ω. It is easily shown that An(Idl(X)) is the upward
closure of the complement of Accn(X). Consequently, An(Idl(X)) = Idl(X) if and only if
Accn(X) = ∅, and we can bound levels of Idl(X) by means of An(Idl(X)).

Let us first show that An(Z) is exactly the set of elements of rank less than ω · n. This
rests on the following, which is perhaps less obvious than it seems.

I Lemma 14. Let Z be a countable wpo. For every z ∈ Z such that rk z is a limit ordinal,
z is the supremum of some acceleration candidate z0 < z1 < · · · . Moreover, for any given
ordinal β < rk z, the acceleration candidate can be chosen such that β ≤ zi for every i ∈ N.

This fails if Z is not countable: take Z = ω1 + 1, where ω1 is the first uncountable ordinal,
then ω1 ∈ Z is not the supremum of countably many ordinals < ω1. This also fails if Z is not
wqo, even when Z is well-founded: consider the set with one root r above chains of length n,
one for each n ∈ N: rk r = ω, but there is no acceleration candidate below r.

Proof. Let α def= rk z. A fundamental sequence for α is a monotone sequence of ordinals strictly
below α whose supremum equals α. Fundamental sequences exist for all countable limit
ordinals, in particular for α, since Z is countable (e.g. see [22]). Pick one such fundamental
subsequence (γi)i∈N. Replacing γi by sup(β, γi) if necessary, we may assume that β ≤ γm
for every i ∈ N. By the definition of rank, for every i ∈ N, there is an element zi < z of rank
at least γi. Since Z is well-quasi-ordered, we may extract a non-decreasing subsequence from
(zi)i∈N. Without loss of generality, assume that z0 ≤ z1 ≤ · · · . If all but finitely many of
these inequalities were equalities, then z would be equal to zi for m large enough, but that
is impossible since zi < z. We can therefore extract a strictly increasing subsequence from
(zi)i∈N. This is an acceleration sequence, its supremum is z, and β ≤ γi ≤ zi for every i. J

I Lemma 15. Let Z be a countable wpo, and let n ∈ N. For every z ∈ Z, rk z < ω · n if and
only if z ∈ An(Z).

Proof. ⇒) By induction on n. The case n = 0 is immediate. Let n ≥ 1. Given any
acceleration candidate z1 < z2 < · · · below z, we must have rk z1 < rk z2 < · · · < rk z. Since
rk z < ω ·n, there exist `,m ∈ N with ` < n such that rk z = ω.`+m. Therefore, rk zi ≥ ω · `
for only finitely many i. In particular, there exists some i such that rk zi < ω · `. Since ` < n,
we have rk zi < ω · (n− 1). By induction hypothesis, zi ∈ An−1(Z), and hence z ∈ An(Z).
⇐) We show by induction on n that rk z ≥ ω · n implies z 6∈ An(Z). The case n = 0 is

immediate. Let n ≥ 1. In general, rk z is not a limit ordinal, but can be written as α+ ` for
some limit ordinal α and some ` ∈ N. By definition of rank, z is larger than some element
of rank α+ (`− 1), which is itself larger than some element of rank α+ (`− 2), and so on.
Iterating this way, we find an element y ≤ z of rank exactly α. Since rk y is a limit ordinal,
Lemma 14 entails that y is the supremum of some acceleration candidate z0 < z1 < · · · .
Moreover, since ω · (n− 1) < rk y, we may assume that rk zi ≥ ω · (n− 1) for every i ∈ N.
By induction hypothesis, zi 6∈ An−1(Z) for every i ∈ N, and hence z 6∈ An(Z). J
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I Theorem 16. Let X be a countable wqo such that Idl(X) is well-quasi-ordered by inclusion3.
The following holds: Idl(X) has finitely many levels if and only if rk Idl(X) < ω2.

Proof. We apply Lemma 15 to Z = Idl(X), a wpo by assumption. For that, we need to
show that Z is countable. There are countably many upwards-closed subsets, since they are
all determined by their finitely many minimal elements. Downwards-closed subsets are in
one-to-one correspondence with upwards-closed subsets, through complementation, hence
are countably many as well, and ideals are particular downwards-closed subsets.

We conclude by noting that the following are equivalent: (1) rk Idl(X) < ω2; (2)
rk Idl(X) ≤ ω · n for some n ∈ N; (3) An(Idl(X)) = Idl(X) for some n ∈ N (by Lemma 15);
(4) Accn(X) = ∅ for some n ∈ N. J

While rk Idl(Nd) = ω·d+1 < ω2, not all wqosX used in verification satisfy rk Idl(X) < ω2.
For example, rk Idl(Σ∗) = ω|Σ|+1, for any finite alphabet Σ; a similar result holds for multisets
over Σ.

Note that the IKM algorithm still terminates if, for each branch B = (c0 : 〈I0, n0〉, c1 :
〈I1, n1〉, . . . , ck : 〈Ik, nk〉, . . .) of the Ideal Karp-Miller tree, [B] def= {I ∈ Idl(X) : ∃j, k ∈ N, j ≤
k and Ij ⊆ I ⊆ Ik} has rank less than ω2. Indeed, the IKM algorithm terminates if and only
if each branch B is finite, and the states involved in computing the branch, as well as all
needed accelerations, are all included in [B]. Therefore, relaxing “rk Idl(X) < ω2” to the
more technical condition “rk [B] < ω2” may allow one to extend the notion of very-WSTS.

6 Model checking liveness properties for very-WSTS

In this section, we show how the Ideal Karp-Miller algorithm can be used to test whether a
very-WSTS violates a liveness property specified by an LTL formula. Testing that S violates
a property ϕ amounts to constructing a Büchi automaton B¬ϕ for ¬ϕ and to test whether
B¬ϕ accepts an infinite trace of S. We first introduce positive very-WSTS, and show that
repeated coverability is decidable for them under some effectiveness hypothesis. Then, we
show how LTL model checking for positive very-WSTS reduces to repeated coverability.

6.1 Deciding repeated coverability

Let S = (X, Σ−→,≤) be a WSTS and let x ∈ X. We say that w ∈ Σ∗ is positive for x if
there exists some y ∈ X such that x w−→ y and x ≤ y. We say that w ∈ Σ∗ is positive if w is
positive for every x ∈ X such that Post (x,w) 6= ∅. We say that a WSTS S = (X, Σ−→≤) is
positive if for every w ∈ Σ∗, w is positive for some x ∈ X if and only if w is positive.

We establish a necessary and sufficient condition for repeated coverability in terms of the
stuttering automaton and positive sequences:

I Proposition 17. Let S = (X, Σ−→,≤) be a positive very-WSTS, and let x, y ∈ X. State y is
repeatedly coverable from x if and only if there are states c, d of the stuttering automaton A↓x
and w ∈ Σ+ such that c w

99KA d, num-accel(c) = num-accel(d), w is positive and y ∈ ideal(c).

Proposition 17 allows us to show the decidability of repeated coverability under the
following effectiveness hypothesis. A class C of WSTS is positive-effective if there is an

3 Recall that such a wqo is known as an ω2-wqo [19]. That we find the ordinal ω2 in the statement of
Theorem 16 and in the notion of ω2-wqo seems to be coincidental.
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algorithm that decides, on input S = (X, Σ−→,≤) ∈ C and a finite automaton A, whether the
language of A contains a positive sequence. VAS, Petri nets and ω-Petri nets are positive-
effective, since, for these models, testing whether a finite automaton A accepts some positive
sequence amounts to computing the Parikh image of L(A), which is effectively semilinear [32].

I Theorem 18. Repeated coverability is decidable for completion-post-effective,∞-completion-
effective and positive-effective classes of positive very-WSTS.

Proof. By Prop. 17, y is repeatedly coverable from x if and only if there are states c, d in
A↓x and w ∈ Σ+ such that:

c
w
99KA d,num-accel(c) = num-accel(d), w is positive and y ∈ ideal(c). (1)

We show how (1) can be tested. For every c ∈ A↓x, let Ac be the finite automaton
over alphabet Σ whose set of states is Qc

def= {d ∈ A↓x : c ∗
99KA d and num-accel(c) =

num-accel(d)}, the initial state is c, all states are accepting, and transitions are as in A↓x.
For every d ∈ Qc and w ∈ Σ∗, c w

99KA d if and only if w is in the language Lc of Ac. Build
a new finite automaton A+

c that recognizes Lc \ {ε}. Let Cy
def= {c ∈ A↓x : y ∈ ideal(c)}.

By (1), y is repeatedly coverable from x if and only if there exists c ∈ Cy such that the
language Lc \ {ε} of A+

c contains a positive sequence. The latter is decidable since C is
positive-effective, since A+

c can be constructed effectively for every c (because A↓x can, using
the fact that C is completion-post-effective and ∞-completion-effective), and since we can
build Cy by enumerating the states c of A↓x, checking whether y ∈ ideal(c) for each (item
(2) in the definition of completion-post-effectiveness). J

6.2 From model checking to repeated coverability
We conclude this section by reducing LTL model checking to repeated coverability. Recall that
a Büchi automaton B is a non-deterministic finite automaton B = (Q,Σ, δ, q0, F ) interpreted
over Σω. An infinite word is acccepted by B if it contains an infinite path from q0 labeled by
w and visiting F infinitely often. We denote by L(B) the set of infinite words accepted by B.

Let B = (Q,Σ, δ, q0, F ) be a Büchi automaton and let S = (X, Σ−→,≤) be a WSTS. The
product of B and S is defined as B × S def= (Q ×X, Σ×Q−−−→,= × ≤) where (p, x) (a,r)−−−→ (q, y)
if (p, a, r) ∈ δ, q = r and x a−→ y. The point in including r in the label is so that B̂ × S is
deterministic, a requirement for very-WSTS. For every WSTS S = (X, Σ−→,≤), we extend S
with a new “minimal” element ⊥ smaller than every other states, i.e. S⊥

def= (X∪{x⊥},
Σ−→,≤⊥)

where transition relations are unchanged, and ≤⊥
def= ≤ ∪ {(⊥, y) : y ∈ X ∪ {⊥}}. It can be

shown that if S is a positive very-WSTS, then B × S⊥ is also. Taking the product of B and
S⊥ allows us to test whether a word of L(B) is also an infinite trace of S:

I Proposition 19. Let B = (Q,Σ, δ, q0, F ) be a Büchi automaton, let S = (X, Σ−→,≤) be a
very-WSTS, and let x0 ∈ X. There exists w ∈ L(B) ∩ ω-TracesS(x0) if and only if there
exists qf ∈ F such that (qf ,⊥) is repeatedly coverable from (q0, x0) in B × S⊥.

Theorem 18 and Proposition 19 imply the decidability of LTL model checking:

I Theorem 20. LTL model checking is decidable for completion-post-effective, ∞-completion-
effective and positive-effective classes of positive very-WSTS.

Theorem 20 implies that LTL model checking for ω-Petri nets is decidable. This includes,
and generalizes strictly, the decidability of termination in ω-Petri nets [24].
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7 Discussion and further work

We have presented the framework of very-WSTS, for which we have given a Karp-Miller
algorithm. This allowed us to show that ideal decompositions of coverability sets of very-
WSTS are computable, and that LTL model checking is decidable under some additional
assumptions. We have also characterized acceleration levels in terms of ordinal ranks. Finally,
we have shown that downward traces inclusion is decidable for very-WSTS.

As future work, we propose to study well-structured models beyond very-WSTS for which
there exist Karp-Miller algorithms, e.g. unordered data Petri nets (UDPN) [28, 27], or for
which reachability is decidable, e.g. recursive Petri nets4 [26] with strict monotonicity. It
is conceivable that LTL model checking is decidable for such models. Our approach will
have to be extended to tackle this problem. For example, UDPN do not have finitely many
acceleration levels. To circumvent this issue, Hofman et al. [27] make use of two types of
accelerations that can be nested. One type is prioritized to ensure that acceleration levels
along a branch grow “fast enough” for the algorithm to terminate.
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