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—— Abstract

We use a technique of “lifting” functions introduced by Krause and Pudldk [13], to amplify
degree-hardness measures of a function to corresponding monomial-hardness properties of the
lifted function. We then show that any symmetric function F' projects onto a “lift” of another
suitable symmetric function f. These two key results enable us to prove several results on the
complexity of symmetric functions in various models, as given below:

1. We provide a characterization of the approzimate spectral norm of symmetric functions in
terms of the spectrum of the underlying predicate, affirming a conjecture of Ada et al. [1]
which has several consequences® (cf. [1]).

2. We also characterize symmetric functions computable by quasi-polynomial sized Threshold
of Parity circuits, resolving a conjecture of Zhang [24].

3. We show that the approximate spectral norm of a symmetric function f characterizes the
(quantum and classical) bounded error communication complexity of f o XOR.

4. Finally, we characterize the weakly-unbounded error communication complexity of symmetric
XOR functions, resolving a weak form of a conjecture by Shi and Zhang [25].2
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1 Introduction

For any domain A and range R, an n-variate function f : A™ — R is called symmetric if for
all 21,..., 2, € Aand every permutation o € S, one has f(x1,...,2n) = f(To1), -+ To(n))-
Symmetric functions are a very natural and basic class of functions, denoted by SYMM.
There are several works about symmetric functions in different contexts in complexity theory
that reveal their beautiful structure. As it is too numerous to list all of them out, we

* A full version of the paper is available at [6], https://arxiv.org/abs/1704.02537.
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L This has also been recently reported, after an early version of our manuscript was put up in the public
domain, by Ada, Fawzi and Kulkarni [2] using a matrix theoretic result of Razborov [19], and other
results.

The conjecture has been reported to be recently solved by independent works of Hatami and Qian [10]
and Ada et al. [2]. Our techniques vary from theirs, a detailed comparison to related work can be found
in Section 1.3.
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very briefly recall a few here, some of which is relevant for this work: Paturi’s famous
theorem [17] characterizing the approximate degree of symmetric functions, Szegedy’s [21]
theorem characterizing functions that have bounded symmetric communication complexity
making crucial use of symmetric functions, strong correlation bounds against low degree
symmetric functions (polynomials) by Cai, Green and Thierauf [5], Razborov’s theorem [19]
characterizing the quantum bounded error communication complexity of SYMM o AND and
Sherstov’s [20] theorem characterizing the unbounded error communication complexity of
the same class of functions. More recently, and of particular relevance to this work, Shi
and Zhang [25] characterized the (quantum) bounded-error complexity of SYMM o XOR
and Ada, Fawzi and Hatami [1] characterized the spectral norm of all symmetric functions.
Shi and Zhang conjectured a certain characterization of the unbounded-error complexity of
SYMM o XOR. Ada et al. conjectured a characterization of the approzimate spectral norm
of symmetric functions that in a way would extend Paturi’s [17] characterization of the
approximate degree of symmetric functions. Though these conjectures do not seem related on
first glance, our work is motivated by them. In addition to proving the conjecture of Ada et
al., we provide, among other things, the first characterization of the weakly unbounded-error
communication complexity of SYMM o XOR. Both our results make use of a simple but
somewhat surprising closure-like property of symmetric functions. The discovery of this
property is one of our main technical contributions.

Krause and Pudlék [13] introduced a notion of ‘lifting’ functions to increase their hard-
ness. Using this, they derived a technique to lower bound the sign monomial complexity
(equivalently THR o XOR circuit size) of a lifted function, f°P, in terms of the sign degree
of f. As the lift of an AC® function can easily be seen to remain in ACY, they were able to
prove exponential lower bounds on the signed monomial complexity of a function in AC°
using known sign degree lower bounds of AC® functions [15]. However, it is not clear how
to use this lifting technique to prove lower bounds against other classes of functions. This
lift is now more widely known as composition with the indexing gadget on two bits. The
lift of f is denoted by f o IND,. Various notions of hardness amplification on composing
with the indexing gadget have been studied to give breakthrough results in communication
complexity [18, 8, 9].

In this work, we use the same notion of lifting to prove lower bounds of different monomial
complexity measures of symmetric functions. In doing so, we demonstrate the robustness
of the lifting technique to prove monomial complexity lower bounds on classes of functions
other than ACY. A technical hurdle that we overcome is to show that any symmetric function
can ‘project’ onto the lift of a suitably defined symmetric function.

1.1 Our results

In this section, we provide a detailed summary of our results.

» Definition 1 (Monomial projection). We call a function g : {—1,1}" — {—1,1} a monomial
projection of a function f : {-1,1}" — {-1,1} if g(x1,...,2m) = f(Mi,..., M,), where
each M; is a monomial in the variables x1,...,x,,.

We denote the Hamming weight of a string x € {—1,1}" to be |z| = [{i € [n] : x; = —1}|
(this is a natural definition since we view —1 as true, and 1 as false). For a symmetric function
fo{-1,1}" — {—1,1}, define its spectrum or predicate D¢ : {0,1,...,n} — {—1,1} by
Dy (i) = f(x) where € {—1,1}™ is such that |z| = i. Note that the spectrum (predicate) of
a symmetric function is well defined. For any f:{—1,1}" — {—1,1}, define the function
for{—1,1}3" — {—1,1} as follows.

FP(T1, ey Ty YLy e o s Yns 21y - -5 2n) = fUr, ..o Uup). (1)
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where for all 7, u; = (x; A z;) V (y; A z;). Intuitively speaking, the value of z; decides whether
to feed x; or y; as the ith input to f. This method of lifting f was introduced by Krause
and Pudldk [13].

The following lemma shows how f°P is a monomial projection of a symmetric function, if
f was symmetric itself.

» Lemma 2 (Projection Lemma). Given a symmetric function F : {—=1,1}4" — {-1,1},
defined by the predicate D : [4n] — {—1,1}, consider the symmetric function f : {—1,1}" —
{—1,1} defined by the predicate D¢(b) = Dp(2b+n) for allb € {0,1,...,n}. Then, fP is a
monomial projection of F.

For any function f: {-1,1}" — {-1,1}, let f =3 g, cs [] i be the unique multilin-
- €S

ear expansion of f. Define the weight of f, denoted by wt(f) to be Zsc[n] les|.> The sign
degree of a function f, denoted deg (f), is defined to be the minimum degree required by a
polynomial to sign represent f on all inputs.

» Definition 3 (Polynomial margin). For a polynomial of weight 1, say p, which sign represents
a function f, we say that p represents f with a margin of value min,e;_; 13» f(2)p(z). Define
the polynomial margin of f, denoted m(f), as follows.

f(@)p(z). (2)

m = max min
(f) pwt(p)=1ze{-1,1}"
To the best of our knowledge, such a definition of the polynomial margin of a function
does not appear in the past literature, although very similar notions have been studied. As
we note in Theorem 24, this is a useful quantity in characterizing the weakly-unbounded
error communication complexity of XOR functions.

» Definition 4 (Approximate weight). Define the e-approximate weight of a function f :
{-1,1}" = {-1,1}, denoted by wt.(f) to be the weight of a minimum weight polynomial
such that for all x € {—1,1}", [p(z) — f(z)] < e

» Definition 5 (Signed monomial complexity). The signed monomial complezity of a function
f:{-1,1}" = {—1,1}, denoted by mon (f), is the minimum number of monomials required
by a polynomial p to sign represent f on all inputs.

Note that the signed monomial complexity of a function f exactly corresponds to the
minimum size Threshold of Parity circuit computing it.

Let us define a notion of error in a pointwise approximation of a function by low degree
polynomials. This notion is studied widely in classical approximation theory.

Note that we do not restrict the weight of the approximating polynomial in this case.

A .
€ = min max z)— f(x)| ). 3
2 i ( wwx o) - 1)) ®
» Definition 6 (Approximate degree). For any function f : {—1,1}" — {—1,1} and polynomial
p : {-1,1}" — R, we say that p approximates f uniformly to error € if for all z €
{-=1,1}", |p(z) — f(z)| < e. The e-approximate degree of f, denoted deg (f) is the minimum
degree of a polynomial p which approximates f uniformly to error e.

3 Note that this notion coincides with ||f||1, the spectral norm of f. However, for the purposes of this
paper, we shall use the former notation.
4 This notion coincides with the notion of the e-approzimate spectral norm of f, denoted by ||f||1,e.
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The following lemma, translates degree-hardness properties of f to monomial-hardness
properties of f°P. The proof of this lemma is based on ideas from [13].

» Lemma 7 (Lifting Lemma). Let f: {—1,1}" — {—1,1} be any function.
1. Ifeq(f) > 1 =2 for some d > 2, then m(f°P) < 2<% for any constant 0 < ¢ < 1 — %.
2. mony (foP) > 24¢8x() . (This part was proved in [13].)

3. wty3(fP) > 2¢deg2/3() for any constant ¢ < 1 — 3/(?6%2/3@).

1.1.1 Applications to boolean function analysis

» Definition 8. Let F': {—1,1}" — {—1, 1} be a symmetric function. Define ro = ro(F),r1 =
r1(F) to be the minimum integers such that ro,r1 < n/2 and Dp(i) = Dp(i + 2) for all
i € [ro,m —r1). Define r = r(F) = max{rg,r1}.

Using Projection Lemma, Lifting Lemma, and Paturi’s theorem [17], we resolve the
following conjecture by Ada et al. [1].

» Theorem 9 (Conjecture 1 in [1]). Let F': {—1,1}*" — {—1,1} be any symmetric function
such that r(F) > 5. Then, there exists a universal constant ¢y > 0 such that

log(wty/3(F)) > ¢y - r(F).

One consequence of Theorem 9 is an analog of Paturi’s theorem [17]. Paturi characterized
the approximate degree of all symmetric functions, and we obtain a characterization of
the approximate monomial complexity of symmetric functions F, in terms of r(F). Let
mon, /3(F) denote the minimum number of monomials required by a polynomial to sign
represent F' at all points.

» Theorem 10 (Approximate monomial complexity of symmetric functions). For a symmetric
function F: {—1,1}*" — {—1,1},

log (monl/g(F)) = 0*(r(F)).

Theorem 10 was proved by Ada et al. [1] assuming Theorem 9. We refer the reader to [1]
for a proof.

Define the odd-even degree of a symmetric function f, which we denote by deg,.(f), to
be |t € {0,1,...,n—2}: Ds(3) # Dy(i + 2)|.

Using Projection Lemma and Lifting Lemma, we resolve the following conjecture by
Zhang [24].

» Theorem 11 (Conjecture 1 in [24]). A symmetric function f : {—1,1}" — {—1,1} is
computable by a quasi-polynomial size Threshold of Parity circuit if and only if deg,.(f) =
logo(l)n.

1.1.2 Applications to communication complexity of symmetric XOR
functions

We consider two models of randomized communication. The first was introduced by Yao
[22]. Two players, say Alice and Bob, receive a pair of inputs € X and y € Y respectively.
They want to jointly evaluate a function F': X x Y — {—1,1} on the pair (z,y) by using
a communication protocol that minimizes the total number of bits communicated in the
worst case. The protocol is probabilistic with the requirement that Pr [II(z,y) = F(z,y)] >
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1/2 4 1/3. The goal of the players is to design an efficient protocol meeting this requirement
that minimizes the cost. The cost of the best protocol for computing F' in this model is
called its bounded error complexity, denoted by R;,3(F). We consider the bounded error
complexity of XOR functions. Namely, Alice and Bob are given inputs x,y € {—1,1}" and
wish to compute f(z @ y) for some given function f, where z @ y denotes the bitwise xor of
z and y.

Lee and Shraibman [14] showed that the log of the approximate weight of f is roughly a
lower bound on the (quantum) bounded-error complexity of f o XOR, for every f. Using our
Projection Lemma and Lifting Lemma, along with this result of Lee and Shraibman [14], and
an upper bound from [25] on the communication complexity of symmetric XOR functions,
we obtain a characterization of the bounded error communication complexity in terms of the
approximate weight of the base function.

» Theorem 12. For any symmetric function f:{—1,1}" — {—1,1},

Ry/3(f o XOR) = ©*(log wty 3(f)).

» Remark. As the method of [14] applies to even quantum communication, Theorem 12
gives even a characterization of the quantum bounded-error complexity. Recently, Zhang [23]
gave upper bounds on the quantum bounded-error communication complexity of f o XOR
in terms of the log of the approximate weight of f, provided f has low Fy degree. Theorem
12 shows that when f is symmetric, then the dependence on Fo degree is redundant even for
classical complexity.

We consider another model of randomized communication, namely the weakly-unbounded
error model, introduced by Babai et al. [3]. A probabilistic protocol IT computes F with
advantage ¢ if the probability that F' and II agree is at least 1/2 + € for all inputs. Denote
the cost of such a protocol to be R.(F). We add a penalty term to the cost depending on
the advantage, and refer to this new cost as the weakly-unbounded error complexity, or PP
complexity, of F.

» Definition 13.

PP(F) = inf (RG(F) + log (1)) .

Klauck [11] showed that the PP complexity is characterized by the well studied notion of
discrepancy. Using LP duality in the full version of this paper [6], we show a general tight
relationship between discrepancy of f o XOR and the margin complexity of f. Using these
facts along with our Projection and Lifting Lemmas, we are able to completely characterize
the PP complexity of symmetric XOR functions.

» Theorem 14. Let F: {—1,1}*" — {—1,1} be any symmetric function, and let deg,.(f) =
r > 4. Then, there exists universal constants ¢, > 0 such that cr/log(n/r) < PP(FoXOR) <
c'rlog(n).

The Log Approximation Rank Conjecture [14] is the analogous version of the well-known
Log Rank Conjecture, for the randomized communication complexity model. Let rank.(M)
denote the minimum rank of a matrix that e-approximates M entry-wise. It is known that
Ri/3—c(F) > logrank. (Mp), where ¢ is a constant depending on ¢, and M denotes the
communication matrix of F. The Log Approximation Rank Conjecture states that the lower
bound is tight upto a polynomial factor.

We resolve this conjecture for symmetric XOR functions.
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» Theorem 15 (Log Approximation Rank Conjecture for symmetric XOR functions). Let f be
any symmetric function, and F' = f o XOR. Then, there is a universal constant ¢ such that

log ranke (M (F)) < Ryjo—(F) < log®ranky (M (F)).

Ada et al. [1] prove Theorem 15 assuming Theorem 9. For a proof, and additional learning
theoretic implications of Theorem 9, we refer the reader to [1].

1.2 Proof outline

First, we use an idea due to Krause and Pudldk [13], who showed that if a function f has
high sign degree, f°P has high signed monomial complexity. We observe that their argument
can be easily adapted to show a more general result. In particular, our Lemma 7 shows that
the hardness of f for low degree polynomials, with respect to natural notions like uniform
approximation and sign representation, gets amplified to corresponding hardness of f°P
for sparse (low weight) polynomials. The main problem at this point is to understand the
structure of f°P. In particular, our interest is when f°P suitably embeds in a symmetric
function. As a first glance, symmetric functions do not seem to have the structure of a lifted
function foP.

At this point, inspired by the work of Krause [12], we make a simple but somewhat
counter-intuitve observation that turns out to be crucial. A function g is called a monomial
projection of h, if g can be obtained by substituting each input variable of A with a monomial
in variables of g. What is nice about such projections is that for the polynomial sparsity
measures that are relevant for us (Observation 25), the complexity of g is upper bounded
by that of h. We observe (Lemma 2) that if f is a symmetric function, then there exists
a symmetric function F', on a larger domain, such that f°P is a monomial projection of F'.
Moreover, the combinatorial parameters of f that caused its hardness against low-degree
polynomials, nicely translate to combinatorial parameters of F' that have been conjectured
to cause hardness of F' against sparse (low weight) polynomials.

We then find a suitable symmetric f such that f°P has large approximate weight and is
a monomial projection of F. Lemma 2 provides such a monomial projection in which the
combinatorial quantity r(F') corresponds to another combinatorial quantity I'(f), which is
defined in Section 2. Paturi’s Theorem 17 shows that I'(f) characterizes the approximate
degree of f. Our polynomial hardness amplification via Lemma 7, implies that f°P, and
therefore F', has large approximate weight. This proves Theorem 9 which was conjectured by
Ada et al. [1].

Moreover, the odd-even degree of F' corresponds to the sign degree of f. Our polynomial
hardness amplification via Lemma 7, implies that f°P, and therefore F', has large signed
monomial complexity. This resolves an old conjecture of Zhang [24].

Finally, we note that F' having large odd-even degree also implies that f is uniformly
inapproximable by low degree polynomials. Our lifting lemma, Lemma 7 implies that f°P,
and thus F' has small polynomial margin. We then invoke a theorem, Theorem 24, proving a
tight equivalence between the polynomial margin of F' and the PP complexity of F o XOR.

1.3 Comparison with related work

In this section, we compare our results and techniques with those of recent related works.
Shortly after our paper was put out in the public domain [6], Ada et al. [2] reported

a proof of Theorem 9. However, their methods seem completely different from ours. In

order to prove a lower bound on the approximate spectral norm of f, they take recourse



A. Chattopadhyay and N.S. Mande

to the communication matrix of f o XOR. Via a result of Bruck and Smolensky [4] they
then show that it is enough to bound the approximate rank of this matrix. They do this
by appropriately invoking a matrix theoretic lemma of Razborov [19]. This is essentially
opposite to our approach. We directly prove lower bounds on the approximate spectral
norm of f, using our Projection Lemma and Lifting Lemma along with Paturi’s Theorem
[17], without bringing communication into the picture at all. We then use the bound on the
approximate spectral norm of f to prove lower bounds on the bounded error communication
complexity of f o XOR. It is interesting to note that, although [2] do not directly use Paturi’s
Theorem, the matrix theoretic lemma of Razborov that they invoke does require usage of
Paturi’s Theorem.

Two very recent independent works by Hatami and Qian [10] and Ada et al. [2] char-
acterized the unbounded error communication complexity of symmetric XOR functions,
strengthening our weakly-unbounded error characterization. Both the proofs involve a re-
duction to analyzing the unbounded error complexity of a symmetric AND function, and an
invocation of a theorem of Sherstov [20] which requires heavy approximation theoretic tools.
On the other hand, in order to prove our weakly-unbounded error complexity lower bound,
we invoke a result of the authors [6] (a full version of this paper) relating the discrepancy of
foXOR tightly to the polynomial margin of f. Our method of lower bounding the polynomial
margin of f is from first principles, and is self-contained. Although we prove a lower bound
on a weaker complexity model, we shave off significant logarithmic factors from the bounds
obtained by [10, 2].

In conclusion, the techniques of [10, 2] seem very specific, and use non-trivial results
from [19] and [20]. Our Lifting Lemma, Lemma 7, on the other hand, applies for general
functions. In particular, while the work of [10, 2] take recourse to analyzing AND functions
for all their results, we build techniques that can be used directly, and in turn yield bounds
on communication complexity of XOR functions. We believe our techniques will also find
more use for analyzing methodically non-symmetric XOR functions, an area of active interest
today. Indeed, the authors use this technique [6] to provide a simple new proof of the known
separation between functions efficiently computable with weakly-unbounded error, and those
efficiently computable with unbounded error, via a non-symmetric XOR function that was
introduced by Goldmann et al. [7].

2 Preliminaries

We provide the necessary preliminaries in this section.

All logarithms in this paper are taken base 2.

The following result by Zhang [24] provides an upper bound on the Threshold of Parity
circuit size required to compute symmetric functions.

» Theorem 16 ([24]). Let f : {—1,1}" — {—1,1} be a symmetric boolean function such
that deg,.(f) = logo(l) n. Then, f can be computed by a quasi-polynomial size Threshold of
Parity circuit.

The following is a result by Paturi [17] which gives us tight bounds on the approximate
degree of symmetric functions.

» Theorem 17 ([17]). For any symmetric function f : {—1,1}" — {=1,1}, define the
quantity T'(f) = min{|2k —n+ 1| : Dy(k) # Dy(k+1) and 0 < k <n —1}. Then,

degy3(f) = ©(V/n(n —T(f))).
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The following theorem was proved by Ada et al. [1], which characterizes the weight of a
symmetric function.

» Theorem 18 ([1]). For any symmetric function f:{-1,1}" — {-1,1},

ogut(7)) = ()10 (7))

Lee and Shraibman [14] showed that wt; /5(f) is a lower bound on Ry 3(f o XOR).
» Theorem 19 ([14]). For any function f: {—1,1}" — {—1,1},

Ry /3(f o XOR) = Q(log wty/3(f)).

Shi and Zhang [25] proved that the bounded error communication complexity of symmetric
XOR functions is characterized by r(f).

» Theorem 20 ([25]). For any symmetric function f:{—1,1}" — {—1,1},
Ry/5(f o XOR) = ©%(r(f)).
where ©F hides logarithmic factors.

Let Q1 /3(F) denote the quantum bounded error communication complexity of F'. Zhang
[23] proved the following upper bound on the communication complexity of XOR functions.

» Theorem 21 ([23]). Let f — {—1,1}" — {—1,1} be any function. Suppose the Fy-degree
of f isd. Then,

Qi/3(f o XOR) = O (Qd (log (wt1/3(f)) +1logn)) .

Define the discrepancy of a rectangle S x T under a distribution A on {—1,1}" x {-1,1}"
as follows.

» Definition 22 (Discrepancy).

disc) (S x T, F) = Z F(x,y)\(z,y).
(z,y)€SXT

The discrepancy of F' under a distribution A is defined as

discy (F) = SC[I;LI]I%XC[TL] discy(S x T, F)

and the discrepancy of F' is defined to be

disc(F) = mgn discy (F).

Klauck [11] proved that the PP complexity of F is equivalent to the discrepancy of F.
» Theorem 23 ([11]). For any function F : {—1,1}" x {-1,1}" — {-1,1},

PP(F) = 6 <1°g <dlSC1(F>>) |

In a full version of this paper [6], the authors showed that the polynomial margin of f
and the discrepancy of f o XOR are equivalent up to a constant factor.

» Theorem 24 ([6]). For any function f:{-1,1}" — {-1,1},

m(f) < 4disc(f o XOR) < 4m(f).
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3 Lifting functions

In this section we first prove the Lifting Lemma, Lemma 7, which shows how certain
degree-hardness properties of any function f : {—1,1}" — {—1,1} translates to related
monomial-hardness properties of f°P.

We then prove the Projection Lemma, Lemma 2, which shows how a symmetric function
F projects onto fP, for a suitably defined symmetric function f.

Finally, we list the consequences we obtain for lifting symmetric functions, which include
resolving conjectures posed by Ada et al. [1], Zhang [24], and the resolution of a weak form
of a conjecture by Shi and Zhang [25].

3.1 Lifting functions by the Krause-Pudlak selector
In this section, we prove the Lifting Lemma.

Proof of Lemma 7. We first prove Part 3. Suppose, to the contrary, that wt /5(f°?) < 2¢d,

where c is an absolute constant, to be fixed later, and d = aggg /3(f). This means there exists
a polynomial p : {—1,1}3" — {—1,1} such that wt(p) < 2°¢ and p(z)f°P(z) > 2/3 for all
x € {-1,1}3". Say p = ng%] wgxs. The proof idea is to manufacture a polynomial ps,
based on p, of low degree, which uniformly approximates f to error 2/3.

For this proof, we view the input variables as {z;1,2;2,2;|7 € {1,...,n}}, where z;’s
are the ‘selector’ variables.

For any fixing of the z variables, define a relevant variable to be one that is ‘selected’ by
z. Thus, for each j € {1,...,n}, exactly one of {z;1,z;2} is relevant. Analogously, define
a relevant monomial to be one that does not contain any unselected variable. For any set
S C [3n], define S, to be the subset of S which contains the all the indices corresponding to
the x variables.

For a uniformly random fixing of z and any subset S C [3n] such that |S;| > d,

Pr[ys is relevant] <

z 2d°
E.[wt of relevant monomials in p|z of degree > d] = Z |ws| - Prlxs is relevant)
S:1Sz|>d z
1 1
< 5d Z lws| < ﬁ‘QCd-
5:S,|>d

Thus, there exists a fixing of the z variables such that the weight of the relevant monomials
of degree at least d in p|z is at most 2% -2¢4_ Select this fixing of z.
Note that p{z is a polynomial on only the variables {z; 1, %;2|i € {1,...,n}}. Drop the

relevant monomials of degree at least d from p’z to obtain a polynomial p;.
Observe that p; sign represents f"p‘z with error at most % + 2;; .

For each j € {1,...,n}, denote the irrelevant variable by z;;,. Consider the polynomial
p2 on n variables defined by p» = Ey, , |z, . [p1], where the expectation is over each
irrelevant variable being sampled uniformly and independently from {—1,1}.

It is easy to see that any monomial containing an irrelevant variable in p; vanishes in ps.
Also note that py is a polynomial of degree less than d, and it must sign represent f with
error at most 5 + 22%7 This quantity is less than 2/3 when ¢ < 1 — 3. This leads to a
contradiction since we assumed that (TeEQ s3(f) =d.

We omit the proof of Part 1 as it follows along extremely similar lines as the proof above. <
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3.2 Lifts as projections of symmetric functions

In this section, we prove the Projection Lemma.
The following observation is an easy consequence of definitions.

» Observation 25. For any functions f : {-1,1}" — {-1,1} and g : {-1,1}" — {-1,1}
such that g is a monomial projection of f, and any € > 0, we have

Proof of Lemma 2. Let g: {—1,1}3" — {—1,1} be defined as follows.

g(mla”'x’rlaylw"vynazla"-azn):

F((Eh'"7xn7y17"'7yn7_x1217~~~7_:Enzn7ylzl7"'uynzn)-

Clearly, g is a monomial projection of F. We show now that g = f°P.

For every input to g and each ¢ € [n], define the i’th relevant variable to be z; if z; = —1
(define y; to be the irrelevant variable in this case), and y; if z; = 1 (a; is irrelevant in this
case). For a fixed input @1,...,Zn, Y1, -+, Yn, 21, - -, Zn, let b denote the number of relevant
variables with value —1. Thus, there are n — b irrelevant variables with value 1. Let a denote
the Hamming weight of (z1,...,%n, Y1, -« Yny —T121, -+ s —TnZn, Y121, - - s YnZn) Lhen,

dn — 2a = Zmi + oy — xiz Yz = sz(l —z)+yi(l+2)=2n—4b
i=1 i=1
(which is twice the sum of the values of the relevant variables)

= a=2b+n.
Thus,

g(xla"'7xn7y11"~7yn7217'”72n) :DF(2b+n) :Df(b)

- fop(xla"'7xn7y17"'?y7L7Z17"'7ZTL)'
The last equality follows from Equation 1. <

» Remark. In fact, the proof of Lemma 2 implies the following.

Given a symmetric function f : {—1,1}" — {—1,1} defined by the predicate D¢(b),
define a function F : {—1,1}*" — {—1,1} (not necessarily symmetric) such that on inputs
of Hamming weight 2b + n, F' takes the value D(b) for all b € {0,1,...,n}, and F takes
arbitrary values on inputs of Hamming weight not in {2b+n: b € {0,1,...,n}}. Then, f°P
is a monomial projection of F.

3.3 Consequences for symmetric functions

In this section, we show consequences of hardness amplification of lifted symmetric functions.
We first prove Theorem 9.
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Proof of Theorem 9. Assume that n is even and that » — 1 is a multiple of 4. (If not, we
can fix a constant number of input bits to suitable values).

Suppose 71 (F) > ro(F). Consider F defined by F(x1,...,2,) = F(—1,...,—x,).
Observe that log(wty/3(F)) = log(wty/3(F)), and ro(F) > r1(F). Thus, we may assume,
without loss of generality, that ro(F) > 1 (F).

Note that Dp(r — 1) # Dp(r + 1). Define F' : {—1,1}?" — {—1,1} by Dg (i) = Dp(i)
for i € {0,1,...,2r}. It suffices to show logwt,,3(F’) > ¢r for some universal constant
¢ > 0. Define f: {-1,1}"=1/2 — {11} by D;(i) = Dp/(2i + (r — 1)/2). By Lemma 2,
f°P is a monomial projection of F”. Note that D (Tll) # Dy (’"Zl + 1)7 and thus T'(f) < 1.
By Theorem 17, c/1\6§2/3(f) = 0O(r).

Using Part 3 of Lemma 7 and Observation 25, we obtain that there exists a universal

constant ¢; > 0 such that

log(wty3(F)) > log(wty/3(F")) > log(wty3(fF)) = car. (4)
<4
We now prove Theorem 11, settling a conjecture of Zhang [24].

Proof of Theorem 11. Proof Idea: We define a (not too large) family of symmetric func-
tions {f; : ¢ € I'} such that f{” is a monomial projection of F for each i € I. The sign degree
of f; will correspond to the number of (k,k + 2) sign changes in a corresponding interval
of the spectrum of F. Moreover, the family {f; : i € I'} ‘captures’ all of the (k, k + 2) sign
changes of Dp. Thus, we conclude the existence of an ¢ € I such that the sign degree of f; is
large, and f;” is a monomial projection of F. Lemma 2, Part 2 of Lemma 7, and Observation
25 will then yield the desired result.

Assume without loss of generality, that n is a power of 3. Consider any symmetric
function F : {—1,1}*" — {—1,1} such that deg,,(F) > 8j where j > 2. Suppose there
were less than 45 many (i, 4 2) sign changes of D in [0,3n]. Then, consider F defined by
F(x1,...,2,) = F(=21,...,—x,). Observe that mon. (F) = mony (F), and D(F) has at
least 45 many (4,4 + 2) sign changes in [0, 3n] (in particular, in [0,n]). Thus, we may assume,
without loss of generality, that there are at least 45 many (4,4 + 2) sign changes of Dp in
[0,3n]. Further assume that at least 2j of them occur when #’s are even integers (if not, set
one variable to —1).

Define a family {f; : {—1,1}3 — {—1,1}:i € {0,1,..
functions as follows.

O f@ log(n/j)1}} of symmetric

n

we |

] , Dy, (b) = Dp (2b+ 33) .

Note that the sign degree of f; equals the number of (k, k+2) sign changes in the spectrum
of F in the interval 37, 57%r]. Since Dp has at least 2j many (7,4 + 2) sign changes in [0, 3],
it has at least j many (k, k + 2) sign changes in the interval [j, 3n]. Thus, the spectrum of

at least one of the f;’s (say fy) has at least W many (k, k + 1) sign changes (sign
Tog3 198\ 5

J
degree). The Projection Lemma (Lemma 2) tells us that f;” is a monomial projection of F'.

Using Observation 25 and Part 2 of Lemma 7, we obtain that there exists a constant co > 0
such that

o c2J
mony (F) > mony (f;”) > 2% /D .

The upper bound follows from Theorem 16. <

23:11
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Next, we prove Theorem 12, providing a characterization of the bounded error commu-
nication complexity of symmetric XOR functions in terms of wt; /3(f).

Proof of Theorem 12. The upper bound follows from Theorem 20 and Theorem 18. The
lower bound follows from Theorem 9, and Theorem 19. <

The proof of Theorem 14 can be found in the Appendix.

4 Conclusions

We provide a general lifting theorem, and list several applications to symmetric functions, via
our Projection Lemma, including characterizations of bounded error and weakly-unbounded
error communication complexity of symmetric XOR functions, characterization of the ap-
proximate weight of symmetric functions, and Threshold of Parity circuit size of symmetric
functions.

Our lifting theorem applies to arbitrary functions, and we feel that it should be usable to
prove lower bounds against classes of non-symmetric functions.

Zhang [23] (Theorem 21) showed an upper bound on the quantum bounded error com-
munication complexity of f o XOR in terms of the approximate weight and the Fa-degree
of f. Theorem 12 shows that the dependence on the Fo-degree is not required when f is
symmetric, even for classical bounded error complexity. This shows the tightness of Theorem
19 for symmetric XOR functions.

We leave the reader with two open questions. Is the lower bound of Theorem 19 tight for
all XOR functions? In particular, a positive answer would verify the Log Approximate Rank
Conjecture for all XOR functions. It is well-known [16] that the real degree of a boolean
function is polynomially related to its approximate degree. Does a similar relationship carry
over to the spectral norm? Theorem 9 gives a positive answer for symmetric functions.
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A Appendix

Proof of Theorem 14. By an extremely similar proof to that of Theorem 11 (using Part 1
of Lemma 7 instead of Part 2 of Lemma 7), it can be seen that there exists a constant ¢’ > 0
such that

1

m(F) = 9c'r/log(n/r) "

Thus, using Theorem 24, there exists a constant ¢; > 0 such that disc(F oXOR) < W
Along with Theorem 23, this proves that there exists a constant ¢ > 0 such that PP(FoXOR) >

er/log(n/r).

FSTTCS 2017



23:14 A Lifting Theorem with Applications to Symmetric Functions

We now prove the upper bound on PP(F' o XOR) Define Sepen, = {i € {0,2,...,4n — 2} :
Dy¢(i) # Dp(i +2)}, and define Soqq = {7 € {1,3,...,4n — 3} : Dp(i) # Dp(i + 2)} By our
assumption, |Seypen|, |Sodd] < 7

Consider the polynomials peyen, Podd : {—1,1}*" — R defined by

an
peven(x) :DF(O) : H dn — 21+ 1 — ij
1€Seven j=1
and
4n
Podd(x) = Dp(1) - H dn — 21+ 1 — ij
1€Sodd j=1

The polynomial p : {—1,1}*" — R defined by

p(x) =(1+ X[4n] (7))Peven () + (1 — X[4n] (7)) poda(x)

sign represents F on {—1,1}4".
We now use the simple observations that wt(q; - ¢2) < wt(q1) - wt(gz) and wt(q1 + ¢2) <
wt(q1) + wt(gz). Thus,

w ( ) < 2w (peven) + th(podd)
< 2(8n)" +2(8n)"
< 4(8n)"
Note that all the coefficients of p are integer valued. Thus, the polynomial p = it tIEp) isa

polynomial of weight 1, which sign represents F' with margin at least ( 3 By Theorem 24
and Theorem 23,

PP(F o XOR) < O(log(wt(p))) < O(rlogn). <
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