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Abstract
This paper studies the stochastic variant of the classical k-TSP problem where rewards at the
vertices are independent random variables which are instantiated upon the tour’s visit. The
objective is to minimize the expected length of a tour that collects reward at least k. The
solution is a policy describing the tour which may (adaptive) or may not (non-adaptive) depend
on the observed rewards. Our work presents an adaptive O(log k)-approximation algorithm
for Stochastic k-TSP, along with a non-adaptive O(log2 k)-approximation algorithm which
also upper bounds the adaptivity gap by O(log2 k). We also show that the adaptivity gap of
Stochastic k-TSP is at least e, even in the special case of stochastic knapsack cover.
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1 Introduction

In this paper, we consider the following stochastic variant of the classical k-TSP problem.
The input consists of a metric (V, d) with depot r ∈ V . Each vertex v ∈ V has an independent
stochastic reward Rv ∈ Z+. All reward distributions are given as input and thus they are
known upfront, but the actual reward instantiation Rv is only known when vertex v is visited.
Given a target value k, the goal is to find an adaptive tour originating from r that collects a
total reward at least k with the minimum expected length.1 We assume that all rewards are
supported on {0, 1, . . . , k}.

Any feasible solution to this problem can be described by a decision tree where nodes
correspond to vertices that are visited and branches correspond to observed reward instantia-
tions. The size of such decision trees can be exponentially large. So we focus on obtaining
solutions (aka policies) that implicitly specify decision trees. These solutions are called
adaptive because the choice of the next vertex to visit depends on past random instantiations.

We will also consider the special class of non-adaptive solutions. Such a solution is
described simply by an ordered list of vertices: the policy involves visiting vertices in the
given order until the target of k is met (at which point the tour returns to r). These
solutions are often preferred over adaptive solutions as they are easier to implement in

∗ Research done in part when the authors were at the IBM T. J. Watson Research Center.
1 If the total instantiated reward

∑
v∈V Rv happens to be less than k, the tour ends after visiting all

vertices.
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27:2 Approximation Algorithms for Stochastic k-TSP

practice. However, the performance of non-adaptive solutions may be much worse, and so it
is important to bound the adaptivity gap [15] which is the worst-case ratio between optimal
adaptive and non-adaptive policies. This approach via non-adaptive policies has been very
useful for a number of stochastic optimization problems, eg. [15, 19, 22, 5, 23, 24, 6, 25].

The Stochastic k-TSP problem captures several well-studied problems, including the
classical k-TSP problem where the rewards are deterministic, and the stochastic knapsack
cover problem where the metric (V, d) is a weighted star rooted at r: given n items with
each item i ∈ [n] having deterministic cost di and independent random reward Ri ∈ Z+, and
a target k, find an adaptive policy that obtains total reward k at the minimum expected
cost. The k-TSP problem (and the related spanning tree variant k-MST) have received
considerable attention, leading to the development of a 2-approximation algorithm for the
problem [18]. The stochastic knapsack cover problem was considered recently in [16], where
an adaptive 2-approximation algorithm was obtained; however, no bounds on the adaptivity
gap were known previously even for this special case.

Results and Techniques. In this paper, we give the first approximation algorithm for the
general stochastic k-TSP, with an approximation ratio of O(log k). We also show that the
adaptivity gap is O(log2 k). The adaptivity gap is constructive: we give a non-adaptive
algorithm that is an O(log2 k)-approximation to the optimal adaptive policy.

I Theorem 1. There is an adaptive algorithm for stochastic k-TSP with approximation ratio
O(log k). Moreover, the adaptivity gap is upper bounded by O(log2 k).

To motivate our approach, consider an algorithm for the classical k-TSP problem which
has access to a hypothetical2 subroutine exactly solving the deterministic orienteering
problem: given a metric (V, d) on vertices with non-negative reward, a root vertex r, and a
bound t compute a tour starting at r of length at most t which collects the maximum reward.
The algorithm iterates over tour lengths of increasing powers of 2, solving for each length
the deterministic orienteering problem, until the union of the computed tours yields reward
k. It can be seen that this is an O(1)-approximation to k-TSP. Our algorithm adapts this
iterative method to Stochastic k-TSP using the expected truncated rewards at each vertex.
At the beginning of each iteration, the rewards distribution at each vertex is appropriately
truncated w.r.t. the residual target (and set to zero if the vertex has been previously visited).
However, in the stochastic setting, even if we used an exact orienteering algorithm, we need
to construct roughly (log k) tours for each length (see Example 2 in Section 2.1). We show
that using O(log k) many tours of each length suffices to obtain an O(log k)-approximation
algorithm for stochastic k-TSP. Moreover, this multiple-tour approach also allows for the use
of an O(1)-approximation for orienteering, which is needed for a poly-time algorithm.

The high-level idea in the analysis is to show that the non-completion probability in the
algorithm drops (roughly) by a constant factor in each iteration. This approach is similar
to that for the classic min-latency TSP [10, 17]. Such an approach has also been used
for stochastic optimization problems in [27, 28], but those results do not apply directly to
metric-based costs that we need to handle here. Our main technical contribution is in proving
the bound on non-completion probabilities in successive iterations (Lemma 3). This involves
upper and lower bounding the expected “relative gain” which is the expected (truncated)
increase in reward divided by the residual target. See Section 2 for details.

2 We do not expect a poly-time exact algorithm for orienteering as the problem is APX-hard [9].
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The non-adaptive algorithm is based on “simulating” the above adaptive algorithm.
Corresponding to each orienteering instance solved in the adaptive algorithm we now solve
log2 k different instances based on different power-of-two values for the residual target. This
results in a worse O(log2 k) approximation ratio; this is relative to the optimal adaptive
value and hence it bounds the adaptivity gap. We are not aware of a more direct approach
for the non-adaptive problem, even if we compare to the optimal non-adaptive value.

We also show that the adaptivity gap is at least e ≈ 2.718, which holds even in the special
case of stochastic knapsack cover with a single random item.

I Theorem 2. The adaptivity gap of Stochastic k-TSP (knapsack cover) is at least e.

This result is obtained in an indirect manner. Using LP-duality we show that randomized
online lower bounds for the online bidding problem [13] can be reduced to adaptivity gap
lower bounds for stochastic knapsack-cover. These lower bound instances contain a single
stochastic item. We can also show using a connection to the incremental k-MST problem [29],
that the adaptivity gap for such instances is exactly e.

Other related work. Stochastic packing and covering problems have received considerable
attention, leading to approximation guarantees and adaptivity gaps for several important
problems, including knapsack [15, 8, 30, 16], packing and covering integer programs [14, 19],
matching [12, 5, 1, 7, 2], matroid intersection [25, 3], submodular cover [20, 27, 21, 28], and
orienteering [22, 24, 6]. Recently, [26] proved a constant adaptivity gap for submodular
maximization problems under a very general class of constraints (including orienteering). This
is however not directly applicable to stochastic k-TSP because we have (i) a minimization
objective with strict covering requirement and (ii) general random variables as opposed to
just binary in [26].

Sections 2 and 3 describe and analyze the adaptive and non-adaptive algorithms respec-
tively for Stochastic k-TSP. Together they prove Theorem 1. The lower bound on the
adaptivity gap (Theorem 2) is proved in Section 4.

2 Stochastic k-TSP Algorithm

Let us begin with an informal description of the adaptive algorithm. The algorithm relies on
iteratively solving instances of the (deterministic) orienteering problem. In the orienteering
problem, we are given a metric (V, d), depot r, profits at vertices and a length bound B; the
goal is to find a tour originating from r of length at most B that maximizes the total profit.
There is a (2 + ε)-approximation algorithm for orienteering [11] which we can use directly.
The vertex-profits in the orienteering instance are chosen to be truncated expectations of
the random rewards Rv where the truncation threshold is the current residual target. The
length bounds are geometrically increasing with the phases of the algorithm. The algorithm
terminates when the residual target reaches zero or all the vertices have been visited. However,
in each phase the algorithm solves α ≈ (log k) many iterations each approximately solving
the residual orienteering instance with the same length bound of that phase. This (roughly
speaking) results in the O(log k) approximation ratio. The requirement of many iterations
per phase turns out to be a somewhat subtle issue: we show in Section 2.1 that significantly
reducing the number of repetitions results in a much worse approximation ratio.

The formal algorithm is given below. We assume (by scaling) that the minimum positive
distance in the metric (V, d) is one. At any point in the algorithm, S denotes the set of
currently visited vertices, σ denotes the reward instantiations of S, and k(σ) is the total
observed reward. The number of iterations of the inner for-loop is α := c ·Hk, where c ≥ 1 is

FSTTCS 2017
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Algorithm 1 Algorithm Ad-kTSP
1: initialize σ ← ∅, S ← ∅ and k(σ) = 0.
2: for phase i = 0, 1, . . . do
3: for t = 1, . . . , α do
4: define profits at vertices as follows

wv :=
{

E[min{Rv, k − k(σ)}] ∀ v ∈ V \ S
0 ∀ v ∈ S

5: using a ρ-approximation algorithm for the orienteering problem, compute a tour π
originating from r of length at most 2i with maximum total profit.

6: traverse tour π and observe the actual rewards; augment S and σ accordingly.
7: if k(σ) ≥ k or all vertices have been visited, the solution ends.
8: end for
9: end for

a constant to be fixed later and Hk ≈ ln k is the kth harmonic number. We will show that
Ad-kTSP is an 8α-approximation algorithm for Stochastic k-TSP.

We view each iteration of the outer for loop as a phase and use i to index the phases.
For any phase i ≥ 0, we define the following quantities:

ui := Pr [Ad-kTSP continues beyond phase i]
u∗i := Pr

[
optimal policy continues beyond distance 2i

]
Since the minimum distance in the metric is one we have u∗0 = 1.

Overview of analysis

For analyzing the algorithm, observe that the expected cost of the obtained solution is
roughly bounded by α

∑
i≥0 ui2i+1 as the distance in phase i is roughly α · 2i. To bound

this we show that (*) ui − ui∗ ≤ ui−1/4 which allows us to relate the expected cost of the
algorithm with the expected optimal cost yielding an O(α) approximation. To show (*),
the first step (Lemma 4) is proving the existence, in the ith phase with “state” σ, of an
orienteering solution of length at most 2i with profit at least a fraction pi∗(σ) := (1− ui∗ |σ)
of the current residual target. Here ui∗ |σ corresponds to the probability ui∗ conditioned on
the current state σ. Combined with a known inequality (Theorem 6) on the truncated sum
of independent random variables, this is used to lower bound the expected gain (fraction of
the residual target covered) of the adaptive algorithm in each phase by Ω(α) · (ui − ui∗); see
Claim 8. The expected gain on the other hand can easily be upper bounded by Hk · ui−1
where Hk ≈ ln k is the kth harmonic number (Claim 7). Finally, setting α = Θ(log k) with a
suitable constant finishes the proof.

Now to the formal details. The following lemma is the main component of the analysis.

I Lemma 3. For any phase i ≥ 1, we have ui ≤ ui−1
4 + u∗i .

Using Lemma 3, we can finish the analysis as follows. Let ALG denote the expected length
of the tour constructed by the Ad-kTSP algorithm. Let OPT denote the expected length
of the optimal adaptive tour. The total distance traveled by the Ad-kTSP algorithm in the
first i phases is at most α

∑i
j=0 2j ≤ 2i+1α. Using this we obtain ALG ≤ 2α

∑
i≥1 2iui + 4α.
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Also, OPT ≥ 1
2
∑
i≥1 2iu∗i + u∗0 = 1

2
∑
i≥1 2iu∗i + 1. Letting T :=

∑
i≥1 2iui and using

Lemma 3, we obtain

T ≤ 1
4
∑
i≥1

2i · ui−1 +
∑
i≥1

2i · u∗i ≤
1
2
∑
i≥1

2i · ui +
∑
i≥1

2i · u∗i + 1
2 ≤

1
2T + 2 ·OPT− 3

2 .

It follows that T ≤ 4 ·OPT−3 and ALG ≤ 8α ·OPT. Thus we obtain an 8α-approximation
algorithm, which proves the first part of Theorem 1.

Now we turn to the proof of Lemma 3. We start by introducing some notation. Consider an
arbitrary point in the execution of algorithm Ad-kTSP, and let 〈S, σ, k(σ)〉 be a triple in
which S is the set of vertices visited so far, σ is the observed instantiation of S, and k(σ)
is the total reward observed in S. We refer to such a triple 〈S, σ, k(σ)〉 as the state of the
algorithm.

I Lemma 4. Consider a state 〈S, σ, k(σ)〉 of the Ad-kTSP algorithm. Consider the Ori-
enteering instance in which each vertex in S is assigned a profit of zero and each vertex v
not in S is assigned a profit of E [min {Rv, k − k(σ)}]. There is an orienteering tour from r

of length at most 2i with profit at least (k − k(σ)) · p∗i (σ), where

p∗i (σ) = Pr
[
optimal policy completes before distance 2i | σ

]
.

Proof. Consider the tree T ∗ representing the optimal policy. We condition on the instan-
tiations σ on vertices S to obtain tree T ∗(S, σ). Formally, we start with T ∗(S, σ) = T ∗
and apply the following transformation for each vertex v ∈ S with instantiation σv: at
each node ν in T ∗(S, σ) corresponding to v, we remove all subtrees of ν except the subtree
corresponding to instantiation σv; additionally, the probability of this edge (labeled σv) is set
to one. Note that the probabilities at nodes corresponding to vertices V \ S are unchanged,
since rewards at different vertices are independent.

Now, mark those nodes in T ∗(S, σ) that correspond to completion (i.e. reward at least
k is collected) within distance 2i. Note that the probability of reaching a marked node is
exactly p∗i (σ). Finally, let T denote the subtree of T ∗(S, σ) containing only those nodes that
have a marked descendant. When tree T is traversed, the probability of reaching a leaf-node
is p∗i (σ); with the remaining probability the traversal ends at some internal node. Clearly,
every leaf-node in T is marked and hence corresponds to an r-tour of length at most 2i along
with instantiated rewards that sum to at least k. Define modified rewards at nodes of T as
follows:

R̂v =
{

min{Rv, k − k(σ)} if v 6∈ S
0 if v ∈ S

Notice that the profits in the deterministic Orienteering instance are precisely wv = E[R̂v].
Observe that the sum of modified rewards at each leaf of T is at least k − k(σ). Thus the
expected R̂-reward obtained in T is Ê ≥ (k − k(σ)) · p∗i (σ). Also,

Ê =
∑
ν∈T

Pr[reach ν] ·E
[
R̂ν | reach ν

]
=
∑
ν∈T

Pr[reach ν] ·E
[
R̂ν
]

=
∑
ν∈T

Pr[end at ν] ·

(∑
µ�ν

wµ

)
.

Above, for a node ν ∈ T , we use R̂ν and wν to denote the respective variables for the vertex
(in V ) corresponding to ν. Also, the notation µ � ν refers to node µ being an ancestor of node
ν in T . The first equality is by definition of Ê, the second uses the fact that {R̂v : v ∈ V }
are independent, and the last is an interchange of summation. By averaging, there is some

FSTTCS 2017
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node ν′ ∈ T with
∑
µ≺ν′ wµ ≥ Ê ≥ (k − k(σ)) · p∗i (σ). We can assume that ν′ is a leaf node

(otherwise we can reset ν′ to be any leaf node of T below ν′). So the r-tour corresponding
to this node ν′ has length at most 2i and is feasible for the deterministic Orienteering
instance. Moreover, it has profit at least (k − k(σ)) · p∗i (σ) as claimed. J

I Lemma 5. Consider a state 〈S, σ, k(σ)〉 of the Ad-kTSP algorithm with k(σ) < k.
Consider the Orienteering instance with profits {wv : v ∈ V } where wv = 0 for v ∈ S
and wv = E [min {Rv, k − k(σ)}] for v 6∈ S. Let π be any ρ-approximate orienteering tour
consisting of vertices V (π). Then,

E

min

 ∑
v∈V (π)\S

Rv, k − k(σ)


 ≥ 1

ρ
·
(

1− 1
e

)
· (k − k(σ))· p∗i (σ).

Proof. For each v ∈ V (π) \S define Xv := min
{

Rv

k−k(σ) , 1
}
. Note that Xvs are independent

[0, 1] random variables, and E[Xv] = wv

k−k(σ) . Let X :=
∑
v∈V (π)\S Xv and Y = min(X, 1). So

the profit obtained by solution π to the deterministic orienteering instance is (k−k(σ)) ·E[X].
Using Lemma 4 and the fact that π is a ρ-approximate solution, we obtain E[X] ≥ 1

ρ · p
∗
i . We

can now complete the proof of the lemma by applying Theorem 6 below. J

I Theorem 6 ([4]). Given a set {Xv} of independent [0, 1] random variables with X =
∑
Xv

and Y = min(X, 1), we have E[Y ] ≥ (1− 1/e) ·min{E[X], 1}.

Now we are ready to prove Lemma 3.

Proof of Lemma 3. Consider any phase i ≥ 1 and let 〈S, σ, k(σ)〉 be the state of the Ad-
kTSP algorithm at the start of some iteration of the inner loop. Let π be the orienteering
tour that the algorithm visits next. Define

gain(〈S, σ〉) :=
E
[
min

{∑
v∈V (π)\S Rv, k − k(σ)

}]
k − k(σ) if k(σ) < k,

and gain(〈S, σ〉) := 0 if k(σ) ≥ k. The quantity gain(〈S, σ〉) measures the expected fraction
of the residual target that we cover after visiting π.

Let I(σ) = [k(σ) ≥ k] be an indicator variable that is equal to one if k(σ) ≥ k and it is
equal to zero otherwise. We have:

gain(〈S, σ〉) ≥ 1
ρ
·
(

1− 1
e

)
· (p∗i (σ)− I(σ)) . (1)

To see this, note that if I(σ) is one, the gain is zero and the inequality above holds since
p∗i (σ) ≤ 1; and if I(σ) is zero, this inequality follows from Lemma 5.

Recall that there are α iterations of the inner loop in phase i, and we use t ∈ [α] to index
the iterations. For each iteration t (of phase i), let St be the random variable denoting the
vertices visited until iteration t, and let σt denote the reward instantiations of St. Define:

Gt := E
〈St,σt〉

[gain(〈St, σt〉)]

Let ∆ =
∑α
t=1Gt denote the total gain in phase i. The proof relies on upper and lower

bounding ∆, which is done in the next two claims.

I Claim 7. We have ∆ ≤ Hk·ui−1.
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Proof. Let ∆(q) denote the value of ∆ conditioned on the instantiations q of all random
variables. If Ad-kTSP (conditioned on q) finishes before phase i then gain in each iteration
is zero and ∆(q) = 0.

In the following, we assume that Ad-kTSP (conditioned on q) reaches phase i. Let
L ≤ k denote the residual target at the start of phase i, and J1, . . . , Jα ∈ Z+ the incremental
rewards obtained in each of the α iteration of phase i; recall that all rewards are integral.
Then,

∆(q) ≤
α∑
t=1

Jt
L− J1 − · · · − Jt−1

≤
L∑
t=1

1
t

= HL ≤ Hk

The claim now follows since the algorithm reaches phase i only with probability ui−1. J

I Claim 8. We have ∆ ≥ α
ρ ·
(
1− 1

e

)
· (ui − u∗i ).

Proof. For any t ∈ [α], by Inequality (1), we have

Gt = E
〈St,σt〉

[gain(〈St, σt〉)] ≥ 1
ρ
·
(

1− 1
e

)
· E
σt

[p∗i (σt)− I(σt)]

Let p(t) be the probability that Ad-kTSP finishes by iteration t of phase i. Since the probabil-
ities p(t) are non-decreasing in t, we have p(t) ≤ p(α) = Pr[Ad-kTSP finishes by phase i] =
1 − ui. For a fixed iteration t, the possible outcomes of 〈St, σt〉 correspond to a partition
of the overall sample space. So we have Eσt

[I(σt)] = p(t) ≤ 1 − ui and Eσt
[p∗i (σt)] =

Pr[optimal policy completes within distance 2i] = 1 − u∗i . This completes the proof since
∆ =

∑α
t=1Gt. J

It follows from the two claims that
α

ρ
· (1− 1/e)· (ui − u∗i ) ≤ ∆ ≤ Hk·ui−1.

Setting α = 4ρ e
e−1 ·Hk implies the lemma. J

We conclude this section by showing that our analysis of Ad-kTSP is essentially tight,
and that it is necessary for α to be Ω̃(log k).

2.1 Tightness of analysis of Ad-kTSP
Example 1. The analysis of Ad-kTSP is tight up to constant factors, even in the
deterministic setting. Consider an instance of deterministic knapsack cover with k = 2` (for
large integer `) and `(`+ 1) items as follows. For each i ∈ {0, 1, . . . , `} there is one item of
cost 2i and reward 2i, and `− 1 items of cost 2i and reward 1. Clearly the optimal cost is
2`. However the algorithm will select in each iteration i = 0, 1, . . . , `− 3, all ` items of cost
2i: note that the reward from these items is at most `2 +

∑`−3
i=0 2i ≤ `2 + 2`−2 < 2`. So the

algorithm’s cost is at least ` · 2`−3.
Example 2. A natural variant of Ad-kTSP is to perform the inner iterations (for each
phase i = 0, 1, . . .) a constant number of times instead of Θ(log k). Next, we show an example
where such variants perform poorly even with access to a hypothetical subroutine solving
the deterministic orienteering problem exactly. It is worth noting that in the deterministic
case, such an approach (using an exact orienteering algorithm once for each phase i) suffices
to obtain an O(1)-approximation for k-TSP. However, if we used an O(1)-approximation for
orienteering, then such an approach performs poorly even for the deterministic k-TSP.

FSTTCS 2017



27:8 Approximation Algorithms for Stochastic k-TSP

Consider the variant of Ad-kTSP that performs 1 ≤ h = o
(

log k
log log k

)
iterations in

each phase i. Choose t ∈ Z+ and set δ = 1/(ht) and k = (ht)2ht ∈ Z+. Note that
ht = Θ(log k/ log log k). Define a star metric centered at the depot r, with ht + 1 leaves
{uij : 0 ≤ i ≤ t − 1, 0 ≤ j ≤ h − 1}

⋃
{w}. The distances are d(r, uij) = 2i for all i ∈ [t]

and j ∈ [h]; and d(r, w) = 1. Each uij contains three co-located items: one of deterministic
reward (1−δ)δhi+j ·k, and two having reward δhi+j ·k with probability δ (and zero otherwise).
Finally w contains a deterministic item of reward k. By the choice of parameters, all rewards
are integer valued. The optimal cost is 2, just visiting vertex w.

Now consider the execution of the modified Ad-kTSP algorithm. The probability that
all the random items in the uij-vertices have zero reward is (1− δ)2ht ≥ Ω(1). Conditioned
on this event, it can be seen inductively that in the jth iteration of phase i (for all i and j),

the total observed reward until this point is k(1− δ)
∑hi+j−1
`=0 δ` = k

(
1− δhi+j

)
.

the algorithm’s tour (and optimal solution to the orienteering instance) involves visiting
just vertex uij and choosing the three items in uij , for a total profit of (1 + δ) · δhi+j · k.

Thus the expected cost of this algorithm is Ω(h · 2t), implying an approximation ratio
exp

(
log k

h·log log k

)
.

3 Non-Adaptive Algorithm

For our non-adaptive algorithm we show that the previous adaptive policy can be simulated
in a non-adaptive manner, resulting in an O(log2 k)-approximate non-adaptive algorithm.
This also upper bounds the adaptivity gap by the same quantity, proving the second part
of Theorem 1. The difference from the adaptive setting is that the non-adaptive algorithm
does not know the reward accrued so far and thus tries many possible residual targets for
the orienteering problem. Specifically, at each of the α iterations in a phase, we append
` ≈ log2 k different solutions to the orienteering problem defined with residual targets
k/2j , j = 0, 1, . . . , blog2 kc. The analysis is almost identical to that of the adaptive algorithm.
As before, we set α = O(Hk), yielding a O(`α) = O(log2 k) approximation.

The formal algorithm NonAd-kTSP is given below. The non-adaptive tour τ is con-
structed iteratively; S denotes the set of vertices visited in the current tour.

The difference from Ad-kTSP is in the inner for loop (indexed by j); this handles the
fact that (unlike Ad-kTSP) the non-adaptive algorithm does not know the reward accrued
so far. We set α := c′ ·Hk, where c′ is a constant to be fixed later. Let ` := 1 + blog2 kc the
number of iterations of the innermost loop.

The analysis for NonAd-kTSP is almost identical to Ad-kTSP. We will show that this
is an (8α`)-approximation algorithm for Stochastic k-TSP. As before, each iteration of
the outer for loop is called a phase, which is indexed by i. For any phase i ≥ 0, define

ui := Pr [NonAd-kTSP continues beyond phase i]
u∗i := Pr

[
optimal adaptive policy continues beyond distance 2i

]
Just as in Lemma 3 we will show:

ui ≤ ui−1
4 + u∗i , ∀i ≥ 1. (2)

Since the total distance traveled by NonAd-kTSP in the first i phases is at most `α
∑i
h=0 2h ≤

`α 2i+1, it follows (as for Ad-kTSP) that the expected length ALG of NonAd-kTSP is at
most 8`α ·OPT.
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Algorithm 2 Algorithm NonAd-kTSP
1: initialize τ, S ← ∅.
2: for phase i = 0, 1, . . . do
3: for t = 1, . . . , α do
4: for j = 0, 1, . . . , blog2 kc do
5: define profits as follows

wv :=
{

E[min{Rv, k/2j}] for v ∈ V \ S
0 for v ∈ S

6: using a ρ-approximation algorithm for the orienteering problem, compute a tour
π originating from r of length at most 2i with maximum total profit.

7: append tour π to τ , i.e. τ ← τ ◦ π.
8: end for
9: end for

10: end for

We now prove (2). Consider a fixed phase i ≥ 1 and one of the α iterations of the second
for-loop (indexed by t). Let S denote the set of vertices visited before the start of this
iteration 〈i, t〉. Let σ denote the reward instantiations at S, and k(σ) the total reward in σ.
Note that σ is only used in the analysis and not in the algorithm. Let V (i, t) ⊆ V \ S be the
new vertices visited in iteration 〈i, t〉; these come from ` different subtours corresponding to
the inner for-loop. We will show (analogous to Lemma 5) that:

E

min

 ∑
v∈V (i,t)

Rv, k − k(σ)


 ≥ 1

2ρ ·
(

1− 1
e

)
· (k − k(σ))· p∗i (σ). (3)

Above, p∗i (σ) = Pr
[
optimal adaptive policy completes before distance 2i | σ

]
. Exactly as

in the proof of Lemma 3, this would imply (2) when we set α = 8ρ e
e−1 ·Hk.

It remains to prove (3). Let g ∈ {0, 1, . . . , `} denote the index such that k
2g ≤ k − k(σ) <

k
2g−1 and let c := k/2g. An identical proof to Lemma 4 implies:

I Lemma 9. Consider the Orienteering instance with profits sv := E[min {Rv, c}] for
v ∈ V \ S and sv := 0 otherwise. There is an orienteering tour of length at most 2i with
profit at least c · p∗i (σ).

Let T ⊆ V \ S denote the vertices added in iteration 〈i, t〉 corresponding to inner loop
iterations j ∈ {0, 1, . . . , g − 1}. Note that in the inner loop iteration j = g, we have
profits wv = E[min {Rv, c}] for v ∈ V \ (S ∪ T ) and wv = 0 otherwise. Lemma 9 now
implies that the optimal profit of the orienteering instance in iteration j = g is at least
c · p∗i (σ)−

∑
u∈T E[min {Ru, c}]. Let T ′ denote the vertices added in the inner-loop iteration

j = g. Since we obtain a ρ-approximate solution, it follows that the additional profit obtained∑
v∈T ′ wv ≥

1
ρ

(
c · p∗i (σ)−

∑
u∈T E[min {Ru, c}]

)
. So,

∑
v∈V (i,t)

E[min {Rv, c}] ≥
∑

v∈T∪T ′
E[min {Rv, c}] ≥ c

ρ
· p∗i (σ).
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Exactly as in Lemma 5 we now obtain:

E

min

 ∑
v∈V (π)\S

Rv, c


 ≥ 1

ρ
·
(

1− 1
e

)
· c· p∗i (σ).

And using c ≤ k − k(σ) < 2c, we obtain (3).
In the following few paragraphs we give example showing that our analysis of NonAd-

kTSP is tight, and that it is necessary for h to be Ω̃(log k).

3.1 Tightness of analysis of NonAd-kTSP
Example 3. The analysis of NonAd-kTSP is tight up to constant factors, even in the
deterministic setting. This example is similar to that for Ad-kTSP. Consider an instance
of deterministic knapsack cover with k = 2` and `2(` + 1) items as follows. For each
i ∈ {0, 1, . . . , `} there is one item of cost 2i and reward 2i, and `2 − 1 items of cost 2i and
reward 1. Clearly the optimal cost is 2`. However algorithm NonAd-kTSP will select in
each iteration i = 0, 1, . . . , ` − 3, all `2 items of cost 2i: note that the reward from these
items is at most `3 +

∑`−3
i=0 2i ≤ `3 + 2`−2 < 2`. So the algorithm’s cost is at least `2 · 2`−3,

implying an approximation ratio of Ω(log2 k).
Example 4. One might also consider the variant of NonAd-kTSP where the second for-loop
(indexed by t) is performed 1 ≤ h� log k times instead of Θ(log k). The following example
shows that such variants have a large approximation ratio. Consider an instance of stochastic
knapsack cover with k = 2`. There are an infinite number of items, each of cost one and
reward k with probability 2

3` (the reward is otherwise zero). For each i ∈ {0, 1, . . . , `/h} and
j ∈ {1, . . . , `} there are h items of cost 2i and reward k/2j with probability 2

3` (the reward
is otherwise zero). The optimal (adaptive and non-adaptive) policy considers only the cost
one items with {0, k} reward, and has optimal cost O(`).

Algorithm NonAd-kTSP chooses in each iteration i ∈ {0, 1, . . . , `/h} (of the first for-
loop), iteration t ∈ {1, · · · , h} (of the second for-loop) and iteration j ∈ {0, 1, . . . , `} (of the
third for-loop) one of the items of cost 2i with {0, k/2j} reward. (This is an optimal choice
for the orienteering instance as rewards are capped at k/2j and the length bound is 2i.)
These items have total cost Θ(` · 2`/h). For each j ∈ {0, 1, . . . , `} there are `

h · h = ` items
having reward k/2j with probability 2

3` . It can be seen that the total reward from these
items is less than k with constant probability. So the expected cost of NonAd-kTSP is
Ω(` · 2`/h), implying an approximation ratio Ω(2`/h).

4 Lower Bound on Adaptivity Gap

We show that the adaptivity gap of Stochastic k-TSP is at least e ≈ 2.718 (Theorem 2).
This holds even in the special case of the stochastic covering knapsack problem with a single
random item. For such instances, we can even prove that the adaptivity gap is exactly e.

Here is an overview of the proof. We start by embedding an online bidding problem
into a stochastic knapsack-cover instance such that non-adaptive (adaptive) policies for the
latter correspond to online (offline) bidding strategies for the former. A result of Chrobak
et al. [13] shows that no online bidding strategy is better than e-competitive. To complete
the analysis, LP duality is used to show that the worst possible adaptivity gap for the
stochastic knapsack-cover instance equals the best possible competitiveness of any online
bidding strategy.

The gap example is based on the following problem studied in [13].
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I Definition 10 (Online Bidding Problem). Given input n ∈ Z+, an algorithm outputs a
randomized sequence b1, b2, . . . , b` of bids from the set [n] := {1, 2, . . . , n}. The algorithm’s
cost under (an unknown) threshold T ∈ [n] equals the (expected) sum of its bid values until
it bids a value at least T . The algorithm is β-competitive if its cost under threshold T is at
most β · T , for all T ∈ [n].

I Theorem 11 ([13]). There is no randomized algorithm for online bidding that is less than
e-competitive.

Without loss of generality, any bid sequence must be increasing; let Γ denote the set
of increasing sequences on [n]. For any I ∈ Γ and T ∈ [n], let C(I, T ) denote the cost of
sequence I under threshold T . In terms of this notation, Theorem 11 is equivalent to:

min
π :distribution(Γ)

max
T∈[n]

EI←π[C(I, T )]
T

≥ e. (4)

We now define the stochastic covering knapsack instance. The target k := 2n+1. There
is one random item r of zero cost having reward k − 2i with probability pi (for all i ∈ [n]).
There are n deterministic items {ui}ni=1 where ui has cost i and reward 2i. We will show
that there exist probabilities pis so that the adaptivity gap is e.

It is clear that an optimal policy (adaptive or non-adaptive) will first choose item r, since
it has zero cost. Moreover, an optimal adaptive policy will next choose item ui exactly when
r is observed to have reward k − 2i. Hence the optimal adaptive cost is

∑n
i=1 i · pi.

Any non-adaptive policy is given by a sequence τ of the deterministic items; recall that
item r is always chosen first. Moreover, due to the exponentially increasing rewards, we can
assume that τ is an increasing sub-sequence of {ui : 1 ≤ i ≤ n}. So there is a one-to-one
correspondence between non-adaptive policies and Γ (in the online bidding instance). Note
that the cost of non-adaptive solution I ∈ Γ is exactly

∑n
T=1 pT ·C(I, T ); if the random item

r has size k − 2T then the policy will keep choosing items in I until it reaches an index at
least T . Thus, the maximum adaptivity gap achieved by such an instance is:

max
p :distribution([n])

min
I∈Γ

ET←p[C(I, T )]
ET←p[T ] . (5)

The next lemma relates the quantities in (4) and (5). Below, for any set S, D(S) denotes
the collection of probability distributions on S.

I Lemma 12. For any non-negative matrix C(Γ, [n]), we have:

max
p∈D([n])

min
I∈Γ

ET←p[C(I, T )]
ET←p[T ] = min

π∈D(Γ)
max
T∈[n]

EI←π[C(I, T )]
T

.

Proof. The second expression equals the LP:

min β

s.t. T · β −
∑
I∈Γ C(I, T ) · π(I) ≥ 0, ∀T ∈ [n],∑

I∈Γ π(I) ≥ 1,
β, π ≥ 0.

Taking the dual, we obtain:

max α

s.t. α−
∑
T∈[n] C(I, T ) · σ(T ) ≤ 0, ∀I ∈ Γ,∑

T∈[n] T · σ(I) ≤ 1,
α, σ ≥ 0.
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Define functions g, f : [n]→ R+ where

f(p) := min
I∈Γ

n∑
T=1

pT · C(I, T ) and g(p) :=
n∑

T=1
pT · T.

Note that when p corresponds to a probability distribution, f(p) = minI∈Γ ET←p[C(I, T )]
and g(p) = ET←p[T ]. So the first expression in the lemma is just maxp∈D([n]) f(p)/g(p). The
key observation is that f and g are homogeneous, i.e. f(a · p) = a · f(p) and g(a · p) = a · g(p)
for any scalar a ∈ R+ and vector p ∈ Rn+. This implies that the first expression equals:

max
p∈D([n])

f(p)
g(p) = max

p∈Rn
+

f(p)
g(p) = max

p∈Rn
+ : g(p)≤1

f(p).

It is easy to check that this equals the dual LP above, which proves the lemma. J

Thus the above instance of stochastic knapsack cover has adaptivity gap at least e, which
proves Theorem 2. It can also be shown that every instance of stochastic knapsack cover with
a single stochastic item has adaptivity gap at most e: this uses a relation to the incremental
k-MST problem [29].

I Proposition 13. The adaptivity gap of any instance of stochastic knapsack cover with a
single random item is at most e.

Proof. Consider any such instance with item n having random reward R ∈ {0, 1, · · · k} and
each item i ∈ [n− 1] having deterministic reward ri. Let ci denote the cost of each i ∈ [n].
As there is only one random item, any adaptive policy is of the following form (i) select a
subset T1 ⊆ [n− 1] of deterministic items, (ii) select random item n, (iii) depending on the
value of reward R, select subset T2(R) ⊆ [n− 1] of deterministic items.

Note that if the reward in T1 is itself at least k then we do not even need to use the
random item: so the optimal adaptive and non-adaptive policies are the same (both are T1).
On the other hand, if r(T1) < k then the random item will be selected with probability one:
so we can assume that it is the first item to be selected, i.e. T1 = ∅.

Now, consider the following incremental k-MST instance. There are n vertices with
distances induced by a star with root n and leaves [n− 1] where the distance d(n, i) = ci.
There is zero reward at the root and reward ri at each i ∈ [n − 1]. The goal is to find a
random sequence σ of edges so that the following ratio is minimized:

max
`≥0

Eσ[cost of minimal prefix of σ with reward at least `]
optimal `-MST value .

As shown in [29], there is always a random sequence σ with the above ratio at most e.
In the stochastic knapsack-cover instance let p` = Pr[R = `] for ` ∈ {0, 1, · · · k}. Then

it is clear that the adaptive optimum is AD = cn +
∑k
`=0 pk−` · OPT (`) where OPT (`)

is the optimal `-MST value. Note also that the sequence σ corresponds to a randomized
non-adaptive solution: item n followed by the remaining n− 1 items in the order that they
first appear in σ. This has expected value NA = cn +

∑k
`=0 pk−` · Eσ[σ(`)] where σ(`) is the

cost of the minimal prefix of σ with reward at least `. So the adaptivity gap is at most:

NA

AD
=
cn +

∑k
`=0 pk−` · Eσ[σ(`)]

cn +
∑k
`=0 pk−` ·OPT (`)

≤ max
`

Eσ[σ(`)]
OPT (`) ≤ e.

This also implies that the best deterministic non-adaptive policy costs at most e ·AD. J
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5 Conclusion

The main (perhaps challenging) open question is to obtain a constant-factor approximation
algorithm for Stochastic k-TSP in either the adaptive or non-adaptive setting. Another
interesting question is the adaptivity gap, even in the special case of stochastic knapsack
cover, where there is a wide gap between the lower bound of e and upper bound of O(log2 k).

Acknowledgment. We thank Itai Ashlagi for initial discussions that lead to this problem
definition.
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