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Abstract
In this paper, we study the problem of constructing a network by observing ordered connectivity
constraints, which we define herein. These ordered constraints are made to capture realistic
properties of real-world problems that are not reflected in previous, more general models. We
give hardness of approximation results and nearly-matching upper bounds for the offline problem,
and we study the online problem in both general graphs and restricted sub-classes. In the online
problem, for general graphs, we give exponentially better upper bounds than exist for algorithms
for general connectivity problems. For the restricted classes of stars and paths we are able to find
algorithms with optimal competitive ratios, the latter of which involve analysis using a potential
function defined over PQ-trees.
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1 Introduction

In this paper, we study the problem of recovering a network after observing how information
propagates through the network. Consider how a tweet (through “retweeting” or via other
means) propagates through the Twitter network – we can observe the identities of the people
who have retweeted it and the timestamps when they did so, but may not know, for a fixed
user, via whom he got the original tweet. So we see a chain of users for a given tweet. This
chain is semi-ordered in the sense that, each user retweets from some one before him in the
chain, but not necessarily the one directly before him. Similarly, when a virus such as Ebola
spreads, each new patient in an outbreak is infected from some one who has previously been
infected, but it is often not immediately clear from whom.

In a graphical social network model with nodes representing users and edges representing
links, an “outbreak” illustrated above is captured exactly by the concept of an ordered
constraint which we will define formally below. One could hope to be able to learn something
about the structure of the network by observing repeated outbreaks, or a sequence of ordered
constraints.
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34:2 Network Construction with Ordered Constraints

Formally we call our problem Network Construction with Ordered Constraints
and define it as follows. Let V = {v1, . . . , vn} be a set of vertices. An ordered constraint
O is an ordering on a subset of V of size s ≥ 2. The constraint O = (vk1 , . . . , vks

) is satisfied
if for any 2 ≤ i ≤ s, there exists at least one 1 ≤ j < i such that the edge e =

{
vkj , vki

}
is

included in a solution. Given a collection of ordered constraints {O1, . . . ,Or}, the task is to
construct a set E of edges among the vertices V such that all the ordered constraints are
satisfied and |E| is minimized.

We can see that our newly defined problem resides in a middle ground between path
constraints, which are too rigid to be very interesting, and the well-studied subgraph
connectivity constraints [8, 18, 19], which are more relaxed. The established subgraph
connectivity constraints problem involves getting an arbitrary collection of connectivity
constraints {S1, . . . , Sr} where each Si ⊂ V and requires vertices in a given constraint to
form a connected induced subgraph; we will occasionally refer to these as unordered or
general constraints. The task is to construct a set E of edges satisfying the connectivity
constraints such that |E| is minimized.

We want to point out one key observation relating the ordered constraint to the connectiv-
ity constraint – an ordered constraint O = (vk1 , . . . , vks

) is equivalent to s− 1 connectivity
constraints S2, . . . , Ss, where Si = {vk1 , . . . , vki}. We note that this observation plays an
important role in several proofs in this paper which employ previous results on subgraph
connectivity constraints – in particular, upper bounds from the more general case can be
used in the ordered case (with some overhead), and our lower bounds apply to the general
problem.

In the offline version of the Network Construction with Ordered Constraints problem,
the algorithm is given all of the constraints all at once; in the online version of the problem,
the constraints are given one by one to the algorithm, and edges must be added to satisfy
each new constraint when it is given. Edges cannot be removed.

An algorithm is said to be c-competitive if the cost of its solution is less than c times
OPT, where OPT is the best solution in hindsight (c is also called the competitive ratio).
When we restrict the underlying graph in a problem to be a class of graphs, e.g. trees, we
mean all the constraints can be satisfied, in an optimal solution (for the online case, in
hindsight), by a graph from that class.

1.1 Past Work
In this paper we study the problem of network construction from ordered constraints. This
is an extension of the more general model where constraints come unordered.

For the general problem, Korach and Stern [18] had some of the initial results, in particular
for the case where the constraints can be optimally satisfied by a tree, they give a polynomial
time algorithm that finds the optimal solution. In subsequent work, in [19] Korach and Stern
considered this problem for the even more restricted problem where the optimal solution
forms a tree, and all of the connectivity constraints must be satisfied by stars.

Then, Angluin et al. [8] studied the general problem, where there is no restriction on
structure of the optimal solution, in both the offline and online settings. In the offline case,
they gave nearly matching upper and lower bounds on the hardness of approximation for
the problem. In the online case, they give a O(n2/3 log2/3 n)-competitive algorithm against
oblivious adversaries; we show that this bound can be drastically improved in the ordered
version of the problem. They also characterized special classes of graphs, i.e. stars and paths,
which we are also able to do herein for the ordered constraint case. Independently of that
work, Chockler et al. [13] also nearly characterized the offline general case.
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In a different line of work Alon et al. [3] explore a wide range of network optimization
problems; one problem they study involves ensuring that a network with fractional edge
weights has a flow of 1 over cuts specified by the constraints. Alon et al. [2] also study
approximation algorithms for the Online Set Cover problem which have been shown by
Angluin et al. [8] to have connections with Network Construction problems.

In related areas, Gupta et al. [17] considered a network design problem for pairwise vertex
connectivity constraints. Moulin and Laigret [20] studied network connectivity constraints
from an economics perspective. Another motivation for studying this problem is to discover
social networks from observations. This and similar problems have also been studied in the
learning context [7, 5, 15, 24].

Finally, in query learning, the problem of discovering networks from connectivity queries
has been much studied [1, 4, 9, 10, 16, 23]. In active learning of hidden networks, the object
of the algorithm is to learn the network exactly. Our model is similar, except the algorithm
only has the constraints it is given, and the task is to output the cheapest network consistent
with the constraints.

1.2 Connection to network inference
This model is also known to have connections to network inference [6, 22]. Let p(u,v) be the
a priori probability of an edge appearing between nodes u and v. If pu,v’s are ≤ 1/2 and are
independent, the maximum likelihood social network given the constraints is a set of edges
E that satisfies all of the constraints and maximises the following quantity∏
{u,v}∈E

p(u,v)
∏

{u,v}/∈E

(
1− p(u,v)

)
=
∏
{u,v}

(
1− p(u,v)

) ∏
{u,v}∈E

p(u,v)(
1− p(u,v)

)
Taking the logarithm, we want a set of edges E that minimizes the sum∑
{v,u}∈E

− log
(

p(u,v)(
1− p(u,v)

)).
The assumption that for all u, v, p(u,v) ≤ 1/2 implies that each term, or cost, in the sum is
non-negative.

1.3 Our results
In Section 2, we examine the offline problem, and show that the Network Construction
problem is NP-Hard to approximate within a factor of Ω(logn). A nearly matching upper
bound comes from Theorem 2 of Angluin et al. [8].

In Section 3, we study online problem. For problems on n nodes, for r constraints, we
give an O ((log r + logn) logn) competitive algorithm against oblivious adversaries, and an
Ω(logn) lower bound (Section 3.1).

Then, for the special cases of stars and paths (Sections 3.2 and 3.3), we find asymptotic
optimal competitive ratios of 3/2 and 2, respectively. The proof of the latter uses a detailed
analysis involving PQ-trees [11]. The competitive ratios are asymptotic in n.

2 The offline problem

In this section, we examine the Network Construction with Ordered Constraints problem
in the offline case. We are able to obtain the same lower bound as Angluin et al. [8] in the
general connectivity constraints case.

FSTTCS 2017



34:4 Network Construction with Ordered Constraints

I Theorem 1. If P6=NP, the approximation ratio of the Network Construction with
Ordered Constraints problem is Ω(logn).

Proof. We prove the theorem by reducing from the Hitting Set problem. Let (U,S) be a
hitting set instance, where U = {u1, . . . , un} is the universe, and S = {S1, . . . , Sm} is a set
of subsets of U . A subset H ⊂ U is called a hitting set if H ∩ Si 6= ∅ for i = 1, . . . ,m. The
objective of the Hitting Set problem is to minimize |H|. We know from [14, 21] that the
Hitting Set problem cannot be approximated by any polynomial time algorithm within a
ratio of o(logn) unless P=NP. Here we show that the Network Construction problem is
inapproximable better than an O(logn) factor by first showing that we can construct a
corresponding Network Construction instance to any given Hitting Set instance, and then
showing that if there is a polynomial time algorithm that can achieve an approximation ratio
o(logn) to the Network Construction problem, then the Hitting Set problem can also be
approximated within in a ratio of o(logn), which is a contradiction.

We first define a Network Construction instance, corresponding to a given Hitting Set
instance (U,S), with vertex set U ∪W , where W = {w1, . . . , wnc} for some c > 2. Note
that we use the elements of the universe of hitting set instance as a part of the vertex set of
Network Construction instance. The ordered constraints are the union of the following two
sets:
{(ui, uj)}1≤i<j≤n;
{(Sk, wl)}Sk∈S,1≤l≤nc ,

where by (Sk, wl) we mean an ordered constraint with all vertices except the last one from
a subset Sk of U , while the last vertex wl is an element in W . The vertices from Sk are
ordered arbitrarily.

We note that the first set of ordered constraints forces a complete graph on U , and
the second set of ordering demands that there is at least one edge going out from each Sk
connecting each element in W . Let A be an algorithm solving the Network Construction
problem, and let El denote the set of edges added by A incident to wl. Because of the second
set of ordered constraints, the set Hl = {u ∈ U | {u,wl} ∈ El} is a hitting set of S!

Let H ⊂ U be any optimal solution to the hitting set instance, and denote by OPTH the
size of H. It is easy to see the two sets of ordered constraints can be satisfied by putting a
complete graph on U and a complete bipartite graph between H and W . Hence the optimal
solution to the Network Construction instance satisfies

OPT ≤
(
n

2

)
+ nc OPTH,

where OPT is the minimum number of edges needed to solve the Network Construction
instance. Let us assume that there is a polynomial time approximation algorithm to the
Network Construction problem that adds ALG edges. Without loss of generality we can
assume that the algorithm adds no edge among vertices in W , because any edge within
W can be removed without affecting the correctness of the solution, which implies that
ALG =

(
n
2
)

+
∑nc

l=1 |El|. Now if ALG is o (logn ·OPT), from the fact that |Hl| = |El|, we
get

min
1≤l≤nc

|Hl| ≤
ALG−

(
n
2
)

nc
=

o
(
logn

((
n
2
)

+ nc OPTH
))
−
(
n
2
)

nc

= o (logn ·OPTH) ,

which means by finding the smallest set Hl0 among all the Hls, we get a hitting set that has
size within an o(logn) factor of the optimal solution to the Hitting Set instance, which is a
contradiction. J
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We also observe that the upper bound from the more general problem implies a bound in
our ordered case. We note the upper and lower bounds match when r = poly(n).

I Corollary 2 (of Theorem 2 from Angluin et al. [8]). There is a polynomial time O(log r+logn)-
approximation algorithm for the Network Construction with Ordered Constraints problem on
n nodes and r ordered constraints.

Proof. Observing that r ordered constraints imply at most nr unordered constraints on a
graph with n nodes, we can use the O(lognr) upper bound from Angluin et al. [8]. J

3 The online problem

Here, we study the online problem, where constraints come in one at a time, and the algorithm
must satisfy them by adding edges as the constraints arrive.

3.1 Arbitrary graphs
I Theorem 3. There is an O ((log r + logn) logn) upper bound for the competitive ratio
for the Online Network Construction with Ordered Constraints problem on n nodes
and r ordered constraints against an oblivious adversary.

Proof. To prove the statement, we first define the Fractional Network Construction
problem, which has been shown by Angluin et al. [8] to have an O(logn)-approximation
algorithm. The upper bound is then obtained by applying a probabilistic rounding scheme
to the fractional solution given by the approximation. The proof heavily relies on arguments
developed by Buchbinder and Naor [12], and Angluin et al. [8].

In the Fractional Network Construction problem, we are also given a set of vertices
and a set of constraints {S1, . . . , Sr} where each Si is a subset of the vertex set. Our task is
to assign weights we to each edge e so that the maximum flow between each pair of vertices in
Si is at least 1. The optimization problem is to minimize

∑
we. Since subgraph connectivity

constraint is equivalent to requiring a maximum flow of 1 between each pair of vertices with
edge weight we ∈ {0, 1}, the fractional network construction problem is the linear relaxation
of the subgraph connectivity problem. Lemma 2 of Angluin et al. [8] gives an algorithm that
multiplicatively updates the edge weights until all the flow constraints are satisfied. It also
shows that the sum of weights given by the algorithm is upper bounded by O(logn) times
the optimum.

As we pointed out in the introduction, an ordered constraint O is equivalent to a
sequence of subgraph connectivity constraints. So in the first step, we feed the r sequences of
connectivity constraints, each one is equivalent to an ordered constraint, to the approximation
algorithm to the fractional network construction problem and get the edge weights. Then we
apply a rounding scheme similar to the one considered by Buchbinder and Naor [12] to the
weights. For each edge e, we choose t random variables X(e, i) independently and uniformly
from [0, 1], and let the threshold T (e) = minti=1 X(e, i). We add e to the graph if we ≥ T (e).

Since the rounding scheme has no guarantee to produce a feasible solution, the first thing
we need to do is to determine how large t should be to make all the ordered constraints
satisfied with high probability.

We note that an ordered constraint Oi = {vi1, vi2, . . . , visi
} is satisfied if and only if the

(si−1) connectivity constraints {vi1, vi2}, . . . , {vi1, . . . , visi−1, visi
} are satisfied, which is equi-

valent, in turn, to the fact that there is an edge that goes across the ({vi1, . . . , vij−1} , {vij})
cut, for 2 ≤ j ≤ si. For any fixed cut C, the probability the cut is not crossed equals

FSTTCS 2017
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∏
e∈C(1 − we)t ≤ exp

(
−t
∑
e∈C we

)
. By the max-flow min-cut correspondence, we know

that
∑
c∈C we ≥ 1 in the fractional solution given by the approximation algorithm for all cuts

C = ({vi1, . . . , vij−1} , {vij}), 1 ≤ i ≤ r, 2 ≤ j ≤ si, and hence the probability that there
exists at least one unsatisfied Oi is upper bounded by rn exp (−t). So t = c(logn+ log r),
for any c > 1, makes the probability that the rounding scheme fails to produce a feasible
solution approaches 0 as n increases.

Because the probability that e is added equals the probability that at least one X(e, i) is
less than we, and hence is upper bounded by wet, we get the expected number of edges added
is upper bounded by t

∑
we by linearity of expectation. Since the fractional solution is upper

bounded by O(logn) times the optimum of the fractional problem, which is upper bounded
by any integral solution, our rounding scheme gives a solution that is O ((log r + logn) logn)
times the optimum. J

I Corollary 4. If the number of ordered constraints r = poly(n), then the algorithm above
gives an O

(
(logn)2) upper bound for the competitive ratio against an oblivious adversary.

I Remark. We can generalize Theorem 3 to the weighted version of the Online Network
Construction with Ordered Constraints problem. In the weighted version, each edge e = (u, v)
is associated with a cost ce and the task is to select edges such that the connectivity constraints
are satisfied and

∑
cewe is minimised where we ∈ {0, 1} is a variable indicating whether

an edge is picked or not and ce is the cost of the edge. The same approach in the proof of
Theorem 3 gives an upper bound of O ((log r + logn) logn) for the competitive ratio of the
weighted version of the Online Network Construction with Ordered Constraints problem.

For an lower bound for the competitive ratio for the Online Network Construction
with Ordered Constraints problem against an oblivious adversary, we study the Online
Permutation Hitting Set problem defined below: Let k be a positive integer, and let π
be a permutation on [k]. Define sets

P iπ = {π(1), π(2), . . . , π(i)} for i = 1, . . . , k,

I Definition 5 (Online Permutation Hitting Set). Let π be a permutation on [k] and let(
P kπ , P

k−1
π , . . . , P 1

π

)
arrive one at a time. A solution to the Online Permutation Hitting Set

problem is a sequence of set H1 ⊂ H2 ⊂ · · · ⊂ Hk such that Hi ∩P k+1−i
π 6= ∅ for i = 1, . . . , k.

I Lemma 6. The expected size of Hk for any algorithm that solves the Online Permutation
Hitting Set problem over the space of all permutations on [k] under the uniform distribution
is lower bounded by hk =

∑k
i=1

1
i .

Proof. We first show that the lower bound is achieved by a randomized algorithm A0, and
then we show that no other randomized algorithm could do better than A0.

We start by describing A0. Upon seeing P k+1−i
π , A0 sets Hi using the following rule:

Hi =
{
Hi−1 if Hi−1 ∩ P k+1−i

π 6= ∅
Hi−1 ∪ {a} if Hi−1 ∩ P k+1−i

π = ∅ ,

where a is a random point in P k+1−i
π . Let Ei denote the expected size of the final output of

A0 on permutations on [i] for all i = 1, . . . , k. By symmetry, without loss of generality, we
assume that A0 add 1 upon receiving P kπ = [k], then we have

Ek = 1 +
k∑
i=1

EiP (π(i) = 1) = 1 + 1
k

k−1∑
i=1

Ei
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The first equality is because A0 doesn’t need to add more points until it receives P k−iπ if
π(i) = 1, and the second equality is because that all i has the same probability to be mapped
to 1. To show that Ek = hk, we first verify that the harmonic series satisfies the same
recursive relation. In fact, we have

1 + 1
k

k−1∑
i=1

hi = 1
k

k +
k−1∑
i=1

i∑
j=1

1
j

 = 1
k

(
k +

k−1∑
i=1

(k − i) · 1
i

)

= 1
k

(
k +

k−1∑
i=1

(
k · 1

i
− 1
))

= 1
k

(
1 + k

k−1∑
i=1

1
i

)
= hk.

Since E1 = h1 = 1, we have Ek = hk for all k ∈ N+.
Next, we show that A0 is in fact the best randomized algorithm in expectation. To this

end, we need to show two things:
(i) when Hi−1 ∩ P k+1−i

π 6= ∅, adding point(s) is counter-productive;
(ii) when Hi−1 ∩ P k+1−i

π = ∅, adding more than one points is counter-productive.
To show i., let us assume that Hi−1 ∩ P k+1−i

π 6= ∅ and j is the smallest integer in
1 ≤ j ≤ k + 1 − i such that π(j) is contained in Hi−1. We show that adding one more
point hurts the expectation, and the proof for adding more than one points follows the
same fashion. A0 will wait till P j−1

π and add a random point from {π(1), π(2), . . . , π(j − 1)}.
Hence, A0 does not assign probabilities to any point in {π(j + 1), . . . , π(k + 1− i)}. We note
that adding any point in {π(j + 1), . . . , π(k + 1− i)} wouldn’t help. Hence, any algorithm
that assigns non-zero probabilities to {π(j + 1), . . . , π(k + 1− i)} will do worse than A0 in
expectation.

To show ii., for simplicity, we show that adding two points upon seeing P kπ hurts the
expectation, and the proof for adding more than two points follows the same fashion. We
show this by induction assuming that A0 is the best algorithm in expectation for all i < k.
By symmetry, without loss of generality, we assume that H1 = {1, 2}. We have

E (|Hk||H1 = {1, 2})

= 2 +
(∑

E
(
|Hk||π−1(1) < π−1(2)

))
P
(
π−1(1) < π−1(2)

)
+
(∑

E
(
|Hk||π−1(1) > π−1(2)

))
P
(
π−1(1) > π−1(2)

)
≥ 2 + 2 · 1

2

(
1

k − 1

k−2∑
i=1

Ei

)
= 2 + 1

k − 1

k−2∑
i=1

Ei = 1 + Ek−1 > Ek,

where the first inequality follows from i. and the inductive hypothesis. J

With the help of Lemma 6, we can prove the following lower bound.

I Theorem 7. There exists an Ω(logn) lower bound for the competitive ratio for the On-
line Network Construction with Ordered Constraints problem against an oblivious
adversary.

Proof. The adversary divides the vertex set into two parts U and V , where |U | =
√
n and

|V | = n−
√
n, and gives the constraints as follows. First, it forces a complete graph in U

by giving the constraint {ui, uj} for each pair of vertices ui, uj ∈ U . At this stage both the
algorithm and optimal solution will have a clique in U , which costs Θ(n).

FSTTCS 2017
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Then, for each v ∈ V , first fix a random permutation πv on U and give the ordered
constraints

O(v,i) = (πv(1), πv(2), . . . , πv(i), v) for i = 1, . . . ,
√
n.

First note that all these constraints can be satisfied by adding ev = {πv(1), v} for each v ∈ V
which costs Θ(n). However, the adversary gives constraints in the following order:

O(v,
√
n),O(v,

√
n−1), . . . ,O(v,1).

To satisfy O(v,i), any algorithm just need to make sure that at least one point in P iπ is
chosen to connect to v, and hence the algorithm is in fact solving an instance of the Online
Permutation Hitting Set problem on input π at this stage. By Proposition 6, we know that
all algorithm solving the Online Permutation Hitting Set problem will add Ω (log

√
n) points

in expectation, and this shows that any algorithm to the Online Network Construction with
Ordered Constraints problem needs to add Ω(n+ n logn) edges in expectation in total. This
gives us the desired result because OPT = O(n). J

Now we study the online problem when it is known that an optimal graph can be a star
or a path. These special cases are challenging in their own right and are often studied in the
literature to develop more general techniques [8].

3.2 Stars
I Theorem 8. The optimal competitive ratio for the Online Network Construction with
Ordered Constraints problem when the algorithm knows that the optimal solution forms a
star is asymptotically 3/2.

Proof. For the lower bound, we note that the adversary can simply give Oi = (v1, v2, vi) for
all i = 3, . . . , n obliviously for the first n − 2 rounds. Then an algorithm, besides adding
{v1, v2} in the first round, can only choose from adding either {v1, vi} or {v2, vi}, or both
in each round. Note that v1 or v2 have to be the center since the first constraint ensures
that {v1, v2} is an edge. After the first n− 2 rounds, the adversary counts the number of
v1 and v2’s neighbors, and chooses the one with fewer neighbors, say v1, to be the center
by giving the constraints (v1, vi) for all i = 3, . . . , n where no edge (v1, vi) exists. Since the
algorithm has to add at least d(n− 2)/2e edges that are unnecessary in the hindsight, we
get an asymptotic lower bound 3/2.

For the upper bound, assume that either v1 or v2 is the center and the first ordered
constraint is O1 is (v1, v2, . . . ), the algorithm works as follows:
1. It adds {v1, v2} in the first round.
2. For any constraint (including the first) that starts with v1 and v2, the algorithm always

adds edges of the form (v1, vk) or (v2, vk) where k 6= 1, 2 in such a way that the following
two conditions hold:

Degree of v1 and degree of v2 differ by at most 1.
The degree of vk is 1 for k 6= 1, 2

3. Upon seeing a constraint that does not start with v1 and v2, which reveals the center of
the star, it connects the center to all vertices that are not yet connected to the center.

Since the algorithm adds, at most n/2 − 1 edges to the wrong center, this gives us an
asymptotic upper bound 3/2, which matches the lower bound. J
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Algorithm 1 Forcing pre-degree to be at least 2
Give ordered constraint O = (v1, v2, v3, . . . , vn) to the algorithm;
for i = 3 to n do

if the pre-degree of vi is at least 2 then
continue;

else
pick a path on {v1, v2, v3, . . . , vi−1} (say Pi) that satisfies all the constraints up to
this round (the existence of Pi follows by induction) and an endpoint u of the path
that is not connected to vi, and give the algorithm the constraint (vi, u);

end if
end for

3.3 Paths
In the next two theorems, we give matching lower and upper bounds (in the limit) for path
graphs.

I Theorem 9. The Online Network Construction with Ordered Constraints problem
when the algorithm knows that the optimal solution forms a path has an asymptotic lower
bound of 2 for the competitive ratio.

Proof. Let us name the vertices v1, v2, v3, . . . , vn. For 3 ≤ i ≤ n, define the pre-degree of a
vertex vi to be the number of neighbors vi has in {v1, v2, v3, . . . , vi−1}. Algorithm 1 below is
a simple strategy the adversary can take to force v3, . . . , vn to all have pre-degree at least 2.
Since any algorithm will add at least 2n− 3 edges, this gives an asymptotic lower bound of 2.

Suppose Pi was the path picked in round i (i.e. Pi satisfies all constraints up to round
i). Then, Pi along with the edge (vi, u) is a path that satisfies all constraints up to round
i+ 1. Hence by induction, for all i, there is a path that satisfies all constraints given by the
adversary up to round i. J

I Theorem 10. The competitive ratio for the Online Network Construction with
Ordered Constraints problem when the algorithm knows that the optimal solution forms a
path has an asymptotic upper bound of 2.

Proof. For our algorithm matching the upper bound, we use the PQ-trees, introduced
by Booth and Lueker [11], which keep track all consistent permutations of vertices given
contiguous intervals of vertices, since vertices in any ordered constraint form a contiguous
interval if the underlying graph is a path. Our analysis is based on ideas from Angluin et al. [8],
who also use PQ-trees for analyzing the general problem.1

A PQ-tree is a tree whose leaf nodes are the vertices and each internal node is either a
p-node or a q-node.

A p-node has two or more children of any type. The children of a p-node form a
contiguous interval that can be in any order.
A q-node has three or more children of any type. The children of a q-node form a
contiguous interval, but can only be in the given order or its reverse.

1 Angluin et al. [8] have a small error in their argument because their potential function fails to explicitly
consider the number of p-nodes, which creates a problem for some of the PQ-tree updates. We fix this,
without affecting their asymptotic bound. For the ordered constraints case, we are also able to obtain a
much finer analysis.

FSTTCS 2017



34:10 Network Construction with Ordered Constraints

Every time a new interval constraint comes, the tree updates itself by identifying any of
the eleven patterns, P0, P1,. . . , P6, and Q0, Q1, Q2, Q3, of the arrangement of nodes and
replacing it with each correspondent replacement. The update fails when it cannot identify
any of the patterns, in which case the contiguous intervals fail to produce any consistent
permutation. We refer readers to Section 2 of Booth and Lueker [11] for a more detailed
description of PQ-trees.

The reason we can use a PQ-tree to guide our algorithm is because of an observation
made in Section 1 that each ordered constraint (v1, v2, v3, . . . , vk−1, vk) is equivalent to k− 1
connectivity constraints S2, . . . , Sk, where Si = {v1, . . . , vi}. Note that each connectivity
constraint corresponds to an interval in the underlying graph. So upon seeing one ordered
constraints, we reduce the PQ-tree with the equivalent interval constraints, in order. Then
what our algorithm does is simply to add edge(s) to the graph every time a pattern is identified
and replaced with its replacement, so that the graph satisfies all the seen constraints. Note
that to reduce the PQ-tree with one interval constraint, there may be multiple patterns
identified and hence multiple edges may be added.

Before running into details of how the patterns determine which edge(s) to add, we note
that, without loss of generality, we can assume that the algorithm is in either one of the
following two stages.

The PQ-tree is about to be reduced with {v1, v2}.
The PQ-tree is about to be reduced with {v1, . . . , vk}, when the reductions with {v1, v2}
· · · , {v1, . . . , vk−1} have been done.

Because of the structure of constraints discussed above, we do not encounter all PQ-tree
patterns in their full generality, but in the special forms demonstrated in Table 1. Based
on this, we make three important observations which can be verified by carefully examining
how a PQ-tree evolves along with our algorithm.
1. The only p-node that can have more than two children is the root.
2. At least one of the two children of a non-root p-node is a leaf node.
3. For all q-nodes, there must be at least one leaf node in any two adjacent children. Hence,

Q3 doesn’t appear.

Now we describe how the edges are going to be added. Note that a PQ-tree inherently
learns edges that appear in the optimum solution even when those edges are not forced
by constraints. Apart from adding edges that are necessary to satisfy the constraints, our
algorithm will also add any edge that the PQ-tree inherently learns. For all the patterns
except Q2 such that a leaf node vk is about to be added as a child to a different node, we
can add one edge joining vk to vk−1. For all such patterns except Q2, it is obvious that this
would satisfy the current constraint and all inherently learnt edges are also added. For Q2,
the PQ-tree could learn two edges. The first edge is (vk, vk−1). The second one is an edge
between the leftmost subtree of the daughter q-node (call Tl) and the node to its left (call
vl). Based on Observation 3, vl is a leaf. But based on the algorithm, one of these two edges
is already added. Hence, we only need to add one edge when Q2 is applied. For P5, we add
the edge as shown in Table 1.

Let us denote by P and Q the sets of p-nodes and q-nodes, respectively, and by c(p) the
number of children node p has. And let potential function φ of a tree T be defined as

φ(T ) = a
∑
p∈P

c(p) + b|P |+ c|Q|,

where a, b, and c are coefficients to be determined later.
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Table 1 Specific patterns and replacements that appear through the algorithm. P4(1) denotes
the case of P4 where the top p-node is retained in the replacement and P4(2) denotes the case where
the top p-node is deleted. The same is true for P6. P0, P1, Q0, and Q1 are just relabelling rules,
and we have omitted them because no edges need to be added. We use the same shapes to represent
p-nodes, q-nodes, and subtrees as in Booth and Lueker’s paper [11] for easy reference, and we use
diamonds to represent leaf nodes.

Pattern Replacement

P2
vk

vk

P3

P4(1) vk

vk

P4(2) vk

vk

P5

P6(1)
vk

vk

P6(2)
vk

vk

Q2
vk

vk

We want to upper bound the number of edges added for each pattern by the drop of
potential function. We collect the change in the three terms in the potential function that
each replacement causes in Table 3, and we can solve a simple linear system to get that
choosing a = 2, b = −3, and c = 1 is sufficient. For ease of analysis, we add a dummy
vertex vn+1 that does not appear in any constraint. Now, the potential function starts at
2n − 1 (a single p-node with n + 1 children) and decreases to 2 when a path is uniquely
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Table 3 How the terms in the potential function:
∑

p∈P
c(p), |P |, and |Q| change according to

the updates. ∑
p∈P

c(p) |P | |Q| −∆Φ number of edges added
P2 1 1 0 −a− b 1
P3 −2 −1 1 2a + b− c 0
P4(1) −1 0 0 a 1
P4(2) −2 −1 0 2a + b 1
P5 −2 −1 0 2a + b 1
P6(1) −1 0 −1 a + c 1
P6(2) −2 −1 −1 2a + b + c 1
Q2 0 0 −1 c 1
Q3 0 0 −2 2c 1

determined. Hence, the number of edges added by the algorithm is 2n− 3, which gives the
desired asymptotic upper bound. J
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