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Abstract
In the traditional maximal-flow problem, the goal is to transfer maximum flow in a network by
directing, in each vertex in the network, incoming flow into outgoing edges. While the problem
has been extensively used in order to optimize the performance of networks in numerous applic-
ation areas, it corresponds to a setting in which the authority has control on all vertices of the
network. Today’s computing environment involves parties that should be considered adversarial.
We introduce and study flow games, which capture settings in which the authority can control
only part of the vertices. In these games, the vertices are partitioned between two players: the
authority and the environment. While the authority aims at maximizing the flow, the envir-
onment need not cooperate. We argue that flow games capture many modern settings, such
as partially-controlled pipe or road systems or hybrid software-defined communication networks.
We show that the problem of finding the maximal flow as well as an optimal strategy for the
authority in an acyclic flow game is ΣP2 -complete, and is already ΣP2 -hard to approximate. We
study variants of the game: a restriction to strategies that ensure no loss of flow, an extension to
strategies that allow non-integral flows, which we prove to be stronger, and a dynamic setting in
which a strategy for a vertex is chosen only once flow reaches the vertex. We discuss additional
variants and their applications, and point to several interesting open problems.
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1 Introduction

A flow network is a directed graph in which each edge has a capacity, bounding the amount
of flow that can go through it. The amount of flow that enters a vertex equals the amount of
flow that leaves it, unless the vertex is a source, which has only outgoing flow, or a target,
which has only incoming flow. The fundamental maximum-flow problem gets as input a flow
network with a source vertex and a target vertex and searches for a maximal flow from the
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source to the target [9, 19]. The problem was first formulated and solved in the 1950’s [16, 17].
It has attracted much research on improved algorithms [11, 10, 20] and applications [2].

The maximum-flow problem can be applied in many settings in which something travels
along a network. This covers numerous applications domains, including traffic in road or rail
systems, fluids in pipes, currents in an electrical circuit, packets in a communication network,
and many more [2]. Less obvious applications involve flow networks that are constructed in
order to model settings with an abstract network, as in the case of elimination in partially
completed tournaments [32] or scheduling with constraints [2]. In addition, several classical
graph-theory problems can be reduced to the maximum-flow problem. This includes the
problem of finding a maximum bipartite matching, minimum path cover, maximum edge-
disjoint or vertex-disjoint path, and many more [9, 2]. Variants of the maximum-flow problem
can accommodate further settings, like circulation problems, where there are no sink and
target vertices, yet there is a lower bound on the flow that needs to be traversed along each
edge [34], networks with multiple source and target vertices [12], networks with costs for unit
flows, and more.

All studies of flow networks so far assume that all the vertices in the network can be
controlled by a central authority. That is, the maximum-flow algorithm finds a flow that
directs, in all vertices of the network, incoming flow into the outgoing edges. In many
applications of flow networks, however, only some of the vertices of the network can be so
controlled: In road systems, police can direct traffic in only some of the junctions; in pipe
systems, a company may have control only on some of the valves; and in communication
networks, the authority may control only in some of the routers. In particular, in the area of
software defined network (SDN), there is growing interest in hybrid networks, where some
vertices are software-defined by a logically-centralized controller and in some others the
routers behave as they see fit (e.g., running traditional or proprietary routing protocols,
making adversarial decisions, etc.). Moreover, new network elements (e.g., SDN switches)
should be added to the network gradually, so that traffic in not suspended, which results in
a hybrid network [1, 35].

The above applications suggest that the maximal-flow problem should be revisited, taking
into account the game-theoretic nature of the setting. Indeed, in more and more applications,
the authority can direct the flow only in a subset of the vertices. In the others, it is the
environment that directs the flow. The environment need not cooperate, giving rise to a
game between the authority and the environment.

We introduce and study flow games.1 In a flow game, the vertices in the network are
partitioned between two players, Player 0 and Player 1. Player 0 corresponds to the network
authority, whose goal is to maximize the flow, while Player 1 corresponds to the hostile
environment. A strategy for a player advices him how to direct flow that enters vertices
under his control. Formally, for each vertex u, let Eu denote the set of edges outgoing from
u. Also, for each edge e, let c(e) ∈ IN denote its capacity. Then, for each vertex u controlled
by the player, a strategy for the player includes a policy fu : IN → INEu that maps every
incoming flow x ∈ IN to a function describing how x is partitioned among the edges outgoing
from u. For each incoming flow x ∈ IN and edge e ∈ Eu, we require that fu(x)(e) ≤ c(e) and∑
e∈Eu

fu(x)(e) = min{x,
∑
e∈Eu

c(e)}. Thus, fu(x) assigns to each edge outgoing from u a
flow that is bounded by its capacity. Also, when the incoming flow is larger than the capacity
of the outgoing edges (which bounds the outgoing flow), then flow gets stuck or leaks and the

1 Not to confuse with games in which players cooperate in order to construct a sub-graph that maximizes
the flow in the traditional setting, which are also termed flow games (c.f., [24]).
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outgoing flow is lower than the incoming flow. In addition, a policy for the source s assigns
to each edge outgoing from s a flow that is bounded by its capacity. The goal of Player 0 is
to maximize the flow that enters the target t, no matter how Player 1 plays. Thus, it is a
Stackelberg game where Player 0 is the leader [29]. Note that the definition of flow in a flow
game is different from the traditional definition, which corresponds to the case all vertices
belong to Player 0, and in which the “flow conservation” property is respected in all vertices.
Indeed, in the game setting, Player 1 may cause flow to gets stuck or to leak by directing the
flow to vertices whose outgoing capacity is smaller than the incoming flow.

I Example 1. Consider the flow game in the figure below. We represent vertices of Player 0
by circles and vertices of Player 1 by squares. Sinks, namely vertices other than the target
that do not have outgoing edges, are represented by filled circles. In the classical max-flow
problem, the maximal flow is 2, which is also the minimal cut in the network.

We can view the network as a road system, where the vertex u, which belongs to Player 1, is
a junction in which the police does not direct incoming traffic. Note that the traffic is not
lost in u, it is only that the police cannot direct it to t, and so it may go to the sink, where
it gets lost, or to vertex v. In the context of road systems, flow loss means that the outgoing
flow is less than the incoming flow and thus a traffic jam occurs. Likewise, the network may
model a communication network in which the vertex u is a router whose software we do not
control. Again, unless the outgoing channels are filled, the router does not dismiss packets
that reach it, but it can direct the packets however it chooses. A strategy for Player 0 that
directs 1 unit of flow from s to v and no flow from s to u ensures a flow of 1. Also, since
the incoming flow to u is at most 2, and Player 1 can direct it to the sink and to vertex v,
Player 0 does not have a strategy that ensures a flow of more than 1. Hence, the maximum
flow that Player 0 can ensure is 1.

In essence, what we propose here is to lift the maximum-flow problem from its classical
one-player setting to a two-player setting. Such a transition has been studied in computer
science in many contexts. In graph theory, this transition corresponds to going from graph
reachability to alternating graph reachability (Path Systems) [7]. In complexity theory, this
is the transition from nondeterministic computation to alternating computation [6]. In logic,
this is the transition from Boolean satisfiability [8] to quantified Boolean satisfiability [33].
In temporal reasoning, this is the transition from satisfiability [27] to temporal synthesis [30].
Generally, this can be viewed as a transition from closed systems, which are completely under
our control, to open systems, in which we have to contend with adversarial environments.
The absence of regulation by some central authority is indeed a driving theme of algorithmic
game theory, cf. [28], inspired by the open nature of today’s computing environments. Thus,
this work can be viewed as a study of maximal flow in a network from the perspective of
algorithmic game theory.2 In addition, flow games extend less direct applications of the

2 Different aspects of networks have already been extensively studied from the perspectives of algorithmic
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maximum-flow problem to open settings. In particular, many of the constrained scheduling
problems that are reduced to maximum-flow problems [2] actually correspond to cases in
which not all involved entities may be controlled. We note that one could also consider
flow games among more than two players, and also examine classical algorithmic game-
theory questions: existence of a Nash equilibrium, stability inefficiency, and many more (see
Section 7). Two-player games are an important and popular first step in studying richer
multiplayer settings. Beyond the technical interest (lower bounds apply to the multiplayer
setting, and upper bounds are often extendible), the two-player setting captures also an
environment composed of different entities. Even when these different entities have no
centralized authority, a worst case approach to their joint behavior, which is the one we want
to take, amounts to viewing them as a single player.

Other game variants of classical graph-theory problems include the study of Turán
numbers and Saturation numbers for various graph monotone decreasing properties such
as triangle freedom, planarity, and 3-colorability. There, two players take turns choosing
edges of a given graph as long as the property is preserved in the generated subgraph. One
player aims for the process to be long (that is, for the generated subgraph to be big), and
the second aims for it to be short [18, 21]. Likewise, the game chromatic number of graphs is
the smallest number of colors with which a graph can be colored when two players alternate
turns in deciding the color of the next vertex [5]. Finally, in spanning-tree games, the players
alternate turns choosing edges of a weighted graph as long as a cycle is not closed. One
player aims to maximize the weight of the generated spanning tree and the second aims to
minimize it [22].

The transition from closed to open systems does not come without a computational
price. Graph reachability is in NLOGSPACE, while alternating reachability is PTIME-
complete. Boolean satisfiability is NP-complete, while quantified Boolean satisfiability is
PSPACE-complete. Temporal satisfiability is PSPACE-complete, while temporal synthesis is
2EXPTIME-complete. Understanding the computation cost from going from network flow
to network-flow games is a major theme of this work.

We study here acyclic game networks. There, given strategies for the players, it is possible
to calculate the flow by following a topological ordering of the vertices. We first show that
the problem of finding the maximal flow as well as an optimal strategy for the authority
in a flow game is ΣP

2 -complete, and is already ΣP
2 -hard to approximate. We point to easy

fragments and variants: when the network is a tree, and the goal is to maximize the flow
that reaches the leaves, and when the environment may swallow flow.

Once we find the complexity of flow games, we turn to study three important variants of
the setting. Recall that when the incoming flow is larger than the capacity of the outgoing
edges, then flow is lost: it gets stuck or leaks. Sometimes it is desirable to find a strategy
of Player 0 such that for every strategy of Player 1, there is no loss of flow. Indeed, in
some applications the authority cannot tolerate loss of traffic and is willing to reduce the
flow in order to ensure no loss. We study the problem of finding the maximal flow that the
authority can transfer while ensuring no loss. As good news, we show that the problem of
deciding whether some positive flow can be transferred is PTIME-complete, as opposed to
the ΣP2 -completeness in the “with loss" setting. Finding, however, the maximal flow that can
be guaranteed with no loss stays ΣP2 -complete.

game theory. This includes, for example, network formation games [4] or incentive issues in interdomain
routing and the BGP protocol [13]. We are the first, however, to consider the maximal-flow problem
from this perspective.
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Our definition of strategies assumes that policies are integral: vertices receive integral
incoming flow and partition it to integral flows in the outgoing edges. Integral-flow games
arise naturally in settings in which the objects we transfer along the network cannot be
partitioned into fractions, as is the case with cars, packets, and more. Sometimes, however,
as in the case of liquids, flow can be partitioned arbitrarily. In the traditional maximum-flow
problem, it is well known that the maximum flow can be achieved by integral flows [16].
We show that, interestingly, the game setting makes strategies that use non-integral flow
stronger: partitioning outgoing flows into non-integers may increase the flow that Player 0
can ensure. Moreover, the gain cannot be bounded by a constant. We leave open the problem
of finding the flow that Player 0 can ensure when using non-integral strategies. Hardness in
ΣP2 holds also for this setting. Yet, as real numbers are second-order creatures, the problem
may be undecidable.

As a third variant, we define dynamic flow games, in which the policy for a vertex u
is chosen only when flow reaches it. More formally, the policy in u is chosen once flow in
all edges that precede u in the topological order has traveled. We show that the dynamic
setting enables a formulation of the problem by means of the first-order theories of integral
addition or real addition, making the related decision problems decidable for both integral
and non-integral flows [15, 14].

Finally, we discuss additional variants, which we leave for future research: The first is
motivated by evacuation scenarios [25]: Consider, for example, a road network of a city,
where the vertex s denotes the center of the city and the vertex t denotes the area outside of
the city. In order to evacuate the center of the city, drivers are asked to navigate from s to t.
In each vertex, every incoming driver chooses an arbitrary outgoing edge. If the outgoing
capacity from a vertex is smaller than the incoming flow, then a traffic jam occurs, and flow
is lost. We want to find the number of cars that are guaranteed to evacuate in the worst
scenario. This corresponds to solving a flow-game in which all vertices belong to Player 1.3
Then, in multiplayer flow games, the vertices of the network are partitioned among several
(possibly more than 2) players, each having her target vertex. Finally, in partially-specified
flow networks, a strategy is known for some vertices, and we need to find an optimal strategy
for the others.

Due to the lack of space, some details and proofs are omitted, and can be found in the
full version, in the authors’ URLs.

2 Flow Games

A flow network is N = 〈V,E, c, s, t〉, where V is a set of vertices, E ⊆ V × V is a set of
directed edges, and c : E → IN is a capacity function, assigning to each edge an integral
amount of flow that the edge can transfer, and s, t ∈ V are source and target vertices. We
assume that t is reachable from s and the capacities are given in unary. A flow game between
two players, denoted Player 0 and Player 1, is G = 〈V0, V1, E, c, s, t〉, where V0 and V1 are sets
of vertices and 〈V0 ∪ V1, E, c, s, t〉 is a flow network in which the set of vertices is partitioned
between Player 0 and Player 1. Intuitively, Player 0 directs flow that arrives to vertices in V0
and his goal is to maximize the flow from s to t. Then, Player 1 directs flow that arrives
to vertices in V1 and his goal is to minimize the flow from s to t. A sink is a vertex u with
no outgoing edges. That is, there is no vertex v with E(u, v). We assume that t is a sink,
s ∈ V0, and that no edge enters s. That is, there is no vertex v with E(v, s).

3 We note that this is different from work done in evacuation planning, where the goal is to find routes
and schedules of evacuees (for a survey, see [31]).
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Let V = V0 ∪V1. For a vertex u ∈ V , let Eu and Eu be the sets of incoming and outgoing
edges to and from u, respectively. That is, Eu = (V × {u}) ∩E and Eu = ({u} × V ) ∩E. A
policy for a vertex u ∈ V , for u 6= s, is a function that partitions an incoming flow between the
outgoing edges. Formally, a policy for u is a function fu : IN→ INEu such that for every flow
x ∈ IN and edge e ∈ Eu, we have fu(x)(e) ≤ c(e) and

∑
e∈Eu

fu(x)(e) = min{x,
∑
e∈Eu

c(e)}.
Thus, fu(x) assigns to each edge outgoing from u a flow that is bounded by its capacity.
Also, when the incoming flow is larger than the capacity of the outgoing edges (which bounds
the outgoing flow), then flow is lost and the outgoing flow is lower than the incoming flow.
In practice, loss of flow may correspond to leaks – fluid in a pipe system that is lost when
the system is overflowed, to traffic that gets stuck – in jammed road systems, or to packets
that are thrown by routers all whose outgoing channels are filled. Note that this is different
from the traditional definition of flow in a network, which corresponds to the case all vertices
belong to Player 0, and in which the “flow conservation" property is respected. Note also
that fu(0)(e) = 0 for every e. For the source vertex s, a policy is a function fs ∈ INEs such
that for every edge e ∈ Es, we have fs(e) ≤ c(e).

A flow in a flow game is a function f ∈ INE that assigns to each edge the flow that travels
in it. We require that for every edge e ∈ Eu, we have f(e) ≤ c(e), and for every vertex u ∈ V ,
except for s and t, we have

∑
e∈Eu

f(e) = min{
∑
e∈Eu f(e),

∑
e∈Eu

c(e)}. That is, the flow
in each edge is bounded by its capacity, and the flow that leaves each vertex is the minimum
between the flow that enters the vertex and the sum of the capacities of edges outgoing
from it. We focus on the case where the graph 〈V,E〉 is acyclic. Then, given policies fu for
all vertices in u ∈ V , we can calculate the flow in the game as follows. First, we order the
vertices in a topological ordering. Then, we start from the vertex s (we ignore every vertex
preceding s), and use fs to assign a flow to each edge in Es. Now, we continue to the next
vertex in the topological ordering. Whenever we reach a vertex u, the incoming flow to u,
denoted x, has already been calculated. We then use fu(x) to assign a flow for each edge in
Eu, and continue along the topological ordering until we reach t. Since the flow that enters a
vertex u depends only on the sub-game that reaches u, it is easy to see that the calculation
above is independent of the topological ordering. Indeed, if u1 and u2 are not ordered, then
flow that leaves u1 does not reach u2, and vice versa.

A strategy for Player 0 is a collection of policies, one for each vertex in V0. Likewise,
a strategy for Player 1 is a collection of policies, one for each vertex in V1. Let F0 and F1
be the sets of all possible strategies of Player 0 and Player 1 respectively. Given strategies
α ∈ F0 and β ∈ F1, the flow in the game, denoted fα,β , can be calculated as described above.
The outcome of the game with strategies α and β is then the amount of flow that reaches the
target t. Thus, outcome(α, β) =

∑
e∈Et fα,β(e). The value of the game, denoted value(G),

is defined by maxα∈F0 minβ∈F1 outcome(α, β). That is, against every strategy of Player 0,
we take the most hostile strategy of Player 1, and the value is obtained by considering the
strategy of Player 0 that achieves the maximal flow no matter how Player 1 responds. Note
that since we quantify on the strategies of Player 1 universally, this corresponds to a setting
in which Player 0 proceeds first and determines the policies in all his vertices, and then
Player 1 responds by determining the policies in all his vertices.

3 Problem Complexity

In this section we study the complexity of the problem of finding the value of a flow game.
We consider the corresponding decision problem, which is parameterized by a threshold.
Formally, the input to the flow-game problem (FG problem, for short) is a flow game G and
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Figure 1 The circuit Cψ and the external-source flow game Gψ, for ψ = x ∨ (x̄ ∧ y) ∧ ((x ∧ ȳ) ∨
(y ∨ ȳ ∨ x̄)).

a threshold γ ∈ IN, and the goal is to decide whether value(G) ≥ γ.
We show that the problem is complete in ΣP

2 , namely the class of problems that can
be solved by a nondeterministic polynomial Turing machine that has an oracle to some
NP-complete problem.

I Theorem 2. The FG problem is ΣP2 -complete.

Proof. We start with the upper bound. Consider a flow game G and a threshold γ ∈ IN.
Strategies for Player 0 and Player 1 can be represented by polynomial-length strings. Given
a strategy α for Player 0, the problem of checking whether there is a strategy β for Player 1
such that outcome(α, β) < γ is in NP. Consequently, deciding whether there is a strategy α
for Player 0 such that for every strategy β for Player 1 we have outcome(α, β) ≥ γ, can be
done by a nondeterministic polynomial-time Turing machine with an NP oracle.

We continue to the lower bound and describe a reduction from QBF2: satisfiability
for quantified Boolean formulas with 2 alternations of quantifiers, where the most ex-
ternal quantifier is “exists". Let ψ be a Boolean propositional formula over the variables
x1, . . . , xn, y1, . . . , ym and let θ = ∃x1 . . . ∃xn∀y1 . . . ∀ymψ. Also, let X = {x1, . . . , xn},
X̄ = {x̄1, . . . , x̄n}, Y = {y1, . . . , ym}, Ȳ = {ȳ1, . . . , ȳm}, Z = X ∪ Y , and Z̄ = X̄ ∪ Ȳ . We
construct a flow game Gθ such that the value of Gθ is 1 if θ holds and is 0 otherwise.

We assume that ψ is given in a positive normal form, that is, ψ is constructed from the
literals in Z ∪ Z̄ using the Boolean operators ∨ and ∧, and that there is k ≥ 1 such that
every literal in Z ∪ Z̄ appears in ψ exactly k times. Clearly, every Boolean propositional
formula can be converted with only a quadratic blow-up to an equivalent one that satisfies
these conditions.

We first translate ψ into a Boolean circuit Cψ with k(2n + 2m) inputs – one for each
occurrence of a literal in ψ. For example, in Figure 1, on the left, we describe Cψ for
ψ = x ∨ (x̄ ∧ y) ∧ ((x ∧ ȳ) ∨ (y ∨ ȳ ∨ x̄)). Each gate in Cψ has fan-in 2 and fan-out 1. We
say that an input assignment to Cψ is consistent if it corresponds to an assignment to the
variables in Z. That is, for each variable z ∈ Z, there is a value b ∈ {0, 1} such that all the k
inputs that correspond to the literal z have value b and all the k inputs that correspond to
the literal z̄ have value b̄. If the input to Cψ is consistent then Cψ computes the value of ψ
for the corresponding assignment.

Now, we translate Cψ to an external-source flow game Gψ = 〈V0, V1, E, c, t〉: a flow game
in which there is no source vertex, and an input flow is given externally. Formally, some of
the edges in E have an unspecified source, to be later connected to edges with an unspecified
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target. The idea behind the translation is as follows: The capacities in Gψ are all 1. Each
OR gate in Cψ induces a vertex v0 in V0 that has in-degree 2 and out-degree 1. Thus, if the
incoming flow in each incoming edge to v0 is 0 or 1, then its outgoing flow is 1 iff at least one
of its incoming edges has flow 1. Then, each AND gate in Cψ induces a vertex v1 in V1 that
has in-degree 2 and out-degree 2, yet, one of the two edges that leaves v1 leads to a sink.
Accordingly, if the incoming flow in each incoming edge to v1 is 0 or 1, then the outgoing
flow in the edges that does not lead to the sink is 1 in all the policies for v1 iff both incoming
edges have flow 1. For example, the Boolean circuit Cψ from Figure 1 is translated to the
external-source flow game Gψ to its right.

The following lemma can be proved by an induction on the structure of ψ.

I Lemma 3. Consider a Boolean formula ψ and its corresponding external-source flow
game Gψ.
1. Given input flows to Gψ, if we increase some input flow, then the new value of the game

is greater than or equal to the original value.
2. Given input flows in {0, 1} to Gψ, the value of the game is equal to the output of Cψ with

the same input. Thus, if the input flows to Gψ corresponds to a consistent input to Cψ,
then the value of Gψ is the value of ψ for the corresponding assignment.

We complete the reduction by constructing the flow game Gθ, which uses Gψ as a sub-game.
As can be seen in Figure 2, the game Gθ has a source s that can direct flow to a layer of
variable vertices – vertices associated with the variables in Z. The existentially quantified
variables, namely these in X, are associated with V0 vertices, and the universally quantified
ones, namely these in Y , are associated with V1 vertices. The source s can direct 2k units of
flow to each variable vertex. The third layer of the game consists of literal vertices: each
variable vertex dz has two successors, associated with the literals z and z̄. Vertices associated
with literals in X ∪ X̄ are in V1, whereas these associated with literals in Y ∪ Ȳ in V0. The
edges from a variable vertex to its literal vertices have capacity 2k. Intuitively, the structure
of the game, together with Lemma 3, imply that optimal strategies for both players directs all
the 2k units that enter a variable vertex dz into one of its literal vertices, which corresponds
to a choice between z and z̄. Consequently, there is a correspondence between the outgoing
flow from the variable vertices and assignments to the variables, which induces an input to
Cψ. Each outgoing edge from a literal vertex enters an input of Cψ that corresponds to this
literal.

In the full version we describe the game Gθ for the case ψ = (x ∨ y) ∧ (x̄ ∨ ȳ), and prove
that the value of Gθ is 1 if θ holds and is 0 otherwise. J

Note that from the proof of Theorem 2 we can also conclude that the FG problem is
ΣP2 -hard already for flow games in which the capacities of the edges are 1. Indeed, we can
change the reduction so that in the game Gθ, an edge with capacity d is replaced by d parallel
edges with capacity 1.

A natural question that arises is whether we can efficiently find an approximated solution
for the FG problem. In particular, we say that a solution x is a δ-approximation for the
value of a flow game G if xδ ≤ value(G) ≤ δ · x. As we now show, finding an approximated
solution to the FG problem is not easier than finding an exact solution. Formally, we have
the following.

I Theorem 4. It is ΣP2 -hard to approximate the FG problem within any multiplicative factor.

Proof. The reduction used for proving the ΣP
2 lower bound in the proof of Theorem 2 is

such that the value of the flow game Gθ is 1 if θ holds and is 0 otherwise. Thus, deciding
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Figure 2 The game Gθ.

whether the value of a flow game is 0 or 1 is already ΣP
2 -hard. Since every algorithm that

approximates the solution of the problems within a multiplicative factor can determine
whether the value of the game is positive or is 0, then approximated solution amounts to a
precise solution, and is therefore ΣP2 -hard. J

3.1 Feasible Cases

We describe a variant of the problem as well as a structural restriction on games for which
the FG problem can be solved efficiently.

Swallowing Flow. A most hostile environment is one that simply swallows all flow that
reaches vertices it controls. That is, flow that reaches V1 is lost. It is easy to analyze flow
games in this setting, as they coincide with traditional networks in which the vertices in V1
are eliminated. Indeed, Player 0 should avoid sending flow to vertices in V1. It follows that
maximal flow in this setting can be found in polynomial time. A variant of this setting is
one in which there is a bound on the flow that Player 1 can swallow in each vertex. It is not
hard to see that this variant can be reduced to our model by adding an edge to a sink from
each vertex of Player 1. The capacity of the edge is the amount of flow that Player 1 can
swallow in the vertex.

Tree Flow Games. Let G = 〈V0, V1, E, c, s〉 be a flow game without a target vertex. Let
V = V0 ∪ V1. Assume that the directed graph 〈V,E〉 is a tree, namely, the in-degree of every
vertex in V \ {s} is 1. The goal of Player 0 is to maximize the flow that enters the leaves of
the tree. In the full version we show that if the out-degree of every vertex is bounded by a
constant then the FG problem can be solved in polynomial time. Essentially, the value of a
game from a vertex u can be expressed as a min-max expression over the possible values of
the games that start from the successors of u, which enables the formulation of the problem
by means of dynamic programming. When the out-degrees of the vertices are constants, the
latter can be solved in polynomial time.
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4 No-Loss Flow Games

Recall that when the incoming flow is larger than the capacity of the outgoing edges, then
flow is lost and the outgoing flow is lower than the incoming flow. Sometimes it is desirable
to find a strategy of Player 0 such that for every strategy of Player 1, there is no loss of flow.
We call such a strategy of Player 0 a no-loss strategy. Formally, α ∈ F0 is a no-loss strategy
if for every strategy β ∈ F1, there is no vertex u ∈ V such that the flow that enters u in fα,β
is larger than the sum of the capacities of the edges that leave u. Thus, for all vertices u ∈ V
except for s and t, we have

∑
e∈Eu

fα,β(e) =
∑
e∈Eu fα,β(e).

No-loss strategies are required in applications in which the authority cannot tolerate loss
of traffic and is willing to reduce the flow in order to ensure no loss. For example, when it
involves leaks of hazards or loss of crucial packets in a communication network. The trivial
strategy, where the flow is 0, is clearly a no-loss strategy. In this section we study optimal
no-loss strategies, namely no-loss strategies that ensure a maximal flow. Given a flow game
G, let nl_value(G) denote the value of the G when the strategy of Player 0 is restricted to
strategies that ensure no loss.

Recall that in Theorem 2 we showed that deciding whether value(G) ≥ 1 is ΣP2 -complete.
We start with some good news and show that if Player 0 is restricted to no-loss strategies, the
problem can be solved in polynomial time. In order to prove this, we first define reachability
games.

Consider a graph 〈V,E〉, source and target vertices s, t ∈ V , and a partition V0 ∪ V1 of V .
The reachability game on 〈V0, V1, E, s, t〉 is played between Player 0 and Player 1 as follows.
Initially, a token is placed on s. Then, in each step, if the token is placed on a vertex u ∈ V0
(respectively, u ∈ V1), then Player 0 (respectively, Player 1) chooses a successor vertex v,
namely v such that 〈u, v〉 ∈ E, and moves the token to v. A strategy of Player 0 (respectively
Player 1) maps each vertex u ∈ V0 (respectively, u ∈ V1) that is neither t nor a sink to a
successor vertex v. A pair of strategies, α for Player 0 and β for Player 1, induces a unique
path, denoted outcome(α, β), to be traversed by the token when the players follow their
strategies. When the graph is acyclic, the path is finite and Player 0 wins if the path reaches
t. Otherwise, the path reaches a sink and Player 1 wins. A winning strategy for Player 0 is a
strategy α such that for every strategy β of Player 1, the path outcome(α, β) reaches t. it is
well known that the problem of deciding the winner in a reachability game can be solved in
linear time and is PTIME-complete [23].

I Theorem 5. Consider a flow game G. Deciding whether nl_value(G) ≥ 1 can be done in
linear time and is PTIME-complete.

Proof. We reduce the problem of deciding whether a flow game G = 〈V0, V1, E, c, s, t〉
satisfies the requirement nl_value(G) ≥ 1 to the problem of deciding the reachability
game G′ = 〈V0, V1, E, s, t〉, and reduce the reachability game for G′ to the problem of
deciding whether a flow game G = 〈V0, V1, E, c, s, t〉 in which all capacities are 1 satisfies
nl_value(G) ≥ 1. The upper and lower bounds then follow from known complexity of
reachability games. In both reductions, a no-loss strategy for Player 0 in G is related with a
strategy for Player 0 in G′. Essentially, the successor vertex to which the flow of 1 is going
to be directed in a no-loss strategy is the successor vertex to which the token is going to be
moved, and vice versa. The details of the reductions can be found in the full version. J

While deciding whether a positive outcome can be achieved by a no-loss strategy can be
done in polynomial time, calculating the no-loss value of the game is not easier than in the
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general case. Formally, in the no-loss flow game problem (NLFG problem, for short) the input
is a flow game G and a threshold γ ∈ IN, and the goal is to decide whether nl_value(G) ≥ γ.

I Theorem 6. The NLFG problem is ΣP2 -complete.

Proof. The upper bound is similar to the case where loss is allowed. Indeed, given a strategy
α for Player 0, the problem of checking whether there is a strategy β for Player 1 such that
there is loss or that outcome(α, β) < γ is in NP, which implies membership in ΣP

2 for the
NLFG problem.

For the lower bound, we show that the reduction from QBF2 described in the proof of
Theorem 2 can be manipulated to address no-loss strategies. Essentially, this is done by
replacing all sinks by a single vertex in which loss is possible, but may be avoided when the
formula is satisfiable. The details of the reduction are described in the full version. J

5 Non-Integral Flow Games

Recall that the capacities in the network are integral and that a policy for a vertex can
assign only integral flows. Integral-flow games arise naturally in settings in which the objects
we transfer along the network cannot be partitioned into fractions, as is the case with cars,
packets, and more. Moreover, sometimes, as in cases of messages or other information
packages, objects can be partitions up to a known granularity. It is easy to see that by
multiplying all capacities by factor γ and solving an integer-flow game in the obtained game,
we get a solution that involves strategies with fractions of 1

γ in the original game. Sometimes,
however, as in the case of liquids, flow can be partitioned arbitrarily. In the traditional
one-player setting, it is known that when the capacities are integral, then there exists an
integral maximum flows. In this section we study an extension of the setting and allow
strategies to use flows in IR. We show that, interestingly, the game setting makes these
strategies stronger, in the sense that partitioning outgoing flows into reals may enlarge the
value of the game. Moreover, the gain cannot be bounded by a constant.

Consider a flow game G = 〈V0, V1, E, c, s, t〉. Let IR+ denote the set of non-negative real
numbers. A non-integral policy for a vertex u 6= s is a function fu : IR+ → IREu

+ such that
for every flow x ∈ IR+ and edge e ∈ Eu, we have fu(x)(e) ≤ c(e) and

∑
e∈Eu

fu(x)(e) =
min{x,

∑
e∈Eu

c(e)}. Likewise, a non-integral policy fs for the source s is a function in IREs
+ .

Thus, non-integral policies allow non-integral flows. We say that a strategy is a non-integral
strategy if it contains non-integral policies. We use ni_value(G) to denote the non-integral
value of G, namely the value when the players are allowed to use non-integral strategies. We
first show that Player 0 can benefit from using non-integral strategies:

I Theorem 7. There is a flow game G such that an optimal strategy for Player 0 in G must
be non-integral even when Player 1 is restricted to integral strategies. Thus, ni_value(G) >
value(G).

Proof. Consider the flow game appearing in Figure 3 on the left. Consider the non-integral
strategy α that assigns an outgoing flow of 2 to 〈s, u〉 and partitions the incoming flow to
v0 equally between 〈v0, v1〉 and 〈v0, v2〉. It is not hard to see that for every strategy β for
Player 1, we have that outcome(α, β) ≥ 1.5. Indeed, the sum of the incoming flows to v1 and
v2 is 2, implying that there is loss of flow in at most one of these vertices. Since the flow
from v0 to both v1 and v2 is at most 0.5, then the loss is at most 0.5. On the other hand,
if Player 0 is restricted to integral strategies, then an outcome of more than 1 cannot be
ensured, as once Player 0 has chosen his strategy and directs 2 units to u, Player 1 can cause
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Figure 3 A FG in which Player 0 benefits from non-integral strategies (left) and its amplification
(right).

a loss of 1 by choosing a policy in u that directs 1 to v0 and directs 1 to the vertex (v1 or v2)
to which Player 0 directs the incoming flow of 1 to v0. J

In the non-integral flow game problem (NIFG problem, for short) the input is a flow game
G and a threshold γ ∈ IR+, and the goal is to decide whether ni_value(G) ≥ γ. We consider
also the no-loss non-integral flow game problem (NLNIFG, somewhat shorter), where we
consider non-integral strategies that also ensure no loss of flow.

The reduction from QBF2 described in Theorem 2 holds also for these new settings.
Indeed, by Lemma 3, the optimal strategies of the players would result in integral input to
Gψ. Hence, the following theorem.

I Theorem 8. The NIFG and NLNIFG problems are ΣP2 -hard. The NIFG problem is also
ΣP2 -hard to approximate within any multiplicative factor.

Theorem 8 only gives a lower bound for the problem. The upper bound for the FG
problem relied on the fact that integer strategies have a polynomial representation, which
cannot be applied in the NIFG problem. Moreover, since reals are second-order creatures,
the problem may be undecidable. We leave the decidability problem open and describe, in
Section 6, a decidable variant. A natural question is whether an algorithm that solves the
FG problem (for integral strategies) approximates the solution for the case of non-integral
strategies. As we show in the following theorem, such an approximation cannot be bounded
by a constant factor.

I Theorem 9. For all n > 1, there is a flow game Gn s.t. value(Gn) = 1 and ni_value(Gn) ≥
n.

Proof. We amplify the construction used in the proof of Theorem 7. Recall that there, we
showed that the flow game in Figure 3 on the left has value 1 and has non-integral value 1.5.
The amplification involves two ideas: we parameterize the branching degree of v0 and we
use a recursion that involves sub-games for which a smaller ratio between the value and the
non-integral value is known.

Let G be a flow game such that value(G) = 1 and ni_value(G) = k, for k > 1, and assume
that 2k is an integer. For example, in the game presented in Figure 3 on the left, we have
k = 1.5. We construct a flow game G′ such that value(G′) = 1 and ni_value(G′) = 2k − 1.
By repeating the construction logarithmically many times, we obtain the required flow game
Gn.

Consider the game G. Let d1 and d2 be the outgoing flow from the source in an optimal
strategy and a non-integral strategy of Player 0 in G, respectively. Let d be an integer greater
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than d1 and d2. We define the new game G′ as shown in Figure 3 on the right. The game G′
contains G twice as a sub-game: the incoming edge to G enters its source and the outgoing
edge from G leaves its target. In a flow game on G′, the maximum flow to the vertex u
that Player 0 can ensure with an integral strategy is 2. Hence, value(G′) = 1. Allowing
non-integral strategies, the maximum flow to the vertex u that Player 0 can ensure is 2k,
making ni_value(G′) = 2k − 1. J

6 Dynamic Flow Games

In our definition of flow games, the players choose their strategies before the game starts.
The universal quantification on the strategies of Player 1 implies that this is equivalent to
a scenario in which Player 0 chooses a strategy and then Player 1 chooses a strategy. In
dynamic flow games we refer to the way information flows in the graph and let the players
choose policies in a vertex only after flow travels in the subgraph from which the vertex is
reachable. Since the graph is acyclic, this is well defined.

Formally, we first order the graph in a topological ordering such that V0 vertices appear,
whenever possible, before V1 vertices. That is, we fix a topological ordering ≤ such that if
there is neither a path from u ∈ V0 to v ∈ V1 nor from v to u then u ≤ v. Now, Player 0
chooses a flow for each outgoing edge of s. Then, we follow the order ≤ and for each vertex
u, the player that controls u directs the incoming flow to the outgoing edges. Thus, instead
of choosing a strategy that describes the behavior for each possible incoming flow for each
vertex u, the player just chooses how to direct the incoming flow, and he has information on
the flow in edges whose source precedes u in ≤. The value of the game is the maximal flow
to t that Player 0 can ensure.

Note that the dynamic setting is not equivalent to the non-dynamic (original) one. For
example, the value of the flow game in Figure 3 is 1 (and is 1.5 when we allow non-integral
strategies), whereas the dynamic setting leads to a value of 2. The flow game in Figure 3
suggests that the information about “earlier” flow helps Player 0 to use integral flows. Indeed,
coming to decide the flow from vertex v0, Player 0 already known which of v1 and v2 have
already received 1 flow unit. As we show in the full version, however, the information may
not be sufficient in general, and Player 0 can benefit from using non-integral strategies.

The ΣP2 lower bounds described in Sections 3 and 4 apply also for the dynamic setting.
On the positive side, the dynamic setting enables a formulation of the problem by means
of the first-order theories of integral addition or real addition, making the related decision
problems decidable for both integral and real flows [15, 14].

7 Discussion and Future Work

Today’s computing environment involves parties that should be considered adversarial. This
calls for a re-examination of classical algorithmic problems. We introduced and studied flow
games, which capture settings in which the authority can control the flow only in part of the
vertices in a flow network. Below we discuss possible extensions of our work as well as open
problems we have left for future research.
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7.1 Extensions
Evacuation. An evacuation flow game is G = 〈{s}, V1, E, c, s, t〉. Thus, all vertices except
for the source belong to Player 1.4 As explained in Section 1, an evacuation flow game
corresponds to scenarios in which the authority has no control on how flow travels on the
network [25]. Solving the FG problem in an evacuation flow game amounts to finding a
strategy for Player 1 that minimizes the flow.

Beyond the clear practical applications, it is interesting to study the computational
aspects of the evacuation problem. As it refers only to one player, and thus involves no
alternation of quantification, there is hope the problem can be solved in polynomial time,
possibly by a reduction to a prioritized variant of the maximal-flow problem. The latter
is strongly related to several weighted variants of the max-flow problem. In particular,
polynomial solutions are known for the min-cost max-flow problem [34] and to max-flow with
lexicographically ordered edges problem [26].

A Classical Algorithmic Game-Theory Examination. Beyond the questions we studied for
FGs, the game setting calls for a classical algorithmic game-theory examination: existence
of a Nash equilibrium, stability inefficiency, and many more. We plan to study them for
multiplayer flow games, where the vertices of the network are partitioned between some k > 1
players, there are k target vertices, and the objective of each player is to direct as much flow
as possible to her target vertex. For example, in a communication network controlled by
several companies (that is, vertices correspond to routers owned by the companies), each
company wants to maximize the number of messages from its source to target vertices, and
we want to find the best Nash equilibria or design networks for which this equilibria is close
to the social optimum.

Partially Specified Networks. In some cases, a strategy is known for some vertices and we
need to find an optimal strategy for the others. For example, in hybrid networks, where
some vertices are new SDN routers whose behaviour can be controlled, and the other vertices
run known traditional routing protocols (e.g., route via the shortest path) [3]. As another
example, consider the case where each time that a driver reaches an uncontrolled vertex,
it randomly chooses an outgoing edge with free capacity. In this case, we need to find a
strategy that maximizes the expected flow to the target.

7.2 Open Problems
Recall that a maximum flow in a flow game may involve non-integrals even when all capacities
are integrals. While we settle the complexity of flow games for strategies that only use
integrals, decidability for the setting in which strategies may use non-integrals is open. One
approach to obtain decidability and analyze flow games with non-integral strategies is to
approximate their value with integral strategies. While such an approximation cannot be
bounded by a constant multiplicative factor (Theorem 9), we conjecture that it can be
bounded by a linear additive factor. In particular, we conjecture that for every flow game
G, we have that ni_value(Gn) ≤ value(Gn) + |E|, where the intuition is that a non-integral

4 Recall that we define a flow game with s ∈ V0. Alternatively, we could have defined an evacuation flow
game as one in which all vertices are in V1 and parameterize the game with an initial flow that enters s.
Indeed, saturating the edges from s is a dominating strategy for Player 0, so Player 0 does not really
take decisions even when s ∈ V0.
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flow in G should not exceed flow in the game obtained from G by increasing all capacities
by 1. Another approach would be to find a granularity to which it would be sufficient to
break an integral flow. Our efforts in this direction so far reveal some counter-intuitive facts.
For example, flow games are not local monotonic: increasing the flow that enters a vertex
may cause a decrease in the flow directed by an optimal strategy to one of its outgoing
edges. Also, the required granularity is not continuous, in the following sense: for every
k ≥ 1, we can generate a FG such that an optimal strategy that can break the flow into
the fractions 1

2 ,
1
3 , . . . ,

1
k−1 achieves the same flow achieved by an optimal strategy that only

uses integrals, yet breaking the flow into the fraction 1
k improves this flow. Also, while we

know that non-integral strategies may be better than integral ones, we do not know whether
strategies that use rational numbers are as good as strategies that use real ones.
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works.
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