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Abstract
We give an elementary combinatorial proof of Bass’s determinant formula for the zeta function
of a finite regular graph. This is done by expressing the number of non-backtracking cycles of
a given length in terms of Chebyshev polynomials in the eigenvalues of the adjacency operator
of the graph. A related observation of independent interest is that the Ramanujan property of
a regular graph is equivalent to tight bounds on the number of non-backtracking cycles of every
length.
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1 Introduction

1.1 Ramanujan graphs and Non-backtracking Cycles
For a fixed d ≥ 3, a family Gn of d-regular n-vertex connected graphs is said to be an
expander family if the second largest eigenvalues of the corresponding adjacency matrices
are uniformly bounded away from d. It is easy to show (using a simple application of the
probabilistic method) that a random d-regular graph family is an expander family with high
probability. The question as to how small the second largest eigenvalue can get is answered
by the Alon-Bopanna bound [16]: For fixed d ≥ 3, the second largest eigenvalue, in absolute
value, is at least 2

√
d− 1 − on(1). The occurrence of the term 2

√
d− 1 in this setting is

related to it being the spectral radius of (the adjacency operator of) the universal cover of a
d-regular graph (which is the infinite d-regular tree).

I Definition 1. For d ≥ 3, a finite connected d-regular graph G is said to be Ramanujan if
every eigenvalue µ ∈ R of the adjacency matrix A of G with |µ| 6= d satisfies

|µ| ≤ 2
√
d− 1

In other words, a family of Ramanujan graphs is the "optimal" expander family in light of the
Alon-Bopanna lower bound. Ramanujan graphs were defined and explicitly constructed by
Lubotzky, Phillips and Sarnak [11] for d−1 being a prime, and extended by Morgenstern [14]
for d− 1 being a prime power. Their constructions used deep results from modern number
theory (in particular a conjecture of Ramanujan which was later settled by Deligne et al).
However, the existence (leave alone explicit constructions) of Ramanujan graph families for
general d ≥ 3 remained open for a long time until Marcus, Spielman and Srivastava [13]
used the method of interlacing polynomials to establish the existence of bipartite Ramanujan
families for every d ≥ 3. For a broad survey of Ramanujan graphs, expander families and
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46:2 A Combinatorial Proof of Ihara-Bass’s Formula for Regular Graphs

their applications, the reader is referred to Murty’s monograph [15] and the survey by Hoory,
Linial and Wigderson [6].

The Ramanujan property (or more generally, the spectrum of the adjacency matrix) of a
graph is reflected in the error term in the number of closed walks on the graph of a given
length. More precisely, suppose d = µ0 ≥ µ1 ≥ · · · ≥ µn−1 ≥ −d are the n eigenvalues of an
n-vertex d-regular graph. Then we know that for every k ≥ 1, Tr(Ak) = dk +

∑n−1
j=1 µ

k
j is

precisely the number of closed walks of length k on G. We can express this succinctly using
Jacobi’s identity:

1
det(I −At) =

n−1∏
j=0

1
1− µjt

= exp

( ∞∑
k=1

Tr(Ak) t
k

k

)

Now if |µj | ≤ 2
√
d− 1 for every 1 ≤ j ≤ n− 1, then the number of closed walks of length k

in G is dk (or roughly a 1/n fraction of the total number ndk of walks of length k), and with
a small error term of O(n2kdk/2).
As we shall soon see in more detail, a stronger connection between the Ramanujan property
and closed walks on the graph reveals itself when we restrict the closed walks to be non-
backtracking. An instance of backtracking is said to occur in a walk when a traversed edge is
followed immediately by its reversal. Let Nk denote the number of non-backtracking cycles
of length k on G. We can construct an analogous generating function for {Nk}k≥1 as:

exp

( ∞∑
k=1

Nk
tk

k

)

As it so happens, the above formal series can also be expressed as the inverse of a polynomial
det(I − Ht) where H is the Hashimoto non-backtracking walk matrix of G, which is the
adjacency matrix of the oriented line digraph of G. This formal series is called the Ihara
zeta function of the graph, denoted ζG(t).

1.2 Zeta functions and Riemann Hypotheses
In the 158 years since Bernard Riemann published his seminal work "On the Number of
Primes Less Than a Given Magnitude", there have been several generalizations of the
Riemann zeta function in various settings. Broadly speaking, a zeta function is a complex
function which when expressed as an appropriate series, yields a coefficient sequence that
counts "objects" of a given "weight" assembled from an underlying set of building blocks or
"primes". For instance, the Riemann zeta function corresponds to a Dirichlet series where
the coefficient of 1/ks counts the number of positive integers (constructed using the primes
of Z as building blocks) of absolute value k (which in this case is trivially 1 for every k ∈ N).
The utility of a zeta function arises from the fact that many interesting properties of the un-
derlying structure can be inferred from the zeros and poles of the corresponding zeta function.

The precursor to the zeta function of a graph, as we know it today, is the Selberg zeta
function of a Riemannian manifold. For a hyperbolic surface M = Γ/H, the Selberg zeta
function γM (s) is an Euler product over the set of all primitive closed geodesics of M . The
zeros and poles of the Selberg zeta function appear in the Selberg trace formula, which
relates the distribution of primes with the spectrum of the Laplace-Beltrami operator of the
surface. This line of study was further extended by Ihara [7] to obtain a p-adic analogue of
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the Selberg trace formula, opening up further avenues for the study of geodesic zeta functions
in discrete settings. The idea of considering closed geodesics as primes inspired the work
of Hashimoto [5], Hyman Bass [2], Kotani and Sunada [9] to study the analogous notion in
the discrete setting of a finite graph, using the prime cycle classes of the graph in place of
primitive geodesics. We shall construct the zeta function of a graph in this way in section 2.
Just like the Selberg zeta function is related to the spectrum of the Laplace-Beltrami operator
of the surface, it is natural to ask if its discrete analogue, the Ihara zeta function of a graph,
is related to the spectrum of the Laplacian matrix of the graph. This is precisely the result
of Bass [2] who gives an elegant expression for the Ihara zeta function of a graph G = (V,E)
as follows:

I Theorem 2 (Bass). For a finite connected graph G = (V,E),

ζG(t) = 1
(1− t2)|E|−|V |det(I − tA+ (D − I)t2)

where A is the adjacency matrix of G and D is the diagonal matrix of degrees of the vertices
of G, or in other words, D = diag(A~1).

In particular, if G is a d-regular connected graph, then

ζG(t) = 1
(1− t2)|E|−|V |det(I − tA+ (d− 1)t2)

This immediately tells us what the poles of the Ihara zeta function are. The significance
of these poles arises from a surprising analogue of the classical Riemann hypothesis in
our present context. The classical Riemann hypothesis for the Riemann zeta function ζ(t)
states that every non-trivial zero of ζ(t) lies on the line Re(z) = 1/2 in the complex plane.
Analogues of the Riemann hypothesis can be formulated for other zeta functions too. For
instance, the Riemann hypothesis for curves over finite fields states that every zero of the
Hasse-Weil zeta function for a projective curve over a finite field Fq is of absolute value
exactly 1/√q. It is interesting to note that while the classical Riemann hypothesis remains
elusive, the Riemann hypothesis for finite fields has been proved, and is one of the crowning
achievements of twentieth-century mathematics.

It is natural to ask if there is an appropriate formulation of a Riemann hypothesis for the
Ihara zeta function, and what it means for the graph. Recall that a d-regular graph G is
Ramanujan if for every eigenvalue µ ∈ R of the adjacency matrix of G with |µ| 6= d satisfies
|µ| ≤ 2

√
d− 1. Combining this with Bass’s determinant formula for the zeta function of G,

if can be easily shown [15] that

I Lemma 3 (Riemann Hypothesis for graphs). A d-regular graph G is Ramanujan iff every
pole λ ∈ C of ζG(t) such that |λ| 6= 1 and |λ| 6= (d− 1)−1 satisfies

|λ| = 1√
d− 1

1.3 Proof Sketch
There exist several proofs [9] [17] of theorem 2, and most proofs start by expressing the
zeta function in terms of not the adjacency matrix A of G, but the adjacency matrix H of
the oriented line digraph of G (the Hashimoto non-backtracking walk matrix). After all,
ζG(t)−1 = det(I −Ht), and so the problem reduces to expressing det(I −Ht) in terms of
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46:4 A Combinatorial Proof of Ihara-Bass’s Formula for Regular Graphs

the adjacency matrix A. We shall briefly sketch the standard proof in the next section once
we have the preliminaries in place. There also exists another purely combinatorial proof by
Foata and Zeilberger [4] employing the algebra of Lyndon words.

In this paper, we shall see an elementary proof of theorem 2 for the special case when G
is d-regular. While the assumption of regularity is certainly a limitation, it allows for a more
transparent combinatorial proof. The basic idea is outlined as follows:

We use the fact that the zeta function ζG(t) has an expansion of the form

ζG(t) = exp

( ∞∑
k=1

Nk
tk

k

)

where for k ∈ N, Nk is the number of non-backtracking cycles in G of length k. This is
explored in section 2.
While an expression for Nk is not immediate, a natural starting point is the study
of non-backtracking walks on G. We can construct the family {Ak}k∈Z≥0 of n × n

matrices such that for every k ∈ Z≥0 and every v, w ∈ V , (Ak)v,w is the number of
non-backtracking walks on G of length k from v to w. We shall discuss the construction
of these non-backtracking walk matrices in section 3.
While it might be tempting to claim that Nk = Tr(Ak), unfortunately that is not the
case! However, while they may not be equal, they are indeed precisely related. In section
4, we develop a combinatorial lemma to relate Nk and Tr(Ak). This expression, while
simple, could prove useful and is of independent interest.
The combinatorial lemma greatly simplifies the problem since Tr(Ak) is well-understood
in terms of the eigenvalues of A and a family of orthogonal polynomials called the
Chebyshev polynomials. We shall put these ingredients together in section 5 to arrive at
Bass’s determinant formula.

Essentially, the main contribution of this paper is a proof of following lemma:

I Lemma 4. Let G be a finite, connected d-regular graph on n vertices, and suppose
d = µ0 ≥ µ1 ≥ · · · ≥ µn−1 ≥ −d are the n real eigenvalues of its adjacency matrix A. Let
Nk be the number of non-backtracking cycles of length k on G. Then

Nk =


n−1∑
j=0

2(d− 1)k/2Tk

(
µj

2
√
d−1

)
if k is odd

n(d− 2) +
n−1∑
j=0

2(d− 1)k/2Tk

(
µj

2
√
d−1

)
if k is even

where Tk is the k-th Chebyshev polynomial of the first kind.

While the above expression is easy to derive given Bass’s determinant formula for the zeta
function, our proof proceeds in the other direction: by establishing this expression first
and then using it to derive Bass’s determinant formula using the generating function for
Chebyshev polynomials of the first kind.

An interesting consequence of the above formula for Nk is an interpretation of the
summand corresponding to the trivial eigenvalue d of G. Using a standard explicit formula
for the polynomial Tk given by

Tk(x) =
{

cos (k arccosx) if |x| ≤ 1
1
2 (x−

√
x2 − 1)k + 1

2 (x+
√
x2 − 1)k if |x| > 1
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we can compute Tk(d/2
√
d− 1) to get

Tk

(
d

2
√
d− 1

)
= (d− 1)k + 1

So if G is non-bipartite, we get

Nk =


(d− 1)k + 1 +

n−1∑
j=1

2(d− 1)k/2Tk

(
µj

2
√
d−1

)
if k is odd

(d− 1)k + 1 + (d− 2) +
n−1∑
j=1

(
(d− 2) + 2(d− 1)k/2Tk

(
µj

2
√
d−1

))
if k is even

In particular, when G is Ramanujan,

Nk =
{

(d− 1)k + 1 +O(ndk/2) if k is odd
(d− 1)k + 1 + (d− 2) +O(ndk/2) if k is even

It is known that Tk is an odd function when k is odd, and an even function when k is even.
So when G is bipartite,

Nk =


0 if k is odd

2(d− 1)k + 2 + 2(d− 2) +
n−2∑
j=1

(
(d− 2) + 2(d− 1)k/2Tk

(
µj

2
√
d−1

))
if k is even

and in particular when G is a bipartite Ramanujan graph,

Nk =
{

0 if k is odd
2(d− 1)k + 2 + 2(d− 2) +O(ndk/2) if k is even

It is interesting to ask what these dominant terms represent. It is known [12] that the number
of cyclically reduced words of length k in a free group of rank m is exactly (2m−1)k + 1 when
k is odd, and (2m− 1)k + 2m− 1 when k is even. So if G were a Cayley graph of a group Γ
and a symmetric generating set S (without involutive elements) of size d, then consider the
walks on G corresponding to a choice of root and a cyclically reduced word over S of length k.
The total number of such walks is n

(
(d− 1)k + 1

)
if k is odd, and n

(
(d− 1)k + 1 + (d− 2)

)
if k is odd. If G is non-bipartite, we would expect a 1/n fraction of these walks to return
to the root (that is, become non-backtracking cycles). If G is bipartite, then for even k, we
would expect a 2/n fraction of these walks to be non-backtracking cycles (as there are now
only n/2 candidates for the end vertex). These quantities are precisely the ones that appear
as the dominant terms in the expressions for Nk.
So the Ramanujan property (or the graph Riemann hypothesis) implies that the number Nk
of non-backtracking cycles is close to the expected value, with optimally tight error term.

2 Preliminaries

2.1 Non-backtracking cycles and the Ihara Zeta Function
For an integer d ≥ 2, let G = (V,E) be a finite d-regular undirected graph with adjacency
matrix A. A walk on the graph G is a sequence v0v1 . . . vk where v0, v1, . . . , vk are (not
necessarily distinct) vertices in V , and for every 0 ≤ i ≤ k − 1, (vi, vi+1) ∈ E. The vertex v0
is referred to as the root (or origin) of the above walk, vk is the terminus of the walk, and
the walk is said to have length k.

FSTTCS 2017



46:6 A Combinatorial Proof of Ihara-Bass’s Formula for Regular Graphs

It is often useful to equivalently define a walk as a sequence of directed or oriented edges.
Associate each edge e = (v, w) ∈ E with two directed edges (or rays) denoted

~e = (v → w) and ~e−1 = (w → v)

Note that the origin org(~e) is the vertex v and its terminus ter(~e) is the vertex w. Similarly,
the origin org(~e−1) is the vertex w and its terminus ter(~e) is the vertex v. Let ~E denote the
set of m = nd directed edges of G. So a walk of length k can equivalently be described as a
sequence ~e1~e2 . . . ~ek of k (not necessarily distinct) oriented edges in ~E such that for every
1 ≤ i ≤ k − 1, ter(~ei) = org(~ei+1). This is a walk that starts at org(~e1) and ends at ter(~ek).
It is easy to show that for any k ∈ N, the number of walks of length k between vertices
u, v ∈ V is exactly (Ak)u,v. In particular, the total number of closed walks of length k in G
is exactly Tr(Ak).

I Definition 5. A non-backtracking walk of length k from v0 ∈ V to vk ∈ V is a walk
v0v1 . . . vk such that for every 1 ≤ i ≤ k − 1, vi−1 6= vi+1. Equivalently, a non-backtracking
walk of length k from v ∈ V to w ∈ V is a walk ~e1~e2 . . . ~ek such that org(~e1) = v, ter(~ek) = w

and for every 1 ≤ i ≤ k − 1, ~ek+1 6= ~e−1
k .

I Definition 6. A non-backtracking cycle of length k with root v is a non-backtracking closed
walk v, v1, v2, . . . , vk−1, v with the additional boundary constraint that v1 6= vk−1.

Non-backtracking random walks (NBRW) on graphs have been studied in the context of
mixing time [1], cut-offs [10], and exhibit more useful statistical properties than simple
random walks (SRW).

Let C denote the set of all non-backtracking cycles in G, and for C ∈ C, let |C| denote the
length of the cycle C. There are two elementary constructions we can carry out to generate
more elements of C from a given cycle C:

Powering: Given a non-backtracking cycle C ∈ C of length k of the form C = ~e1~e2 . . . ~ek
and m ≥ 1, define the power

Cm = ~e1 . . . ~ek.~e1 . . . ~ek . . . ~e1 . . . ~ek︸ ︷︷ ︸
m times

which is the concatenation of the string of edges corresponding to the walk C with itself
m times. Note that Cm is also a non-backtracking cycle in G of length mk. Essentially,
Cm represents the walk obtained by repeating or winding the walk C m times. Also note
that C and Cm are both rooted at the same vertex. A cycle P ∈ C shall be called a prime
cycle if there exists no element C ∈ C and m ≥ 2 such that P = Cm. Essentially, a prime
cycle in C is one that is not a repeated winding of a simpler cycle in C. Note that every
element of C is either a prime or a prime power.
Cycle Equivalence: Given a non-backtracking cycle C ∈ C of length k of the form
C = ~e1~e2 . . . ~ek, we can form another walk C(2) = ~e2~e3 . . . ~ek~e1 which is also a non-
backtracking cycle in G of length k, but now rooted at the origin of the directed edge ~e2
(or the terminus of ~e1). More generally, for 1 ≤ j ≤ k, define

C(j) = ~ej~ej+1 . . . ~ek~e1~e2 . . . ~ej−1

which is a cyclic permutation of the walk C obtained by choosing a different root. So given
a cycle C ∈ C of length k, we get k− 1 additional cycles in C of length k for free this way.
In fact, this defines an equivalence class ∼ on C, and the set [C] = {C(1), C(2), . . . , C(k)}
is called the equivalence class of C. An element [C] ∈ C/ ∼ represents a non-backtracking
cycle modulo a choice of root.
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We can now formally define the zeta function of the graph G. For simplicity, let us
assume that G is connected and does not have any leaves (or vertices of degree 1).

I Definition 7. Let P denote the set of equivalence classes of prime non-backtracking cycles
in G. The Euler product∏

[P ]∈P

1
1− t|P |

is called the Ihara zeta function of the graph G, denoted ζG(t).

Let Nk denote the number of non-backtracking cycles in G of length k. Then observe that
∞∑
k=1

Nk
tk

k
=

∑
prime P

1
|P |

( ∞∑
m=1

tm|P |

m

)
= −

∑
[P ]∈P

log (1− t|P |)

Thus,

ζG(t) =
∏

[P ]∈P

1
1− t|P |

= exp

( ∞∑
k=1

Nk
tk

k

)

Just like the number of cycles in G of length k is Tr(Ak), we can describe the number Nk
of non-backtracking cycles in G of length k as the trace of the matrix Hk where H is the
Hashimoto non-backtracking walk matrix of G defined as follows: H ∈ Cdn×dn with

Hi,j =
{

1 if ~ej 6= ~e−1
i and ter(~ei) = org(~ej)

0 otherwise

In other words, the entry Hi,j is an indicator for whether the oriented edge ~ei feeds into the
oriented edge ~ej allowing us to form a non-backtracking walk ~ei~ej of length 2. Note that
unlike A, the Hashimoto matrix H is not a symmetric matrix, and hence it need not have all
real eigenvalues and an associated orthonormal eigenbasis. The interested reader is referred
to [10] where the authors work out the precise eigendecomposition of the Hashimoto matrix
H.
It is clear that for every k ∈ N ,

Nk = Tr(Hk)

and so

ζG(t) = exp

( ∞∑
k=1

Tr(Hk) t
k

k

)
= exp (−Tr (log (I − tH)))

By Jacobi’s formula relating the trace of the logarithm of a matrix to the logarithm of its
determinant, we get

ζG(t) = 1
det(I −Ht)

In particular, this establishes the rationality of the Ihara zeta function of a regular graph,
and further implies that the reciprocal ζG(t)−1 is a polynomial in t over Z of degree at
most m = nd. However, it is not immediate what the spectrum of H is. Thus, in a sense,
Bass’s determinant formula for regular graphs can be interpreted as a way to determine the

FSTTCS 2017
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spectrum of the Hashimoto matrix H in terms of the spectrum of the adjacency matrix A.
Now that we have defined the Hashimoto non-backtracking walk matrix H, we shall briefly
sketch a previous proof of Bass’s determinant formula (from [8]) involving expressing both
the matrix H and the adjacency matrix A in terms of two directed edge incidence matrices
S and T and a backtracking matrix B defined as follows: For a directed edge (u→ v) and a
vertex w ∈ V , define

Sw,(u→v) =
{

1 if u = w

0 otherwise
T(u→v),w =

{
1 if v = w

0 otherwise

Note that S is an n× dn edge incidence matrix that indicates the origin or starting vertex of
the directed edge, while T is a dn× n edge incidence matrix that indicates the terminating
vertex of the directed edge. It can be checked that

A = ST

H = TS −B

SBT = dI

where B is a dn× dn backtracking indicator matrix defined as

B(u→v),(w→z) =
{

1 if v = w and u = z

0 otherwise

Now that A and H are related through S, T and B, standard matrix manipulation would
suffice to show that

det(I −Ht) = (1− t2) dn
2 −ndet

(
I −At+ (d− 1)t2

)
In fact, this proof works even when the graph G is not regular. However, the linear-algebraic
calculations, though simple, tend to mask the underlying combinatorial structure.

2.2 Non-backtracking Walks and Chebyshev Polynomials
Just like (Ak)v,w counts the total number of walks on G from v to w (with backtrackings) of
length k, we can construct a family

A0, A1, A2, A3, . . .

of n × n matrices over C such that the value (Ak)v,w is the number of non-backtracking
walks on G from v to w of length k. This family {Ak}k∈N can be inductively defined using
powers of A as follows:

A0 = I and A1 = A

A2 = A2 − dI
For k ≥ 3,

Ak = Ak−1A− (d− 1)Ak−2

The recurrence relation above can be used to easily show that the ordinary (matrix) generating
function for the above sequence, with some mild abuse of notation, is

∞∑
k=0

tkAk = 1− t2

I −At+ (d− 1)t2
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The generating function above is closely related to the generating function of a well-studied
family of orthogonal polynomials. Consider the family of Chebyshev polynomials {Uk}k≥0 of
the second kind, which are univariate complex polynomials defined by the recurrence

U0(x) = 1 and U1(x) = 2x

and for k ≥ 2,

Uk(x) = 2xUk−1(x)− Uk−2(x)

and with generating function
∞∑
k=0

Uk(x)tk = 1
1− 2xt+ t2

It can be shown [3] that for every k ≥ 2,∑
0≤j≤k/2

Ak−2j = (d− 1)k/2Uk

(
A

2
√
d− 1

)

and so by taking trace on both sides we get

∑
0≤j≤k/2

Tr(Ak−2j) = (d− 1)k/2
n−1∑
j=0

Uk

(
µj

2
√
d− 1

)

where

d = µ0 ≥ µ1 ≥ · · · ≥ µn−1 ≥ −d

are the n eigenvalues of the adjacency matrix A. Thus we have an expression for the
trace of Ak as a polynomial in the eigenvalues of A. This approach is used in the seminal
work of Lubotzky, Phillips and Sarnak in their construction of Ramanujan graphs [11],
and for a more detailed exposition of Chebyshev polynomials and non-backtracking walks
on regular graphs, the reader is referred to the monograph by Davidoff, Sarnak and Valette [3].

While (Ak)v,w counts the number of walks on G from vertex v to vertex w without
backtracking, observe that the diagonal element (Ak)v,v does not count the number of
non-backtracking cycles of length k rooted at v. This is because (Ak)v,v also counts walks of
the form ~e1~e2 . . . ~ek where ~ei+1 6= ~e−1

i for any 1 ≤ i ≤ k− 1 but ~ek = ~e−1
1 . That is, ~e1~e2 . . . ~ek

is non-backtracking as a walk from v to v, but when considered as a closed walk, the two
end edges form a backtracking and is hence not a non-backtracking cycle! Such an instance
of a backtracking that gets overlooked in Tr(Ak) shall be referred to as a tail.
So Tr(Ak) counts the number of closed walks of length k that could have at most 1 tail (and
hence does not count the non-backtracking cycles of length k). Denote Tr(Ak) by Mk. In
the following section, we shall establish a simple but useful combinatorial lemma relating
Mk with Nk.

3 The Combinatorial Lemma

Firstly it is clear that N1 = N2 = 0. For k ≥ 3, we can count the number Mk of tailed
non-backtracking, closed walks of length k based on the length of the tail as illustrated below:

FSTTCS 2017
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A tailless, non-backtracking closed walk of length k, and there are Nk of them.
A tailless, non-backtracking closed walks of length k − 2 and a tail of length 1. Since the
root is fixed and there are d− 2 choices for the tail (and consequently, the new root), the
number of non-backtracking closed walks of length k with a tail of length 1 is (d−2)Nk−2.
A tailless, non-backtracking closed walks of length k − 4 and a tail of length 2. In this
case the first vertex of the tail can be chosen in d− 2 ways, and the next vertex (the new
root) can be chosen in d− 1 ways. So the number of non-backtracking closed walks of
length k with a tail of length 2 is (d− 1)(d− 2)Nk−4.

More generally, for 2 ≤ r ≤ bk/2c, the number of non-backtracking closed walks of length k
with a tail of length r is (d− 1)r−1(d− 2)Nk−2r.

Thus for every k ≥ 3,

Mk =Nk + (d− 2)Nk−2 + (d− 2)(d− 1)Nk−4 + (d− 2)(d− 1)2Nk−6

+ · · ·+ (d− 2)(d− 1)b
k−1

2 c−1Nk−2b k−1
2 c

While this expression looks cumbersome, observe that

Mk −Nk = (d− 2)
(
Nk−2 + (d− 1)Nk−4 + · · ·+ (d− 1)b

k−1
2 c−1Nk−2b k−1

2 c

)
and a straightforward summation shows that

b k−1
2 c∑
j=1

Mk−2j = Nk−2 + (d− 1)Nk−4 + · · ·+ (d− 1)b
k−1

2 c−1Nk−2b k−1
2 c
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I Lemma 8. For every k ≥ 3,

Nk =
{
Mk − (d− 2)(Mk−2 +Mk−4 + · · ·+M1) if k is odd
Mk − (d− 2)(Mk−2 +Mk−4 + · · ·+M2) if k is even

4 The Bass Determinant Formula

From the combinatorial lemma established in the previous section and the linearity of trace,
we get

Nk =
{
Tr (Ak − (d− 2)(Ak−2 +Ak−4 + · · ·+A1)) if k is odd
Tr (Ak − (d− 2)(Ak−2 +Ak−4 + · · ·+A2)) if k is even

Recall that∑
0≤j≤k/2

Ak−2j = (d− 1)k/2Uk

(
A

2
√
d− 1

)

So for odd k

Ak − (d− 2)(Ak−2 +Ak−4 + · · ·+A1)
= (Ak +Ak−2 + · · ·+A1)− (d− 1)(Ak−2 +Ak−4 + · · ·+A1)

= (d− 1)k/2Uk

(
A

2
√
d− 1

)
− (d− 1)k/2Uk−2

(
A

2
√
d− 1

)
Similarly for even k,

Ak − (d− 2)(Ak−2 +Ak−4 + · · ·+A2)
= (Ak +Ak−2 + · · ·+A2)− (d− 1)(Ak−2 +Ak−4 + · · ·+A2)

= (d− 1)k/2Uk

(
A

2
√
d− 1

)
− (d− 1)k/2Uk−2

(
A

2
√
d− 1

)
+ (d− 2)I

As it so happens, the polynomial

Uk(x)− Uk−2(x) = 2Tk(x)

where Tk(x) is called the Chebyshev polynomial of the first kind of order k. The Chebyshev
polynomials of the first kind are defined in a way very similar to the Chebyshev polynomials
of the second kind:

T0(x) = 1

T1(x) = x

and for k ≥ 2,

Tk(x) = 2xTk−1(x)− Tk−2(x)

It is easy to show that Tk(x) has a generating function
∞∑
k=0

Tk(x)tk = 1− xt
1− 2xt+ t2
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It is convenient to express Nk in terms of Chebyshev polynomials of the first kind as follows:

Nk =

Tr
(

2(d− 1)k/2Tk

(
A

2
√
d−1

))
if k is odd

Tr
(

2(d− 1)k/2Tk

(
A

2
√
d−1

)
+ (d− 2)I

)
if k is even

This simplifies to

Nk =


n−1∑
j=0

2(d− 1)k/2Tk

(
µj

2
√
d−1

)
if k is odd

n(d− 2) +
n−1∑
j=0

2(d− 1)k/2Tk

(
µj

2
√
d−1

)
if k is even

The generating function for Nk is given by
∞∑
k=1

Nkt
k = n(d− 2)(t2 + t4 + t6 + . . . ) +

∞∑
k=1

tk

n−1∑
j=0

2(d− 1)k/2Tk

(
µj

2
√
d− 1

)
= n(d− 2)(t2 + t4 + t6 + . . . ) +

n−1∑
j=0

(
2− µjt

1− µjt+ (d− 1)t2 − 2
)

= n(d− 2) t2

1− t2 +
n−1∑
j=0

µjt− 2(d− 1)t2

1− µjt+ (d− 1)t2

Thus,

N1 +N2t+N3t
2 + · · · = n(d− 2) t

1− t2 +
n−1∑
j=0

µj − 2(d− 1)t
1− µjt+ (d− 1)t2

While this expression does not seem very elegant stated this way, observe that the derivative
of 1− t2 is −2t, and the derivative of 1− µjt+ (d− 1)t2 is −µj + 2(d− 1)t. Rewriting the
above expression to highlight this observation,

N1 +N2t+N3t
2 + · · · = −n(d− 2)

2
−2t

1− t2 −
n−1∑
j=0

−µj + 2(d− 1)t
1− µjt+ (d− 1)t2

This suggests that we could integrate both sides to obtain

N1t+N2
t2

2 +N3
t3

3 + . . . = −n(d− 2)
2 log (1− t2)−

n−1∑
j=0

log (1− µjt+ (d− 1)t2)

= −
(
nd

2 − n
)

log (1− t2)− log

n−1∏
j=0

1− µjt+ (d− 1)t2


= −(|E| − |V |) log (1− t2)− log
(
det(I −At+ (d− 1)t2)

)
Now since we know that the Ihara zeta function ζG(t) has the expression

ζG = exp

(
N1t+N2

t2

2 +N3
t3

3 + . . .

)
we now have the familiar determinant formula for the zeta function in terms of the adjacency
matrix:
I Theorem 9 (Bass’s determinant formula). Let d ≥ 3 and G = (V,E) be a d-regular connected
graph with adjacency matrix A. Then

ζG(t) = (1− t2)|V |−|E|

det(I −At+ (d− 1)t2)
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