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—— Abstract

We present novel algorithms solving the satisfiability problem and the model checking problem

for Visibly Linear Dynamic Logic (VLDL) in asymptotically optimal time via a reduction to
the emptiness problem for tree automata with Biichi acceptance. Since VLDL allows for the
specification of important properties of recursive systems, this reduction enables the efficient
analysis of such systems.

Furthermore, as the problem of tree automata emptiness is well-studied, this reduction enables
leveraging the mature algorithms and tools for that problem in order to solve the satisfiability
problem and the model checking problem for VLDL.
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1 Introduction

Visibly Linear Dynamic Logic (VLDL) [24] is an expressive formalism for specifying properties
of recursive systems that allows for an intuitive and modular specification of an important
subclass of context-free properties. Although there exist tight bounds on the asymptotic
complexity of the satisfiability and the model checking problem for VLDL properties [24],
the upper bounds for both problems are witnessed by algorithms that rely on an intricate
reduction of the problems to the emptiness problem for visibly pushdown automata [2], for
which tool support is lacking.

We present novel reductions of the problems of VLDL satisfiability and VLDL model
checking to the emptiness problem for tree automata [20], yielding asymptotically optimal
algorithms for both problems. Moreover, as the emptiness problem for tree automata reduces
to the problem of solving two-player games with perfect information [15], which is of great
importance in the fields of program verification and program synthesis and enjoys mature
tool support, the algorithms yielded by our reductions allow us to leverage this tool support
for solving the problems of VLDL satisfiability and VLDL model checking.

VLDL is an extension of Linear Temporal Logic (LTL) [16], the de-facto standard for
the specification of properties of non-recursive systems. Although popular, it is lacking in
expressivity, as it cannot even express all w-regular properties. The logic VLDL addresses
this shortcoming by guarding the temporal operators of LTL with visibly pushdown automata
(VPAs) [2]. A VPA is a pushdown automaton that operates over a fixed partition of the

* Supported by the project “TriCS” (ZI 1516/1-1) of the German Research Foundation (DFG).
t A full version of the paper is available at [23], https://arxiv.org/abs/1708.00699.

© Alexander Weinert;
37 licensed under Creative Commons License CC-BY
37th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science

(FSTTCS 2017).
Editors: Satya Lokam and R. Ramanujam; Article No. 47; pp.47:1-47:14

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany


http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2017.47
https://arxiv.org/abs/1708.00699
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

47:2

VLDL Satisfiability and Model Checking via Tree Automata

input alphabet into calls, returns, and local actions, and has to push (pop) a symbol onto
(off) its stack whenever it reads a call (return). Upon processing local actions, the automaton
must not touch the stack. Due to this extension, VLDL characterizes exactly the visibly
pushdown languages over infinite words [24].

A VLDL formula can be compiled into an equivalent VPA over infinite words of exponential
size [24]: First, the VLDL formula is translated into a one-way alternating jumping automaton
(1-AJA) [5], an automaton without stack that is able to jump from a call to its matching
return. This automaton is then transformed into a VPA of exponential size [5]. Since each
visibly pushdown automaton is a classical pushdown automaton, the emptiness problem for
VPAs is decidable in polynomial time [2]. The translation from 1-AJAs to VPAs, however,
is quite involved, as it handles a far more complex model than is needed for the translation
of VLDL formulas into 1-AJAs, thus hampering efforts towards an implementation of the
translation from VLDL to VPAs. This effort is further encumbered by the scant availability
of emptiness checkers and of model checkers for pushdown systems.

In this work, we introduce novel algorithms solving both the emptiness problem and
the model checking problem for VLDL formulas in asymptotically optimal time using a
translation of VLDL formulas to nondeterministic tree automata with Biichi acceptance. The
technical core of this translation is formed by an encoding of words over visibly pushdown
alphabets into trees that is adapted from the encoding of such words given by Alur and
Madhusudan [2], as well as by a translation of the 1-AJAs constructed from VLDL formulas
into tree automata using an adaptation of the breakpoint-construction by Miyano and
Hayashi [14] in order to remove alternation and obtain a nondeterministic automaton. We
then check satisfiability of a VLDL formula by checking the resulting tree automaton for
emptiness. For model checking a visibly pushdown system against a VLDL specification, we
translate the negation of the specification as well as the visibly pushdown system into tree
automata, which we subsequently intersect and check for emptiness.

Thus, we reduce both the satisfiability and the model checking problem for VLDL to
the emptiness problem for nondeterministic tree automata with Biichi acceptance. Hence,
we reduce the complex formalism of VLDL to the simple model of nondeterministic tree
automata. Moreover, since the problem of tree automata emptiness reduces to that of solving
Biichi games, which is efficiently solvable [7, 17] and enjoys mature tool support [9, 10],
our novel reductions enable efficient implementations of satisfiability checkers and of model
checkers for VLDL.

Related Work. There exist a number of logics other than VLDL that characterize the class
of visibly pushdown languages over infinite words, most prominently Visibly Linear Temporal
Logic (VLTL) [6], a fixed-point logic [5], and monadic second order logic augmented with
a binary matching predicate (MSO,,) [2]. We focus here on the logic VLDL, as it most
naturally extends the concepts used by LTL [16], the de-facto standard for the specification
of non-recursive properties.

Moreover, there exist tools for model checking recursive systems, e.g., BEBOP [3, 4] and
MOPED [18, 19]. These tools are, however, no longer under active development, and have, to
the best of our knowledge, not found widespread adoption. In combination with the intricate
translation of 1-AJAs into VPAs, this motivates the development of the novel translation of
VLDL formulas into tree automata presented in this work.

A number of problems have been reduced to the emptiness problem for tree automata, as
such automata are a natural model for capturing the branching-time behavior of systems [15].
Moreover, the theory of tree automata is well-studied, with the most famous result being
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equivalence of tree automata and monadic second order logic of two successors [21, 25].
Finally, the emptiness problem for tree automata with Biichi acceptance reduces to the
problem of solving two-player Biichi games with perfect information [8]. Such games can be
solved efficiently [17] and, since Biichi games are a special case of parity games, there exist
mature solvers for them [9, 10].

Our Contributions. Firstly, in Section 3 we adapt the tree-encoding of words over visibly
pushdown alphabets introduced by Alur and Madhusudan [2] to our setting and show that
the resulting trees are recognizable by a tree automaton with Biichi acceptance condition in
Theorem 1.

Secondly, in Section 4, we show how to construct tree automata recognizing the encodings
of all words satisfying a given VLDL formula in Theorem 2. Moreover, we show that the
resulting automaton is of exponential size! measured in the size of the original formula and
that this translation yields an asymptotically optimal algorithm for satisfiability checking of
VLDL formulas.

Finally, in Section 5 we provide a translation of visibly pushdown systems into tree
automata recognizing the encodings of all traces of the system. When combining this with
the results from Section 4, we obtain an asymptotically optimal algorithm for model checking
visibly pushdown systems against VLDL specifications. This result is given in Theorem 6.

2 Preliminaries

In this section we introduce the basic notions used in the remainder of this work, namely
(nondeterministic) visibly pushdown automata and related concepts [2].

2.1 Visibly Pushdown Languages

A pushdown alphabet Y= (X, 2., Y) is a partition of an alphabet 3 into calls ¥, returns
3., and local actions ¥;. We write w and « for finite and infinite words, respectively, and
inductively define the stack height sh(w) reached by any automaton after reading w as
sh(e) = 0, sh(wc) = sh(w) + 1 for ¢ € ¥, sh(wr) = max{0, sh(w) — 1} for r € X,, and
sh(wl) = sh(w) for | € ¥;. Let o = apayaz - - - be a finite or infinite word. We say that a call
a; € X at some position 7 of o is matched if there exists a position j > ¢ such that o; € X,
and sh(ag---aj—1) = sh(ag--- ;) and call the return at the smallest such position j the
matching return of ¢. If no such j exists, we call ¢ an unmatched call. If «; is a matched
call with o as its matching return, we call the infix a;41 - - ;1 of o the nested infix of
position i. A word is well-matched if it does not contain a return that is not a matching
return. Well-matched words may, however, contain unmatched calls.

A visibly pushdown system (VPS) S = (Q, EN], T, A, qr) consists of a finite set @ of states,
a pushdown alphabet Y= (¢, 3r, %), a stack alphabet T', which contains a stack-bottom
marker L, a transition relation A C (Qx XX Qx (T\{L}))U(Qx X, xT'xQ)U(QxX; xQ),
and an initial state g; € Q. A configuration (g,~) of S is a pair of a state ¢ € @ and a stack
content v € I'. = (I'\{L})*- L. The VPS S induces the configuration graph Gs = (Q xT'., E)
with E C ((Q xT¢) x ¥ x (@ xT.)) and ((¢,7),a,(¢’,7")) € E if and only if either ()
a € X, (q,a,¢,A) € A, and Ay =+, (i) a € &, (q,a,L,¢") € Ay and v =+ = L, (i)

1 Throughout this work, we say that f(x) is exponential in z if there exist a constant ¢ and a polynomial p
such that f(z) = P@.
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a €, (q,a0,A,¢) e AN, A# 1, and vy =AY/, or (iv) a € 5y, (¢,a,¢') € A, and y=4". A
run ™ = (qo,Y0) -+ (qn,¥n) of S on w = wp---w,_1 € X* is a sequence of configurations
where g = g1, 70 = L, and where ((¢;, Vi), Wi, (¢i+1,7i+1)) € E in Gs for all ¢ € [0;n — 1].
Infinite runs of S on infinite words are defined analogously. We define traces(S) as the set of
all infinite words « for which there exists a run of S on «a.

2.2 \Visibly Linear Dynamic Logic

Let P be a finite set of atomic propositions and let Y= (3¢, 2, %) be a partition of ¥ = 2%,
The syntax of Visibly Linear Dynamic Logic (VLDL) [24] is defined by the grammar

e=pl-eleAploVel| el ™Ay,

where p € P and 2 ranges over testing visibly pushdown automata (TVPA) over the fixed
alphabet ¥. A TVPA 2 = (Q,i,F,A,qI,QF,t) consists of a VPS § = (Q,i,F,A,qI), a
set of final states Qr C @, and a function ¢ mapping states to VLDL formulas over 3.
We define || = |Q] + |T'| and |¢| as the sum of |cl(¢)| and the sum of the sizes of the
automata contained in ¢, where cl(p) is the set of all subformulas of ¢, including those
contained as tests in automata and their subformulas. We require this subformula-relation
to be non-circular. A run of 2 on a finite word w is a run of the underlying VPS S on w.
Such a run is accepting if its final state is in Qp.

Let ¢ be a VLDL formula, let o = apayas -+ - € 3% and let i € N be a position in . We
define the semantics of ¢ in the straightforward way for atomic propositions and for Boolean
connectives. Furthermore, we define

(a,1) E () if there exists j > i s.t. (i,7) € Ra(a) and (a, ) E ¢,

(o, 1) = [~ if for all j >4, (4,)) € Ra(a) implies (o, ) = o,
with Ro(a) = {(4,7) € Nx N | Jacc. run (go,00) - (¢j—i,0j—;) of Aon ;- --cj_1 and
VEk €105 —1]. (o, i+ k) = t(gr)}. We write o = ¢ as a shorthand for (a,0) = ¢ and say that
« is a model of ¢ in this case. The language of ¢ is defined as L(p) = {a € Z¥ | a | ¢}.
If L(p) # 0, we say that o is satisfiable.

2.3 Tree Automata

Let B = {0,1} and let ¥ be an alphabet. A X-tree ¢ is a mapping ¢: B* — X. We call a
finite word b € B* a node and an infinite word S € B“ a branch. Given a node b, we call the
nodes b0 and bl the left- and right-hand children of b. Analogously, we call the trees rooted
at the left- and right-hand children of b the left- and right-hand subtrees of b, respectively.
Moreover, b is the parent of both b0 and b1. The node ¢ is the root of t. As each node b is
associated with the unique path from the root of the tree to b, we say that a node b’ is on
the path to b if b’ is a prefix of b. Similarly, we say that a branch § contains a node b if b is
a prefix of 8. If t(b) = a, we say that b is labeled with a. Moreover, given a tree ¢t and a
node b, we define the sub-tree t‘b of t rooted at b by t‘b(b’) = t(bb').

A tree automaton (with Biichi acceptance) T = (Q, %, A, q7, QF) consists of a finite set
of states @), an alphabet X, a transition relation A C Q x ¥ X @ X @, an initial state q; € @,
and a set of accepting states Qr C Q. A run r of ¥ on a X-tree ¢ is a Q-tree with r(¢) = ¢
and (r(b),t(b), r(b0),r(bl)) € A for all b € B*. A branch of r is accepting if it contains
infinitely many nodes b with 7(b) € Q. A run is accepting if all of its branches are accepting,
while an automaton ¥ accepts a tree t if there exists an accepting run of ¥ on t. The
language L(T) of ¥ is defined as the set of all trees accepted by T. A set of trees is regular
if there exists a tree automaton recognizing it. We define |¥| = |@Q|. Tree automata are
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if ce 3. and r is
matching return of ¢

if c € 3. and

st(ca) =
(ca) ¢ is unmatched

st(cwra) = / \

st(ra) st(w)

st(za) = /x\ ifreXux,
st(a) st(e)

Figure 1 Definition of st: ¥¥ UX* — Tx, .

closed under intersection via an adaptation of the product-construction for the intersection
of automata on words. Hence, for tree automata %;,%To there exists a tree automaton ¥

with |T] € O(|F1]|T2|) such that £(T) = £(T1) N L(T).

3 Stack Trees

Alur and Madhusudan showed how to encode words over some visibly pushdown alphabet
as trees by “folding away” the nested infixes of calls into subtrees, thus moving a matched
call and its matching return next to each other in the resulting tree [2]. In this section, we
slightly adapt their encoding in order to simplify our construction of tree automata later on
in Section 4. In that section, we construct for each VLDL formula ¢ a tree automaton that
accepts precisely the encodings of words satisfying ¢.

For the remainder of this work, we fix some finite set P of atomic propositions and a
pushdown alphabet Y= (3¢, B, 3) as a partition of 27, Let a € ¢ be an infinite word and
define ¥, = XU {1}, where L is some fresh symbol. Intuitively, every node in the resulting
3| -tree either denotes one position of «, or it is labeled with the special symbol L. Formally,
we define the function st mapping finite and infinite words over ¥ to infinite X | -trees in
Figure 1. At every matched call, we encode its matched infix and the suffix starting at
and including its matched return in the right- and left-hand subtrees, respectively. At an
unmatched call, we encode the infinite suffix of the word starting at the symbol succeeding
the call in the right-hand subtree. If the current letter is not a call, we encode the suffix
starting at the current letter’s successor in the left-hand subtree. All vertices not encoding a
symbol of « are labeled with L.

A ¥ -tree t is a stack tree if t = st(«) for some o € 3%, We define the set of all stack
trees over X as st(X¥) = {st(a) | @ € ¥}

» Theorem 1. The set st(3) is regular.

Proof. We first introduce some notation. Let ¢t be a X, -tree. We say that a node b is
a matched call if t(b) € 3. and ¢(b0) € X,. Similarly, the node b0 is a matched return
if t(b) € X.. If all calls and returns in ¢ are matched, we say that ¢ is well-matched. In
contrast to the notion of well-matched words, we demand that a well-matched tree does not
contain unmatched calls. Furthermore, we call a branch g finite in ¢ if it eventually only
contains 1 -labeled vertices. Otherwise, we call 8 infinite in ¢. Moreover, we call a tree finite
if all of its branches are finite.

We claim that a ¥ -tree ¢ is a stack tree if and only if ¢(g) # L, if there exists a single
branch that is infinite in ¢, and if the following properties hold true for all b € B*:
1. If ¢(b) = L, then ¢(b0) = ¢(bl) = L,
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7’ J_ ~
/ c \ 1 1 1
1 l
4 A} 4 A}
’ \ s \
’ N 4 N
Figure 2 Encoding of a = lclrcl - - -, where the second occurrence of ¢ is unmatched. The cardinal

branch of st(a) is marked in green and doubly lined.

2. if t(b) € 3, then

a. if b is matched, then t| py is finite and well-matched, and

b. if b is unmatched, then ¢(b0) = L and t’ »p contains no unmatched returns, and
3. ift(b) € £, UL, then ¢(b1) = L.

Fach of these properties can be checked by a tree automaton. As tree automata are
closed under intersection, we can construct a single tree automaton that checks all of the
above properties. In the full version, we show that the conditions above indeed character-
ize st(X¢) [23]. <

From the proof of Theorem 1 we obtain that for each a € ¢, there exists a unique
branch 8 = bob1bs - -+ of st(«) such that st(«)(bo---b;—1) # L for each i € N. We call 8
the cardinal branch of st(a) and we call the positions of the symbols encoded along (3 the
cardinal positions of a.

We give an example of the tree-encoding of the word o = lclrel - - - over the alphabet Y=
(3, X, 2p) = ({c}, {r},{l}) in Figure 2. The positions 0, 1,3,4 are cardinal positions of «.
Moreover, if we assume the second c¢ in « to be unmatched, then the position 5 is a cardinal
position as well.

Recall that we defined sh(w) to be the stack height reached by any visibly pushdown
automaton after processing w € ¥*. Loding et al. defined the steps of a word @ = agayavg - - -
as those positions of « that reach a lower bound on the stack height reached during processing
the remainder of the word, i.e., steps(a) = {i | Vj > i.sh(ao--- ;) < sh(ag---aj)} [13].
This allows for an alternative characterization of cardinal positions: A position i is a cardinal
position of « if and only if it is either a step, or if «; is the matching return of some call
occurring at a step.

4 Reducing VLDL Satisfiability to Tree Automata Emptiness

We now reduce the problem of VLDL satisfiability to the emptiness problem for tree automata.
The former problem is formulated as follows: “Given some VLDL formula ¢, is ¢ satisfiable?”
We formalize the reduction of this problem to the emptiness problem for tree automata in
the following theorem:

» Theorem 2. For every VLDL formula ¢ there exists an effectively constructible tree
automaton T such that £(T) = st(L(p)) with |T| € O24¢l*).
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Due to this theorem, we obtain an algorithm that checks VLDL formulas for satisfiability
by first transforming a given formula ¢ into the tree automaton ¥ recognizing st(L(y)) and
subsequently checking £(%) for emptiness. Since tree automata can be checked for emptiness
in polynomial time [11, 17], the algorithm runs in exponential time in |¢|. As the problem of
deciding VLDL satisfiability is EXPTIME-hard [24], this algorithm is asymptotically optimal.

We split the proof of Theorem 2 into two parts: First, we transform a given VLDL
formula into an equivalent one-way alternating jumping automaton (1-AJA) [5] of polynomial
size. A 1-AJA is an alternating finite-state automaton on words that is able to “jump” from
calls to their matching return, skipping the nested infix. We describe this construction in
the proof of Lemma 3. In a second step, we transform the obtained 1-AJA 2l into a tree
automaton of exponential size that recognizes the stack trees of words recognized by 2A. We
describe this construction in the proof of Lemma 5.

Let us first define the above mentioned 1-AJA [5] formally. First, let Dirs = {—, ~},
where we use ~» to denote an arbitrary member of Dirs. Moreover, for a finite set ) and ~» €
Dirs, let Comms(Q) = Dirs x Q x Q and let BY(Comms(Q)) be the set of positive Boolean
formulas over Comms(Q). Note that BT (Comms(Q)) does not include the shorthands true
nor false. A 1-AJA (with Biichi acceptance) 2 = (Q, i, 0,qr, QF) counsists of a finite set of
states @), a visibly pushdown alphabet f], a transition function §: Q x ¥ — Bt (Comms(Q)),
an initial state ¢; € @, and a set of accepting states Qr C Q. We define || = |Q)|.

Intuitively, when such an automaton 2l is in state ¢ at position i of the word a =
apayag - -, it guesses a set of commands C C Comms(Q) such that C' |= (g, «;). It then
spawns one copy of itself for each command (~,¢—,q~) € C and executes the command
with that copy. If ~ = ~ and if «; is a matched call, the copy jumps to the position of the
matching return of «; and transitions to state ¢~ . Otherwise, i.e., if ~ = —, or if «; is not
a matched call, the automaton advances to position i + 1 and transitions to state ¢_,. All
copies of 2 proceed in parallel. The automaton 2l accepts a word if all of its copies it visit
accepting states infinitely often.

Formally, a run of 2 on an infinite word a@ = agajag - - - is an infinite directed acyclic
graph R = (V, E) with V C N x Q, where v; = (0,q7) € V and all v € V are reachable
from v;. We call vy the initial vertex of R and say that a vertex (i,q) € V is on level i of R.
We require that for each (,q) € V, there exists some C' C Comms(Q) such that C |= 6(g, «;)
and such that ((i,q), (4,¢")) € F if and only if (j,q’) = app(i, ¢) for some ¢ € C. To this end,
the command-application function app is defined as app(i, (~, ¢, 9~)) = (J,q~) if ~> =
and «; is a matched call with a; as its matching return, and app(i, (~, ¢-,q~)) = (i+1,¢-)
otherwise. We say that a vertex (i, q) is accepting if ¢ is accepting. Furthermore, a run R is
accepting if each vertex in R has at least one successor and if all infinite paths through R
starting in vy contain infinitely many accepting vertices.

In contrast to the classical definition of runs of alternating automata (without jumping
capability), an edge in a run of a 1-AJA does not characterize an advance by a single symbol.
Instead, there exist “long” edges that characterize the automaton skipping a nested infix.
Thus, there may exist positions ¢ such that a run of a 1-AJA on a word does not contain
any vertices of the form (7, ¢), since all copies of the automaton jump over position i. The
cardinal positions of a word «, however, serve as synchronization points of a run on «, as no
copy of the automaton is able to jump over such positions.

» Lemma 3. For every VLDL formula @ there exists an effectively constructible 1-AJA 2
such that L(A) = L(p) and such that |A| € O(|¢]*).

Proof. In earlier work, we constructed a 1-AJA with parity acceptance condition from a
given VLDL formula ¢ by induction over the structure of ¢ [24]. This more complicated
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acceptance condition allowed for complementation without a state-space-blowup in the
construction of an automaton equivalent to ¢ = —¢’. As we are now aiming for a 1-AJA
with a simpler acceptance condition, namely a Biichi condition, we adapt this previous
construction.

In order to prevent the costly complementation of 1-AJA (with Biichi acceptance), we
require ¢ to be in negation normal form (NNF), i.e., we assume that negations only occur
directly preceding atomic propositions. Should this not be the case, we can easily transform ¢
into NNF by “pushing down” negations along the syntax tree, using De Morgan’s law and
the duality —(2)p = [A]—¢. Note that this latter duality does not require complementation
of the automaton 2, hence it is applicable in constant time. We then construct 2(, equivalent
to ¢ inductively over the structure of ¢.

If o = p, o = —p, or p = pr0p, for o € {V, A}, we trivially obtain A, with |2,| = |2,| €
O(1) and |Ap, 00, | € O, | + |2y, |) due to closure of 1-AJA under these operations [5]. If
o = (A)¢’, we follow the same intuition as in the previous construction, i.e., we construct
the 1-AJA 2, such that a single copy of 2 jumps along the cardinal positions of the input-
word and spawns copies at every matched call in order to verify that the jumps taken
correctly summarize finite runs of 2 on the nested infix. Additionally, 2, spawns copies
verifying that the tests annotating the states along the simulated run hold true. Finally, A,
nondeterministically decides to transition into 2,s. The complete construction for this case
can be found in the full version of our previous work [24]. Although we constructed 1-AJAs
with parity acceptance condition in that work, this previous construction can easily be
adapted to use Biichi acceptance by making none of the states simulating 2l accepting in 2,
thus forcing the simulated run to eventually transition into 2.

If ¢ = [A]¢’, we obtain an automaton equivalent to ¢ via a dual construction to the
previous case ¢ = (A)¢’. We provide the detailed construction for this case in the full version
of this work [23]. <

Having translated VLDL formulas into 1-AJAs, we now show how to transform a given
1-AJA 2 into a tree automaton recognizing the stack trees of words from £(2(). To this
end, consider a run R of a 1-AJA 2 on some word « € 3¢, as illustrated on the left-hand
side of Figure 3. As stated above, the cardinal positions of the processed word serve as
synchronization points in the run of 2l on «: If 7 is a cardinal position of «, then there exist
no positions 7,5’ € N with j < ¢ < j/ such that R contains an edge from level j to level j'.
In other words, each infinite path starting in the initial vertex v; of R contains a vertex on
level i for each cardinal position i of a. Hence, we are able to decide whether or not R is
accepting by considering finite paths of R starting and ending in levels 7 and 4/, respectively,
where 7 and i’ are adjacent cardinal positions of «.

More formally, we demonstrate that the breakpoint construction of Miyano and
Hayashi [14] can be adapted to 1-AJAs. To this end, let R = (V, E) be a run of some 1-AJA
on some word. A breakpoint sequence over R is an infinite sequence of cardinal positions
0 =19 <141 <ig--- of a such that all finite paths in R starting on level 7; and ending on
level ;41 contain at least one accepting vertex. Each 7; in a breakpoint sequence is called a
breakpoint.

» Lemma 4. Let R be a run of a 1-AJA. The run R is accepting if and only if there exists
a breakpoint sequence over R.

Proof. First assume that there exists a breakpoint sequence 0 = ig,i1,49,... over R.
Then R is clearly accepting, as each infinite path 7 of R starting in v; is of the form 7 =
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Figure 3 Encoding of a run of a 1-AJA (left) into a run of a tree automaton (right). The states ¢
and g7 are accepting and marked in green. The positions 0, 1, and 3 are cardinal positions of a. We
have A, = {gs5}, A~ = {q7}, As = {¢5,q97}, and N, = N~ = N = {gs}. The set A is marked in
dark red, while the sets A_, and A~ are marked in light red. The set N is marked in blue.

VoMU T V2m2 - - -, Where each v;m;v;41 is a path from level ¢; to level 7;4;, hence v;m;v;41
contains at least one accepting vertex. Thus, 7 is accepting.

For the other direction, assume that R is accepting. We show the existence of a breakpoint
sequence inductively and begin by defining ig = 0. Now let 4g,...,%; be a finite prefix of
a breakpoint sequence and assume towards a contradiction that no cardinal position ;41
exists such that 4g,...,%;,%;41 is a prefix of a breakpoint sequence.

Consider the subgraph of R induced by removing those accepting vertices occurring on
levels greater than i; from R. Since for each cardinal position k, there exists a path from
some vertex on level i; to some vertex on level k that does not contain an accepting vertex,
this graph is infinite. Moreover, it is finitely branching, since it is a subgraph of the finitely

branching graph R. Due to Konig’s Lemma, the induced subgraph contains an infinite path.

Hence, there also exists an infinite path starting on level i; that does not contain
an accepting vertex, which contradicts R being accepting. Thus, there exists a cardinal
position 4,41 such that i, ..
exists a breakpoint sequence over R. |

.,%5,%j4+1 is a prefix of some breakpoint sequence. Hence, there

Given some 1-AJA 2(, we now construct a tree automaton that verifies that the input tree
is indeed a stack tree and, if this is the case, simulates a run of 2 on the word represented
by the input tree by keeping track of the set of states at each level. Moreover, it verifies the
existence of a breakpoint sequence, visiting an accepting state on the cardinal branch of the
processed tree every time the corresponding symbol is at a cardinal position of the input
word that can continue the prefix of the breakpoint sequence constructed so far. In order to
do so, we adapt the breakpoint construction by Miyano and Hayashi [14].

The key insight of this construction is that, given some breakpoint 4, the vertices of any
cardinal position j > ¢ can be partitioned into two sets A and N. The set A contains those
states such that each finite path from some vertex on level i to some vertex on level j visits
at least one accepting state, while IV contains the remaining vertices on level j. We illustrate
this partitioning on the left-hand side of Figure 3. If the set N is empty, then the position j
continues the breakpoint sequence constructed so far. We adapt this technique in order to
translate 1-AJA into tree automata by keeping track of the sets A and N along the cardinal
branch of the stack tree. Upon encountering a matched call at position ¢, the tree automaton
guesses the sets A and N reached at the next cardinal position j and verifies this guess when
processing the nested infix of position 1.
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» Lemma 5. For every 1-AJA A there exists an effectively constructible tree automaton ¥
such that £(T) = st(L(A)) with |T| € O(242).

Proof. We construct a tree automaton ¥’ such that £(T') Nst(X*) = st(L(2A)). Recall that,
due to Theorem 1, we obtain a tree automaton ¥s; with £(Tx) = st(X*). By intersecting T’
with ¥5 we subsequently obtain T with the properties stated above.

We have explained the behavior of the automaton ¥’ along the cardinal branch above.
It remains to take into account the effect of nested infixes on the states reached by 2 at
cardinal positions. To this end, we observe that each state reached at a cardinal position
is either reached by taking a jumping transition from the previous cardinal position, or by
taking a direct transition from the directly preceding position, i.e., from the last position of
the nested infix. Thus, when reading a matched call at position 4, the automaton ¥ guesses
sets A_,, N_, C @ that are reached eventually by copies of the automaton that process the
nested infix w of position 7. It moreover guesses sets A~ , N~ C @ that are reached by copies
of the automaton that jump over the nested infix of position i. The automaton then assumes
that the statesin A=A, UA~ and N = N_, UN,, are indeed reached by processing w and
by skipping over w and verifies the former guess while processing st(w), i.e., the right-hand
subtree of the matched call. The latter guess is verified using the transition function of 2.
We show an example of this encoding of a run of 2 as a run of ¥’ on the right-hand side of
Figure 3.

We use two kinds of states in order to implement this idea. States of the form (A, N),
where A and N partition a nonempty subset of () are used along the cardinal branch of the
processed stack tree, implementing the breakpoint construction. Furthermore, we use states
of the form ((A, N), (A, Ng)), where (A, N) as well as (Ag, Ng) are partitions of nonempty
subsets of @, in order to verify the guesses Ag and Ng about the effects of processing nested
infixes. Moreover, we use a sink-state ¢, in order to process subtrees labeled exclusively
with L.

The detailed construction of the tree automaton ¥ recognizing stack trees of words in £(2A)
can be found in the full version [23]. Correctness of ¥ follows from Lemma 4 and the above
arguments. Moreover, we indeed obtain || € O(24*). <

The proof of Theorem 2 follows from Lemma 3 and Lemma 5: Given a VLDL formula ¢, we
first construct the 1-AJA 2 with £(2) = L() as demonstrated in the proof of Lemma 3. The
automaton 2 is of size O(||*). We then construct the tree automaton T with £(T) = st(L(2))
as shown in the proof of Lemma 5. The automaton ¥ recognizes st(L(2)) = st(L(yp)) and is
of size O(24121) = O(241¢1%),

5 Reducing VLDL Model Checking to Tree Automata Emptiness

In the previous section we have reduced the problem of VLDL satisfiability checking to the
emptiness problem for tree automata. We now consider the problem of VLDL model checking,
which is formulated as follows: “Given a VPS S and a VLDL formula ¢, does traces(S) C L(p)
hold true?” We now reduce this problem to the emptiness problem for tree automata similarly
to the reduction of the satisfiability problem for VLDL to the same problem.

» Theorem 6. Let S be a VPS with state space Q and stack alphabet T' and let ¢ be a
VLDL formula. There exists an effectively constructible tree automaton T such that L(T) =
st(traces(S) N L(—p)) with |T| € O242F|Q)*|T))).

Proof. Recall that we can effectively construct a tree automaton -, such that £(T-,) =
st(L(—¢)) due to Theorem 2. We now construct a tree automaton ¥ s recognizing st(traces(S)).
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By intersecting Ts and T, we subsequently obtain the tree automaton ¥ recognizing
st(traces(S)) N st(L(—p)). Since, due to injectivity of st, st(traces(S)) N st(L(-p)) =
st(traces(S) N L(—)) holds true, we obtain the stated result.

It remains to construct Ts. Similarly to the proof of Lemma 5, we first construct T’
such that £(T5) Nst(XY) = st(traces(S)). By intersecting T's with Ts; recognizing st(X¢) as
constructed in the proof of Theorem 1 we then obtain the required ¥s. The idea behind

the construction of T’ is to simulate a run of S along the cardinal branch of the tree.

This is straightforward in the case of local actions and unmatched calls or returns. Upon
encountering a matched call, T’ guesses the state reached by S upon encountering the
matched return and verifies that guess on the stack tree of the nested infix.

Let S = (@, 2,1, A, q7). We define T = (Q, %, A, q1, Q) with Q' = QU (Q x Q) U
xTHUu@xTxQU{q}, Qr=0Q,and A=A UA,UA,LUA UA,, UA,U
Ag. The individual components of A’ are defined as follows: We process local actions
using transitions of the form A; = {(¢,1,¢',q1), ((¢,9¢),1, (¢, q9c),q1) | (¢,1,¢') € A,qc €
Q}. Similarly, upon encountering unmatched calls or returns, we use transitions of the
form A, = {(¢,¢,91,4) | (¢,¢,¢,A) € A}y and Ay = {(q,7,d,q1) | (¢,7,L,¢") € A},
respectively. When encountering a matched call, we guess a state gg reached by the
automaton upon processing the matching return and verify that guess using transitions from
Ape ={(g:¢, (96, A4), (¢, 496)) | (¢:¢,d',A) € A, qe € QY U{((¢:96), ¢ (965 A, a6), (¢, 46)) |
(g,c,q', A) € A,qa,q; € Q}. Upon encountering a matched return, we are in some state
from (@ xT') U (Q x T x @), since a matched return only occurs directly following a
matched call. Hence, we use a transition from A, = {((¢,A4),7,.¢,q1) | (¢,7,4,¢) €

AYU{((q,4,9¢),1,(d,q9¢),q91) | (¢,m, A, q¢") € A} in order to process that matched return.

We verify that we have indeed guessed the correct state by using transitions from A, =
{((9,9),L,91,91) | ¢ € Q}. Finally, we define Ag; = {(q1,L,q1,q1)} to continue the run
of T's upon encountering the sink state ¢ .

Using the intuition given above, it can easily be verified that £(T’s)Nst(X*) = st(traces(S))
indeed holds true. Thus, we obtain the automaton Ts -, with the properties given in the
statement of this lemma as argued above. |

Due to Theorem 6, we obtain a novel asymptotically optimal algorithm for VLDL model
checking: Given a VPS § and a VLDL formula ¢, we construct T such that £(T) =

st(traces(S) N L(—y)). Recall that traces(S) C L(y) if and only if traces(S) N L(—p) = 0.

Since st(traces(S) N L(—y)) is empty if and only if traces(S) N L(—y) is empty, we obtain
that £(%) is empty if and only if traces(S) C L(ip).

The automaton ¥ can be constructed in exponential time and is of exponential size
in |¢| and of polynomial size in both |Q| and |T'|. Hence, we can check ¥ for emptiness in
exponential time in |¢| and in polynomial time in both |@| and |T'|. Since the problem of
VLDL model checking is EXPTIME-complete [24], this algorithm is asymptotically optimal.

6 Conclusion

In this work we have presented a correspondence between infinite words over a pushdown
alphabet and infinite binary trees. Moreover, we demonstrated a construction translating
VLDL formulas into tree automata that are language-equivalent with respect to the above
correspondence. This construction yields novel algorithms for satisfiability and model checking
of VLDL formulas that reduce the problem to the emptiness problem for tree automata. Thus,
this construction leverages the strong connection between visibly pushdown languages and
regular tree languages that was already exhibited by Alur and Madhusudan in their seminal
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work on the former family of languages [2]. Moreover, the construction demonstrates that the
well-known breakpoint construction by Miyano and Hayashi [14], which is routinely used to
remove alternation from stack-free automata, can easily be adapted to transform alternating
automata over visibly pushdown words into corresponding alternation-free automata over
trees representing such words.

In future work, we plan to empirically evaluate and compare the algorithms presented
in this work as well as those presented in earlier work [24], which reduce the satisfiability
and model checking problems for VLDL to the emptiness problem for visibly pushdown
automata. Recall that our novel algorithm reduces both problems to the emptiness problem
for tree automata, which in turn reduces to the problem of solving a two-player Biichi
game. The latter problem is well-studied due to its important applications, e.g., in program
verification [1, 22] and program synthesis [12]. Hence, there exist efficient algorithms [17]
for solving them as well as mature solvers [9, 10]. Thus, we expect our novel algorithm to
outperform the existing approach [24] to the above problems.

Moreover, in previous work we investigated the problem of solving two-player games
on a visibly pushdown arena in which the winning condition is given by a VLDL formula
and determined this problem to be 3EXPTIME-complete [24]. We showed membership
of this problem in 3EXPTIME by reducing it to the problem of solving visibly pushdown
games against a winning condition given by visibly pushdown automata. Currently, we are
investigating whether the approach presented in this work can be lifted to the setting of
games.

Acknowledgments. The author would like to thank Martin Zimmermann for multiple
fruitful discussions.
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