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—— Abstract

Consider two robots that start at the origin of the infinite line in search of an exit at an unknown

location on the line. The robots can collaborate in the search, but can only communicate if they arrive
at the same location at exactly the same time, i.e. they use the so-called face-to-face communication
model. The group search time is defined as the worst-case time as a function of d, the distance of
the exit from the origin, when both robots can reach the exit. It has long been known that for a
single robot traveling at unit speed, the search time is at least 9d — o(d); a simple doubling strategy
achieves this time bound. It was shown recently in [15] that & > 2 robots traveling at unit speed
also require at least 9d group search time.

We investigate energy-time trade-offs in group search by two robots, where the energy loss
experienced by a robot traveling a distance x at constant speed s is given by s?z, as motivated by
energy consumption models in physics and engineering. Specifically, we consider the problem of
minimizing the total energy used by the robots, under the constraints that the search time is at
most a multiple ¢ of the distance d and the speed of the robots is bounded by b. Motivation for this
study is that for the case when robots must complete the search in 9d time with maximum speed
one (b=1; ¢ =9), a single robot requires at least 9d energy, while for two robots, all previously
proposed algorithms consume at least 28d/3 energy.

When the robots have bounded memory and can use only a constant number of fixed speeds, we
generalize an algorithm described in [3, 15] to obtain a family of algorithms parametrized by pairs of
b, ¢ values that can solve the problem for the entire spectrum of these pairs for which the problem is
solvable. In particular, for each such pair, we determine optimal (and in some cases nearly optimal)
algorithms inducing the lowest possible energy consumption.

We also propose a novel search algorithm that simultaneously achieves search time 9d and
consumes energy 8.42588d. Our result shows that two robots can search on the line in optimal time
9d while consuming less total energy than a single robot within the same search time. Our algorithm
uses robots that have unbounded memory, and a finite number of dynamically computed speeds. It
can be generalized for any ¢, b with ¢b = 9, and consumes energy 8.42588bd.
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1 Introduction

The problem of searching for a treasure at an unknown location in a specified continuous
domain was initiated over fifty years ago [6, 7]. Search domains that have been considered
include the infinite line [2, 6, 7, 34], a set of rays [10, 11], the unit circle [12, 24, 37], and
polygons [27, 33, 35]. Consider a robot (sometimes called a mobile agent) starting at some
known location in the domain and looking for an ezit that is located at an unknown distance
d away from the start. What algorithm should the robot use to find the exit as soon as
possible? The most common cost measure used for the search algorithm is the worst-case
search time, as a function of the distance d of the exit from the starting position. For a
fixed-speed robot, the search time is proportional to the length of the trajectory of the
robot. Other measures such as turn cost [28] and different costs for revisiting [9] have also
been studied.

We consider for the first time the energy consumed by the robots while executing the
search algorithm. The energy used by a robot to travel a distance x at speed s is computed
as s2x and is motivated from the concept of viscous drag in fluid dynamics; see Section 2
for details on the energy model. For a single robot searching on the line, the classic Spiral
Search algorithm (also known as the doubling strategy) has search time 9d and is known
to be optimal when the robot moves with unit speed. Since in the worst case, the robot
travels distance 9d at unit speed, the energy consumption is 9d as well. Clearly, as the speed
of the robot increases, the time to find the exit decreases but the energy used increases.
Likewise, as the speed of the robot decreases, the time to find the exit increases, while the
energy consumption decreases. Thus there is a natural trade-off between the time taken
by the robot to search for the exit and the energy consumed by the robot. To investigate
this trade-off, we consider the problem of minimizing the total energy used by the robots to
perform the search when the speed of the robot is bounded by b, and the time for the search
is at most a multiple ¢ of the distance d from the starting point to the exit.

Group search by a set of k > 2 collaborating robots has recently gained a lot of attention.
In this case, the search time is the time when all k robots reach the exit. The problem has
also been called evacuation, in view of the application when it is desired that all robots reach
and evacuate from the exit. Two models of communication between the robots have been
considered. In the wireless communication model, the robots can instantly communicate
with each other at any time and over any distance. In the face-to-face communication model
(F2F), two robots can communicate only when in the same place at the same time. In many
search domains, and for both communication models, group search by k > 2 agents has been
shown to take less time than search by a single agent; see for example [24, 27].

In this paper, we focus on group search on the line, by two robots using the F2F model.
Chrobak et al [15] showed that group search in this setting cannot be performed in time
less than 9d — o(d), regardless of the number of robots, assuming all robots use at most
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unit speed. They also describe several strategies that achieve search time 9d. In the first
strategy, the two robots independently perform the Spiral Search algorithm, using unit speed
during the entire search. Next, they consider a strategy first described in [3], that we call
the Two-Turn strategy, whereby two robots head off independently in opposite directions at
speed 1/3; when one of them finds the exit, it moves at unit speed to chase and catch the
other robot, after which they both return at unit speed to the exit. Finally, they present a
new strategy, called the Fast-Slow algorithm in which one robot moves at unit speed, while
the other robot moves at speed 1/3, both performing a spiral search. The doubling strategy
is very energy-inefficient, it uses energy 18d if the two robots always travel together, or 14D
if the robots start by moving in opposite directions. The other two algorithms both use
energy 28d/3 > 9d. Interestingly, the two strategies that achieve an energy consumption of
28d/3 with search time 9d, both use two different and pre-computed speeds, but are quite
different in terms of the robot capacities needed. In the Two-Turn strategy, the robots are
extremely simple and use constant memory; they use only three states. In Fast-Slow and
Spiral Search, the robots need unbounded memory, and perform computations to determine
how far to go before turning and moving in the opposite direction.

Memory capability, time- and speed-bounded search, and energy consumption by a
two-robot group search algorithm on the line: these considerations motivate the following
questions that we address in our paper:

1. Is there a search strategy for constant-memory robots that has energy consumption < 9d?
2. Is there any search strategy that uses time 9d and energy < 9d?

1.1  Our results

We generalize the Two-Turn strategy for any values of ¢, b. We analyze the entire spectrum
of values of ¢, b for which the problem admits a solution, and for each of them we provide
optimal (and in some cases nearly optimal) speed choices for our robots (Theorem 5). In
particular, and somewhat surprisingly, our proof makes explicit how for any fixed ¢ the
optimal speed choices do not simply “scale” with b; rather more delicate speed choices are
necessary to comply with the speed and search time bounds. For the special case of ¢-b =9,
our results match with the specific Two-Turn strategy described in [15]. Our results further
show that no Two-Turn strategy can achieve energy consumption less than 9d while keeping
the search time at 9d. In fact, we conjecture that this trade-off is impossible for any group
search strategy that uses only constant memory robots.

In the unbounded-memory model, for the special case of ¢ = 9 and b = 1, we give
a novel search algorithm that achieves energy consumption of 8.42588d, thus answering
the second question above in the affirmative. This result shows that though two robots
cannot search faster than one robot on the line [15], somewhat surprisingly, two robots can
search using less total energy than one robot, in the same optimal time. Our algorithm
uses robots that have unbounded memory, and a finite number of dynamically computed
speeds. Note that our algorithm can be generalized for any ¢, b with ¢b = 9, and utilizes
energy 8.42588b%d (Theorem 16).

1.2 Related Work

Several authors have investigated various aspects of mobile robot (agent) search, resulting
in an extensive literature on the subject in theoretical computer science and mathematics
(e.g., see [1, 30] for reviews). Search by constant-memory robots has been done mainly
for finite-state automata (FSA) operating in discrete environments like infinite grids, their
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finite-size subsets (labyrinths) and other graphs. The main concern of this research was the
feasibility of search, rather than time or energy efficiency. For example, [14] showed that
no FSA can explore all labyrinths, while [8] proved that one FSA using two pebbles or two
FSAs, communicating according to the F2F model can explore all labyrinths. However, no
collection of FSAs may explore all finite graphs communicating in the F2F model [39] or
wireless model [17]. On the other hand, all graphs of size n may be explored using a robot
having O(logn) memory [38].

Exploration of infinite grids is known as the ANTS problem [29], where it was shown
that four collaborating FSAs in the semi-synchronous execution model and communicating
according to the F2F scenario can explore an infinite grid. Recently, [13] showed that four
FSAs are really needed to explore the grid (while three FSAs can explore an infinite band of
the 2-dimensional grid).

Continuous environment cases have been investigated in several papers when the efficiency
of the search is often represented by the time of reaching the target (e.g., see [2, 6, 7, 34]).
Even in the case of continuous environment as simple as the infinite line, after the seminal
papers [6, 7], various scenarios have been studied where the turn cost has been considered [28],
the environment was composed of portions permitting different search speeds [26], some
knowledge about the target distance was available [10] or where some other parameters are
involved in the computation of the cost function [9] (e.g. when the target is moving).

The group search, sometimes interpreted as the evacuation problem has been studied first
for the disc environment under the F2F [12, 18, 24, 27, 36] and wireless [18] communication
scenarios and then also for other geometric environments (e.g., see [27]). Other variants of
search/evacuation problems with a combinatorial flavour have been recently considered in
[16, 19, 20, 31, 32]. Some papers investigated the line search problem in the presence of
crash faulty [25] and Byzantine faulty agents [23]. The interested reader may also consult
the recent survey [22] on selected search and evacuation topics.

The energy used by a mobile robot is usually considered as being spent solely for travelling.
As a consequence, in the case of a single, constant speed robot the search time is proportional
to the distance travelled and the energy used by a robot. Therefore the problems of
minimization of time, distance or energy are usually equivalent for most robots’ tasks. For
teams of collaborating robots, the searchers often need to synchronize their walks in order
to wait for information communicated by other searchers (e.g, see [12, 18, 36]), hence the
time of the task and the distance travelled are different. However, the distance travelled by
a robot and its energy used are still commensurable quantities.

To the best of our knowledge, energy consumption as a function of mobile robot speed
which is based on laws of engineering physics (related to the drag force) has never been
studied in the search literature before. Our present work is motivated by [15], which proves
that the competitive ratio 9 is tight for group search time with two mobile agents in the
F2F model when both agents have unit maximal speeds. More exactly, it follows from [15]
that having more unit-speed robots cannot improve the group search time obtained by a
single robot. Nevertheless, our paper shows that using more robots can improve the energy
spending, while keeping the group-search time still the best possible.

Chrobak et al [15] present interesting examples of group search algorithms for two distinct
speed robots communicating according to the F2F scenario. An interested reader may consult
[4], where optimal group search algorithms for a pair of distinct maximal speed robots were
proposed for both communication scenarios (F2F and wireless) and for any pair of robots’
maximal speeds. It is interesting to note that, according to [4], for any distinct-speed robots
with F2F communication, the optimal group search time is obtained only if one of the robots
perform the search step not using its full speed.
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Paper Organization. In Section 2 we formally define the evacuation problem EEQ, and
proper notions of efficiency. Our algorithms and their analysis for constant-memory robots is
presented in Section 3, while in Section 4 we introduce and analyze algorithms for unbounded-
memory robots. Whenever we omit proofs, due to space limitations, we provide an outline of
our arguments. The interested reader may consult the full version of our paper [21] for the
missing details.

2 Preliminaries

Two robots start walking from the origin of an infinite (bidirectional) line in search of a
hidden exit at an unknown absolute distance d from the origin. The exit is considered found
only when one of the robots walks over it. An algorithm for group search by two robots
specifies trajectories for both robots and terminates when both robots reach the exit. The
time by which the second robot reaches the exit is referred to as the search time or the
evacuation time.

Robot models. The two robots operate under the F2F communication model in which two
robots can communicate only when they are in the same place at the same time. FEach robot
can change its speed at any time. We distinguish between constant-memory robots that can
only travel at a constant number of hard-wired speeds, and unbounded-memory robots that
can dynamically compute speeds and distances, and travel at any possible speed.

Energy model. A robot moving at constant speed s traversing an interval of length z is
defined to use energy s? - z. This model is well motivated from first principles in physics and
engineering and corresponds to the energy loss experienced by an object moving through
a viscous fluid [5]. In particular, an object moving with constant speed s will experience a
drag force Fp proportional® to s2. In order to maintain the speed s over a distance x the
object must do work equal to the product of Fp and z resulting in a continuous energy loss
proportional to the product of the object’s squared speed and travel distance. For simplicity
we have taken the proportionality constant to be one.

The total energy that a robot uses traveling at speeds si, Sa, ..., St, traversing intervals
T1,%2,...,T, respectively, is defined as 22:1 s? - x;. For group search with two robots, the
energy consumption is defined as the sum total of the two robots’ energies used until the
search algorithm terminates.

For each d > 0 there are two possible locations for the exit to be at distance d from the
origin: we will refer to either of these as input instances d for the group search problem. Our
goal is to solve the following optimized search problem parametrized by two values, b and c:

» Problem EEI;. Design a group search algorithm for two robots in the F2F model that
minimizes the energy consumption for d-instances under the constraints that the search time
is no more than c - d and the robots use speeds that are at most b. When there are no speed
limits on the robots (i.e. b = o), we abbreviate EES° by EE.. Note that b, ¢ are inputs to
the algorithm, but d and the exact location of the exit are not known.

! The constant of proportionality has (SI) units kg/m and depends, among other things, on the shape of
the object and the density of the fluid through which it moves.
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As it is standard in the literature on related problems, we assume that the exit is at least
a known constant distance away from the origin. In this work, we pick the constant equal
to 2, although our arguments can be adjusted to any other constant. It is not difficult to
show that EEZ is well defined for each b,c¢ > 0 with bc > 1, and the optimal offline solution,
for instance d, is for both robots to move at speed % to the exit. This offline algorithm has
energy consumption %‘21. Consider an online algorithm for EEZ, which on any instance d has
energy consumption at most e(c,b,d). The competitive ratio of the algorithm is defined as
SUP g0 % e(c,b,d).

Due to [15], and when b = 1, no online algorithm (for two robots) can have evacuation
time less than 9d — € (for any € > 0 and for large enough d). By scaling, using arbitrary
speed limit b, we obtain the following fact.

» Observation 1. No online F2F algorithm can solve EEY if cb < 9.

3 Solving EE’C’ with Constant-Memory Robots

In this section we propose a family of algorithms for solving EEZ (including b = o0). The
family uses an algorithm that is parametrized by three discrete speeds: s, » and k. The
robots use these speeds depending on finite state control as follows:

» Algorithm N ;. ;. Robots start moving in opposite directions with speed s until the exit
is found by one of them. The finder changes direction and moves at speed r > s until it
catches the other robot. Together the two robots return to the exit using speed k.

» Lemma 2. Let b, c be such that there exist s,r,k for which N, is feasible. Then, for
instance d of EEZ, the induced evacuation time of Ny, is d-T (s,r, k) and the induced
energy consumption is 2d - E (s, r, k), where
20k+r) 1

-, E k) :=
k(r—s)—'_s7 (5,7, k) r—s

T (s,r k)= (s* + 1% +2k?)
We propose a systematic way in order to find optimal values for s, r, k of algorithm N ;.
for optimization problem EEIC7 (including b = 00), whenever such values exist.

» Theorem 3. Algorithm N, 1 gives rise to a feasible solution to problem EEZ; if and only
if bc > 9. For every such b,c > 0, the optimal choices of N, can be obtained by solving
Non Linear Program:
sﬁl}igRE (s,r k) (NLPY)
st. T(s,rk)<c
r>s
0<s,nrk<b

where functions E (+,-,-),T (-,+,-) are as in Lemma 2. Moreover, if so, 7o, ko are the optimizers
to NLPY, then the competitive ratio of Ny, vy equals ¢ - E (so, 70, ko) -

The following subsections are devoted to solving NLPZ, effectively proving Theorem 5.
First in Section 3.1 we solve the case b = co and we use our findings to solve the case of
bounded speeds b in the follow-up Section 3.2.
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3.1 Optimal Choices of ./\/’S,r,k for the Unbounded-Speed Problem

In this section we propose solutions to the unbounded-speed problem EE.. Since EE, is
the same as EE °the problem is well-defined for every fixed ¢ > 0. Moreover, by the proof
of Theorem 3 algorithm N , 5, induces a feasible solution for every ¢ > 0 as well, and the
optimal speeds can be found by solving NLP{°. Indeed, in the remainder of the section we
show how to choose optimal values for s,r, k for solving EE. with N , ;. Let

o~ 2.65976, p ~ 11.3414, k ~ 6.63709, (1)

whose exact values are the roots of an algebraic system and will be formally defined later.

The main theorem of this section reads as follows.

» Theorem 4. Let 0,p,k as in (1). For every ¢ > 0, the optimal speeds of N .1 for problem
EE; ares =2, r=2, k= 2. Moreover, the competitive ratio of the corresponding solution

e’ 2 2 2
s independent of ¢ and equals w ~ 292.369.

A high level outline of the proof of Theorem 4 is as follows. First we show that any

optimal choices of the speeds of N, , must satisfy the time constraint of NLPZ tightly.

Then, we show that finding optimal speeds s,r, k of Ny, for the general problem EE,
reduces to problem EE;. Finally, we obtain the optimal solution to NLP{° by standard
tools of nonlinear programming (KKT conditions).

3.2 (Sub)Optimal Choices of N, for the Bounded-Speed Problem

In this section, we show how to choose optimal values for s,r, k for solving EEg with N, i,
for the entire spectrum of ¢, b values for which the problem is solvable by online algorithms.
The main result of this section is the following:

» Theorem 5. Let v, ~ 9.06609, v5 = p ~ 11.3414, and o, p, k as in (1). For every ¢,b >0
with ¢b > 9, the following choices of speeds s,r, k are feasible for N ;.

‘ 9<cb<m y1 < ¢cb < 2 ch > 2
V0P M0bekd b8 53o419h — 0.02626616%¢ o /e
r b b ple
k b bcs—beisz—s H/C

The induced competitive ratio is given by:

%x(m(m—\/(x—Q)(x—l))+\/(x—9)(m—1)+3), 9<z<m
e )
0.02626612+0.467588 o M < T <72
292.369 T2y

and the induced energy, for instances d, is f(cb)%gl. Moreover, the competitive ratio depends
only on the product cb.

In particular, the speeds’ choices are optimal when cb < 1 and when cb > .. When
Y1 < ¢b < ya, the derived competitive ratio is no more than 0.03 additively off from that
induced by optimal choices of s,r k.

» Corollary 6. For ¢ = 9,b = 1, the bounded-memory robot algorithm N, has energy
consumption 28d/3 and competitive ratio 878.
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Theorem 5 is proven by solving NLPE of Theorem 3. Speed values s,r, k, are chosen
optimally when ¢b is either at most 7 or at least o (i.e. optimizers to NLPZ admit analytic
description). The optimal speed parameters when 71 < ¢b < 7 cannot be determined
analytically (they are roots of high degree polynomials). The values that appear in Theorem 5
are heuristically chosen, but interestingly induce nearly optimal competitive ratio.

The proof of Theorem 5 is given by Lemma 7 (the case ¢b < 7;), Lemma 8 (the case
¢b > 72), and Lemma 9 (the case 1 < ¢b < 72). Next we state these Lemmata, and we
sketch their proofs.

» Lemma 7. For every ¢ € (9/b,v1/b], where 1 =~ 9.06609, the optimizers to NLPI; are

— 2_ —
kE=r=>, and s, = (be) 120:C+9+bc ®. The induced competitive ratio is f(cb), (see

definition of f(x) for x <~ in statement of Theorem 5), and the energy consumption, for
instances d, is f(cb)23.

For proving Lemma 7, first we recall the known optimizer for the special case ¢cb = 9, and
we identify the tight constraints. Requiring that the exact same inequality constraints to
NLPZ; remain tight, we ask how large can the product cb be so as to have KKT condition
hold true. From the corresponding algebraic system, we obtain the answer ¢b < 1 = 9.06609.

Similarly, from Theorem 4 we know the optimizers to NLPIS for large enough values of
cb, and the corresponding tight constraints to the NLP. Again, using KKT conditions, we
show that the same constraints remain tight for the optimizers as long as ¢b > v, ~ 11.3414.
This way we obtain the following Lemma.

» Lemma 8. For every ¢ > p/b =~ 11.3414/b, the optimal speeds of N, for EEZ are
s=o/e, r=ple, k= kK/c, i.e. they are the same as for EE°. If the target is placed at
distance d from the origin, then the induced energy equals 584.738;%. Moreover, the induced
competitive ratio is 292.369, and is independent of b, c.

The case 71 < ¢b < 72 can be solved optimally only numerically, since the best speed
values are obtained by roots to a high degree polynomial. Nevertheless, the following lemma
proposes a heuristic choice of speeds (that of Theorem 5) which is surprisingly close to the
optimal.

» Lemma 9. The choices of s,r,k of Theorem 5 when v < ¢b < 72 are feasible. Moreover,
the induced competitive ratio is at most 0.03 additively off from the competitive ratio induced
by the optimal choices of speeds (evaluated numerically).

The trick in order to find “good enough” optimizers to NLPZ is to guess the subset of
inequality constraints that remain tight when v; < ¢b < 79. First, we observe that constraint
r < b is tight for the provable optimizers for all ¢, b when ¢b € [9,71] U [y2,00). As the only
other constraint that switches from being tight to non-tight in the same interval is k& < b,
we are motivated to maintain tightness for constraints » < b and the time constraint. Still
the algebraic system associated with the corresponding KKT conditions cannot be solved
analytically. To bypass this difficulty, and assuming we know (optimal) speed s, we use the
tight time constraint to find speed k as a function of ¢, b, s. From numerical calculations, we
see that optimal speed s is nearly optimal in ¢, and so we heuristically set s = ac + 8. We
choose a, 8 so as to have s satisfy optimality conditions for the boundary values cb = 71, 7s.
After we identify all parameters to our solution, we compare the value of our solution to the
optimal one (obtained numerically), and we verify (using numerical calculations) that our
heuristic solution is only by at most 0.03 additively off. The advantage of our analysis is
that we obtain closed formulas for the speed parameters for all values of ¢b > 9.
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4 Solving EE® with Unbounded-Memory Robots

In this section we prove Theorem 16, that is we solve EEg by assuming that the two robots
have unbounded memory, and in particular that they can perform time and state dependent

calculations and tasks. Note that, by scaling, our results hold for all b, ¢ for which ¢b = 9.

For simplicity our exposition is for the natural case ¢ =9 and b = 1. Also, as before, d will
denote the unknown distance to the exit from the origin. Moreover, the exit is still assumed,
for the purposes of performance analysis, to be at least 2 away from the origin.

Throughout the execution of our evacuation algorithm, robots can be in 3 different states
(similar to the case of constant-memory robots). First, both robots start with the Ezploration
State and they remain in this until the exit is located. While in the exploration state, robots
execute an elaborate exploration that requires synchronous movements in which robots, at a
high level, stay in good proximity, still they expand the searched space relatively fast. Then,
the exit finder enters the Chasing State in which the robot, depending on its distance from

the origin, calculates a speed at which to move in order to catch and notify the other robot.

Lastly, when the two robots meet, they both enter the Exit State in which both robots move
toward the exit with the smallest possible speed while meeting the time constraint.

Our algorithm takes as input the values of ¢ = 9,b = 1, and use a speed value s < b, that
will be chosen later. When the exit finder switches its state from Exploration to Chasing, it
remembers the distance d of the exit to the origin, as well as the value k of a counter that
was used while in the Exploration State. When the exit finder catches the other robot, they
both switch to the Exit State, and they remember their distance p from the origin, as well as
the value of time ¢ that their rendezvous was realized. The speed of their Exit State will be
determined as a function of p,d,t (and hence of s, ¢, b as well).

4.1 A Critical Component: [-Phase Explorations

We adopt the language of [15] in order to discuss a structural property that any feasible
evacuation algorithm for EE}; satisfies. As a result, the purpose of this section is to provide
high level intuition for our evacuation algorithm that is presented in subsequent sections.

We refer to the two robots (starting exploration from the origin) as L and R, intended
to explore to the left and to the right of the origin, respectively. The robot trajectories
can be drawn on the Cartesian plane where point-location (z, —t) will correspond to point
x on the line being visited by some robot at time ¢. The following Theorem (due to [15])
was originally phrased for the time-evacuation unit-speed robots’ problem. We adopt the
language of our problem.

» Theorem 10 ([15]). For any feasible solution to EEg, the point-location of any robot lies
within the cone spanned by vectors (:é), (713)

Next we present some preliminaries toward describing our k-phase exploration algorithms.
A phase is a pair (s,r) where s € [0,1] is a speed and r € R is a distance ratio, possibly
negative. An [-phase algorithm is determined by a position pg on the line and a sequence
S =(s1,71),-.., (8K, 1) of | phases (movement instructions). Whenever r;x < 0, movement
will be to the left, whereas r;x > 0 will correspond to movement to the right.
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[-PHASE EXPLORATION: GIVEN pg AND S = (s1,71),...,(s,71)
Go to pg at speed 1/3

repeat
T 4 current position

fori=1,...,ldo
| Travel at speed s; for a distance of r; - x
end

end

We will make sure that each time the loop is executed, position x and corresponding time

induce point-locations of the robots that lie in the boundary of the cone of Theorem 10. If a
loop starts at location x, then it takes additional time Zie[l] W to complete one iteration.
i

3Si

We will be referring to quantity 1 + Zie[l] as the expansion factor of Exploration S.

4.2 Algorithm A (s): The Exploration, Chasing and Exit States

In this section we give a formal description of our evacuation algorithm. The most elaborate
part of it is when robots are in Exploration States, in which they will perform 3-phase
exploration. It can be shown that 3-phase exploration based evacuation algorithms that
do not violate the constraints of problem EEé have expansion factor at most 4. Moreover,
among those, the ones who minimize the induced energy consumption makes robots move at
speed 1 in the first and third phase?. Robot’s speed in the second phase will be denoted by s.

We now present a specific 3-phase exploration algorithm, that we denote by A (s),
complying with the above conditions, with phases (—1,1), (4s/(1—s), s) and (4—4s/(1—3s),1),
where s is an exploration speed to be determined later. Robot L will execute the 3-phase
exploration with starting position -1, while robot R with starting position 2. When subroutine
travel(v, p) is invoked, the robot sets its speed to v and, from its current position, goes
toward position p on the line until it reaches it. We depict the trajectories of the robots
while in the Exploration State in Figure 1.

EXPLORATION STATE OF L EXPLORATION STATE OF R
travel(1/3,—1) travel(1/3,2)
k<+0 k<+0
repeat repeat
travel(1,0) travel(1,0)
travel(s, —4F+t . =) travel(s,2 - 4FT1 . =)
travel (1, —4%+1) travel(1,2 - 48+1)
kE+—Fk+1 k+—k+1
end end

2 The proof of these facts is lengthy and technical, and is not required for the correctness of our algorithm,
rather it only justifies some parameter choices
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'
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Figure 1 A representation of position Figure 2 The robots’ behavior when the exit is
(x-axis, vertical dashed line is 0) and found by L is indicated by the bold line. In the first
time (y-axis), and the trajectory followed case (left), the catch-up speed is slower than 1 (and
by the two robots (solid lines). The two the rendezvous is realized at the turning point of the
diagonal dashed lines form the “1/3 cone” non-finder), whereas it is 1 in the second case (right).

of Theorem 10.

A complete execution of one repeat loop within the Exploration State will be referred
to as a round. Variable k counts the number of completed rounds. Each robot stays in
the Exploration State till the exit it found. When switching to the Chasing state (which
happens only for the exit finder), robot remembers its current value of counter k, as well as
the distance d of the exit to the origin. Based on these values (as well as s) it calculates the
most efficient trajectory in order to catch the other robot (predicting, when applicable, that
the rendezvous can be realized while the other robot is approaching the exit finder). When
the rendezvous is realized, robots store their current distance p to the origin, as well as the
time t that has already passed. Then, robots need to travel distance p + d to reach the exit.
Knowing they have time 9d — ¢ remaining, they go to the exit together as slow as possible to
reach the exit in time exactly 9d. Figure 2 provides an illustration of the behavior of the
robots after finding the exit.

CHASING STATE EXIT STATE

K« 4* R T

if I am R then Go toward the exit
| K<« 2.4k with speed 3.

end

"+ mi d 1
S min ¢ ——,
4K —d/s
Travel toward the other robot at speed s’ until meeting
it at distance p from the origin, and at time t¢.

4.3 Performance Analysis & an Optimal Choice for Parameter s

In this section we are ready to provide the details for proving Theorem 16. Evacuation
algorithm A (s) is not feasible to EE® for all values of speed parameter s (of the Exploration
States). We will show later that trajectories induce evacuation time at most 9d only if
s € [1/3,1/2]. In what follows, and even though we have not fixed the value of s yet, we
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will assume that s has some value between 1/3 and 1/2. The purpose of this section is to
fix a value for parameter s, show that A (s) is feasible to EE‘},7 and subsequently compute
the induced energy consumption and competitive ratio. As a reminder, each iteration of the
repeat loop of the Exploration States is called a round, and k is a counter for these rounds.

» Proposition 11. For every k > 0, and at the start of its k-th round,
robot L is at position —4F at time 3 - 4%, and
robot R, is at position 2 - 4F at time 6 - 4%,

Let X € {L, R} be one of the robots. We define K (X, k) = 4% if X = L, and K(X,k) =
2.4F if X = R, i.e. the position of X at the start of round k. We will often analyze 3
cases for the distance d of the exit with respect to K := K (X, k) (as it also appears in the
description of the Chasing State), associated with the following closed intervals

Di(K) := [K,4Ks/(s+1)], Do(K) := [4Ks/(s+1),4Ks/(1 —s)], Ds(K) := [AKs/(1 —s),4K].

We may simply write Dy, Dy and Dg if K is clear from the context. Note that during
the second phase of round K, robot L explores D; and Ds, whereas D3 is explored during
the third phase. The same statement holds for R. The following lemma will be useful in
analyzing the worst case evacuation time and energy consumption of our algorithm.

» Lemma 12. Suppose that robot X € {L, R} finds the exit at distance d when its round
counter has value k. Let p and t be, respectively, the position and time at which X first meets
with the other robot after having found the exit, and set K := K(X,k). Then the following
hold:

1. If d € Dy, thenp =0 andt = 8K.

2. If d € Dy, then |p| = Trds=4Ks qpq ¢ = gf¢ 4 4rd/s—aK

3. Ifd € Ds, then |p| =2ds/(1 —s) and t = 8K + 2d + 2ds/(1 — s).

Using the lemma above, we can now prove that A (s) meets the speed bound and the
evacuation time bound.

» Lemma 13. For any s € [1/3,1/2], evacuation algorithm A (s) is feasible to EEj.

Lemma 12 allows us to derive the speed sp1, Sp2 and sp3 at which both robots go toward
the exit after meeting for the cases d € Dy,d € Dy and d € Ds, respectively. We also know
the speed s.; at which the exit-finder catches up to the other robot when d € D;. We define

gpq = —d S — d e 2d—4Ks Spa = d(1+s)
bl = 94—8K» °¢l = 4K—djs» °b2 T q(8—9s—1/s)+4K(2s—1)’ °b3 = d(7—9s)+8K (s—1)

d+qs

d+d/s—4K
9d—(8K+q)’

The speed spz is a simple rearrangement of the speed T

sp3 is obtained by rearranging gd_(gi;fgfli(zl(;sj)(l_s)).

Next we compute the energy consumption. For given K, d and s, denote by Ep (K, d, s)
the energy spent by robot L from time 3 to time 9d when it exits. Similarly, Er(K,d,s) is
the energy spent by R from time 6 to time 9d. Then, the energy consumption is E(K,d, s) :=
1+EL(K,d,s)+Er(K,d,s). Forany K and s, we also define F(K, s) := (K —1)(5—4s(s+1)).

where ¢ = , and

» Lemma 14. Suppose that robot X € {L,R} finds the exit at distance d when its round
counter has value k, and let K := K(X,k). Then

F(K,s)+ 3K +d(s* + s% + 2s3;) if d € Dy
2d — 4K
E(K,d,s):%+ F(K7s)+3K+<1_88> (1+ s+ 2s2)) ifd € Do

2d
F(K,s)+3K —4Ks(s+ 1) + 1

(3 +s2(s+1)+1) ifde Ds.
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Denote by FE;(k,d, s) the value of F(K,d,s) when d € D;, i = 1,2,3. Our intension now
is to fix speed value s that solves the following Nonlinear Program

n

mi su R su ,
s€[1/3,1/2] P P

deDy,k>1,X d d€Do,k>1,X d dEDs,k>1,X d

. FEi(K,d,s
For every s € [1/3,1/2] we show in Lemma 15 that %

w w is decreasing in d € Ds. Then, the best
Ei(K.d,s)
d

is decreasing in d € Dy, that
is increasing in d € Dq, and that
equal (if possible)
when ¢ = 1,2, 3. The optimal s can be found by numerically finding the roots of a high degree
polynomial, and accordingly, we heuristically set s = 0.39403, inducing the best possible

parameter s can be chosen so as to make all worst case valued

energy consumption for algorithm .4 (s). All relevant formal arguments are within the proof
of the next lemma.

» Lemma 15. On instance d of EEé, algorithm A (s) induces energy consumption at most
8.42588d, when s = 0.39403.

By Lemma 15, we conclude that for the specific value of s, algorithm A (s) has competitive
2
ratio 978.42588 ~ 341.24814, concluding the proof of Theorem 16.

» Theorem 16. For every c¢,b > 0 with ¢cb = 9, there is an evacuation algorithm for
unbounded-memory autonomous robots solving EEg inducing energy consumption 8.42588b%d
for instances d, and competitive ratio 341.24814.

5 Discussion

The main contribution of our paper was to introduce an energy consumption model appropri-
ate to linear search and investigate how the F2F communication model affects time/energy
trade-offs until completion of the search by two robots, considering two different computa-
tional capabilities for the robots. Our approach inspired new algorithms that take better
account of the impact of the change in the speed of the robots during the course of the search
and leads to better understanding through evaluation of trade-offs of the overall performance
of the algorithms.

Our paper raises several interesting problems worth investigating. In addition to improving
the trade-offs in the algorithms proposed, one may wish to pursue new avenues for research
by examining additional search domains, like the unit disk, in the spirit of [18]. It would
also be natural to consider more realistic models of linear search with multiple agents some
of which may be faulty [23, 25]. Further, it would be interesiting to investigate randomized
search algorithms in our setting as well as more general models in which the energy loss
experienced by a robot traveling a distance x at constant speed s is given by s%z, for some
fixed positive exponent a.
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