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Abstract
We prove that to estimate within a constant factor the number of defective items in a non-adaptive
randomized group testing algorithm we need at least Ω̃(logn) tests. This solves the open problem
posed by Damaschke and Sheikh Muhammad in [6, 7].
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1 Introduction

Let X be a set of items that contains defective items I ⊆ X. In Group testing, we test
(query) a subset Q ⊂ X of items and the answer to the query is 1 if Q contains at least one
defective item, i.e., Q ∩ I 6= ∅, and 0 otherwise. Group testing was originally introduced as a
potential approach to the economical mass blood testing, [8]. However it has been proven
to be applicable in a variety of problems, including DNA library screening, [18], quality
control in product testing, [21], searching files in storage systems, [14], sequential screening of
experimental variables, [16], efficient contention resolution algorithms for multiple-access com-
munication, [14, 25], data compression, [12], and computation in the data stream model, [5].
See a brief history and other applications in [4, 9, 10, 13, 17, 18] and references therein.

Estimating the number of defective items to within a constant factor λ is the problem
of finding an integer D that satisfies1 |I| ≤ D ≤ λ|I|. This problem is extensively used in
biological and medical applications [2, 22]. It is used to estimate the proportion of organisms
capable of transmitting the aster-yellows virus in a natural population of leafhoppers [23],
estimating the infection rate of yellow-fever virus in a mosquito population [24] and estimating
the prevalence of a rare disease using grouped samples to preserve individual anonymity [15].

In adaptive algorithms, the queries can depend on the answers to the previous ones. In
the non-adaptive algorithms they are independent of the previous one and; therefore, one can
ask all the queries in one parallel step. In many applications in group testing non-adaptive
algorithms are most desirable.

Estimating the number of defective items to within a constant factor with an adaptive
deterministic, Las Vegas and Monte Carlo algorithms is studied in [1, 3, 6, 7, 11, 20]. For
|X| = n items and |I| = d defective items the bounds are Θ(d log(n/d)) queries for Las
Vegas and Deterministic algorithms and Θ(log log d + log(1/δ)) queries for Monte Carlo
algorithm [1, 11]. There are also polynomial time algorithms that achieve such bounds [1, 11].

1 In all the applications in group testing the estimation λ′|I| ≤ D ≤ λ|I| in not interesting.
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2:2 Estimation of the Number of Defective Items

In this paper we study this problem in the non-adaptive setting. We first show that
any deterministic and Las Vegas algorithm must ask at least Ω(n) queries. For randomized
algorithm with any constant failure probability δ, Damaschke and Sheikh Muhammad give
in [7] a non-adaptive randomized algorithm that asks O(logn) queries and with probability
at least 1 − δ returns an integer D such that D ≥ d and E[D] = O(d). In this paper we
give a polynomial time Monte Carlo algorithm that asks O(log(1/δ) logn) queries and with
probability at least 1− δ estimates the number of defective items to within a constant factor.
They then prove in [6] the lower bound Ω(logn) queries, but only for algorithms that choose
each item in each query randomly and independently with some fixed probability. They
conjecture that Ω(logn) queries are needed for any randomized algorithm with constant
failure probability. In this paper we prove this conjecture (up to log logn factor). We show
that for any non-adaptive randomized algorithm that with probability at least 3/4 estimates
the number of defective items to within a constant factor must ask at least

s = Ω
(

logn
log logn

)
= Ω̃ (logn)

queries.
This paper is organised as follows: In Section 2 we give some preliminary results. In

Section 3 we give the proof of the above lower bound. The lower bounds will be for an
estimation within the factor of 1.5 and confidence 3/4, but it will be clear from the proof that
this can be replaced by any constant factor λ and any constant confidence δ. In Section 4 we
give the lower bound Ω(n) for any deterministic algorithm. In Section 5 we give the upper
bound. The technique for the upper bound is standard and implicitly follows from [7, 11]. It
is given for completeness.

2 Preliminary Results

In this section we give some definitions and then prove some preliminary results.
We will consider the set of items X = [n] = {1, 2, . . . , n} and the set of defective items

I ⊆ X. The algorithm knows n and has an access to an oracle OI . The algorithm can ask
the oracle OI a query Q ⊂ X and the oracle answers OI(Q) := 1 if Q∩ I 6= ∅ and OI(Q) := 0
otherwise. We say that algorithm A λ-estimates the number of defective items if for every
I ⊆ X it runs in polynomial time in n, asks queries to the oracle OI and returns an integer
D such that |I| ≤ D ≤ λ|I|. If λ is constant then we say that the algorithm estimates the
number of defective items to within a constant factor . Our goal is to find such an algorithm
that asks a minimum number of queries in the worst case.

For an algorithm A that asks queries we denote by A(I) the output of A when it runs
with the oracle OI . When the algorithm is randomized then we write A(σ, I) where σ is the
random seed of the algorithm.

We now prove two results that will be used for the lower bound:

I Lemma 1. Let k be any real number. Let N ′ be a finite set of elements and s be an
integer. Let S be a probability space of s-tuples W = (w1, w2, . . . , ws) ∈ N ′s. Let N ⊆ N ′

and N = N1 ∪N2 ∪ · · · ∪Nr be a partition of N to r disjoint sets. There is i0 such that for
a random W ∈ S, the probability that at least k of the elements (coordinates) of W are in
Ni0 , is at most s/(kr).

Equivalently, there is i0 such that, with probability at least 1 − s/(kr), the number of
elements in W that are in Ni0 is less than k.
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Proof. Define the random variables Xi, i = 1, . . . , r, where Xi(W ) = 1 if at least k of the
elements of W are in Ni and 0 otherwise. Obviously, k(X1 + . . .+Xr) ≤ s and therefore

E[X1] + · · ·+ E[Xr] = E[X1 + · · ·+Xr] ≤ s

k
.

Therefore there is i0 such that Pr[Xi0 = 1] = E[Xi0 ] ≤ s/(kr). J

I Lemma 2. Let X ′ ⊆ X = [n]. Let D be the probability space of random uniform subsets
I ⊂ X ′ of size d and D′ be the probability space of random uniform and independent d chosen
elements I = {x1, . . . , xd} ⊆ X ′ with replacement. Let A be any event and B be the event
that I ∈ D′ has size d, i.e., x1, . . . , xd are distinct. Then

PrD′ [A] + PrD′ [B̄] ≥ PrD[A] ≥ PrD′ [A]−PrD′ [B̄].

Proof. Since

PrD′ [A] = PrD′ [A|B]PrD′ [B] + PrD′ [A|B̄]PrD′ [B̄]
≤ PrD′ [A|B] + PrD′ [B̄] = PrD[A] + PrD′ [B̄],

we have PrD[A] ≥ PrD′ [A]−PrD′ [B̄]. In the same way we have PrD[Ā] ≥ PrD′ [Ā]−PrD′ [B̄]
which implies the left-hand side inequality. J

3 Lower Bound for Randomized Algorithms

In this section we prove the lower bound for the number of queries in any non-adaptive
randomized algorithm that λ-estimates the number of defective items. We give the proof for
λ = 1.5 and confidence δ = 1/4. The proof for any other constants λ and δ is similar.

The idea of the proof is the following. Suppose there is a randomized algorithm A that
asks logn/(c log ∆) queries where ∆ = logn and c is a large constant. We partition the
interval [0, n] of all the possible sizes |Q| of the queries Q into Θ(logn/ log ∆) disjoint sets
Ni = [n/∆4i+4, n/∆4i] for integers i. We then show, by Lemma 2, that with high probability,
there is an interval Ni0 such that no query Q asked by the algorithm satisfies |Q| ∈ Ni0 . That
is, with high probability, there is no query with a size that falls in Ni0 = [n/∆4i0+4, n/∆4i0 ].
We then show that if we choose a random uniform set of defective items I of size d′ := ∆4i0+2

or 2d′ = 2∆4i0+2 then, with high probability, all the queries of sizes more than n/∆4i0 will
have answer 1 and all the queries of sizes less than n/∆4i0+4 will have answer 0. So the
only useful queries are those that fall in Ni0 that, by Lemma 1, with high probability, there
are none. Therefore, with high probability, the algorithm fails to distinguish between sets
of defective sets of size d′ and of size 2d′. This implies that algorithm A cannot estimate,
with high probability, the size of the defective sets within a factor of 1.5. Therefore any
randomized algorithm that, with high probability, estimates the size of the defective sets
within a factor of 1.5 must ask at least logn/(c log ∆) = Ω(logn/ log logn) queries.

We now give the proof.

I Theorem 3. Any non-adaptive Monte Carlo randomized algorithm that with probability at
least 3/4, 1.5-estimates the number of defective items must ask at least

s = Ω
(

logn
log logn

)
queries.
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2:4 Estimation of the Number of Defective Items

Proof. Let c be a large enough constant. Suppose, for the contrary, there is a non-adaptive
Monte Carlo algorithm A(σ, I) that chooses a random sequence of queriesM := Q1, . . . , Qs ⊆
X = [n] from some probability space where s = ∆/(c log ∆) and ∆ = logn, asks queries to
OI and with probability at least 3/4, 1.5-estimates the number of defective items |I|. Let
r = ∆/(16 log ∆) and let

Ni = [n/∆4i+4, n/∆4i] := {x | n/∆4i+4 < x ≤ n/∆4i},

i = 0, 1, . . . , r− 1, be a partition of N = [n3/4, n]. By Lemma 1, for k = 1/16 and the s-tuple
W := (|Q1|, . . . , |Qs|), there is i0 such that, with probability at least

1− s

kr
= 1− 256

c
≥ 15

16

the number of queries Q in M that satisfy |Q| ∈ Ni0 is at most k. Therefore, with probability
at least 15/16 there are no queries Q in M of size |Q| ∈ Ni0 . Let C be the event that there
is no query Q in M of size |Q| ∈ Ni0 . Then

Pr[C̄] ≤ 1
16 .

Let d′ = ∆4i0+2. For a random uniform set I ⊂ X of size d = d′, with probability at least
3/4, A(σ, I) returns an integer in the interval [d′, 1.5d′]. For a random uniform set I ⊂ X of
size d = 2d′, with probability at least 3/4, A(σ, I) returns an integer in the interval [2d′, 3d′].
Since both intervals are disjoint, algorithm A, with success probability at least 3/4, can
distinguish between defective sets of size d′ and 2d′. We have constructed an algorithm, call
it A′, that distinguishes, with success probability 3/4, between defective sets of size d′ and
defective sets of size 2d′. The probability that A′ fails is at most 1/4.

Let D, D′ and {x1, . . . , xd} be as in Lemma 2. Here d ∈ {d′, 2d′}. Let B be the event
that x1, . . . , xd are distinct. Since i0 ≤ r we have

d ≤ 2d′ = 2∆4i0+2 ≤ 2∆4r+2 = 2n1/4 log2 n

and therefore, for large enough n,

PrD′ [B̄] = 1−
d−1∏
i=1

(
1− i

n

)
≤ d(d− 1)

2n ≤ 2 log4 n

n1/2 ≤ 1
16 .

Now partition the queries in M to three sets of queries M1 ∪M2 ∪M3 where M1 are
the queries that contain at most n/∆4i0+4 items, M2 are the queries that contains at least
n/∆4i0 items and M3 = M\(M1 ∪M2), i.e., M3 are the queries Q that satisfies |Q| ∈ Ni0 .
Let A1(I) be the event that for I ⊆ X all the queries in M1 give answer 0. Then

PrD′ [Ā1] = Pr[(∃Q ∈M1)Q ∩ I 6= ∅]
≤ sPr[Q ∩ I 6= ∅|Q ∈M1] (1)
= s(1−Pr[Q ∩ I = ∅|Q ∈M1])

≤ s

(
1−

(
1− 1

∆4i0+4

)d
)

≤ sd

∆4i0+4 = 2
c∆ log ∆ ≤

1
16 .
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Then by Lemma 2, PrD[Ā1] ≤ 2/16. Let A2(I) be the event that for I ⊆ X all the queries
in M2 give answer 1. Then

PrD′ [Ā2] = Pr[(∃Q ∈M2)Q ∩ I = ∅]
≤ sPr[Q ∩ I = ∅|Q ∈M2]

≤ s

(
1− 1

∆4i0

)d

≤ se
− d

∆4i0 = ∆
ce∆2 log ∆

≤ 1
16 .

Thus, by Lemma 2, PrD[Ā2] ≤ 2/16.
Now

Pr[A′ fails] ≥ Pr[A1 ∧A2 ∧ C]
= 1−Pr[Ā1 ∨ Ā2 ∨ C̄]
≥ 1−Pr[Ā1]−Pr[Ā2]−Pr[C̄]

≥ 1
2 .

We got Pr[A′ fails] ≥ 1/2 which gives a contradiction. J

In the proof of Theorem 3, one cannot take smaller intervals for Ni (for example
[n/24i+4, n/24i]). This is because, with the multiplicand s for the union bound in (1),
the probability of Ā1 cannot then be bounded by 1/16.

The proof is also true for estimating the number of defective items to within a factor
λ = Θ(logn). In fact, for such λ the lower bound is tight.

4 Lower Bound for Deterministic Algorithms

In this section we prove

I Theorem 4. Let c > 1 be any constant. Any non-adaptive deterministic algorithm that
c-estimates the number of defective items must ask at least Ω(n) queries.

Proof. Let A be a non-adaptive deterministic algorithm that c-estimates the number of
defective items. Let Q1, . . . , Qs be the queries that A asks. Let d = n/2c. For possible
answers a1, . . . , as ∈ {0, 1} to the queries we define S(a1,...,as), the set of all defective sets of
size d that give the answers a1, . . . , as to the queries Q1, . . . , Qs, respectively. That is, for
every I ∈ S(a1,...,as) we have |I| = d and for every i = 1, . . . , s we have Qi ∩ I 6= ∅ if ai = 1
and Qi ∩ I = ∅ if ai = 0. For a = (a1, . . . , as) ∈ {0, 1}s let Ia = ∪I∈SaI. We now prove
two claims:

B Claim 5. If the defective set is Ia then the algorithm gets the answers a to the queries.

Proof. If Qi∩Ia 6= ∅ then there is I ∈ Sa such that Qi∩I 6= ∅ and then ai = 1. If Qi∩Ia = ∅
then for every I ∈ Sa we have Qi ∩ I = ∅ and then ai = 0. C

B Claim 6. |Ia| ≤ cd.

Proof. If |Ia| > cd then the algorithm returns a value in [cd+ 1, c2d] and then for the sets in
Sa, that are of size d, this answer is not a c-estimation. A contradiction. C

ISAAC 2019



2:6 Estimation of the Number of Defective Items

Since each I ∈ Sa is of size d and is a subset of Ia we have

|Sa| ≤
(
cd

d

)
.

Since there are
(

n
d

)
sets of size d we get(

n

d

)
=

∑
a∈{0,1}s

|Sa| ≤ 2s

(
cd

d

)
.

Since d = n/(2c),

s ≥ log
(
n
n
2c

)
− log

( n
2
n
2c

)
= Ω(n). J

5 Upper Bounds

In this section is written for completeness. We use techniques similar to the ones in [7, 11]
to prove

I Theorem 7. Let c be any constant. There is a non-adaptive Monte Carlo randomized
algorithm that asks

s = O

(
log 1

δ
logn

)
queries and with probability at least 1− δ, c-estimates the number of defective items.

We recall the Chernoff Bound.

I Lemma 8 (Chernoff Bound). Let X1, . . . , Xt be independent random variables that takes
values in {0, 1}. Let X = (X1 + · · ·+Xt)/t and E[X] ≤ µ. Then for any ∆ ≥ µ

Pr[X ≥ ∆] ≤
(
e1− µ

∆µ

∆

)∆t

(2)

≤
(eµ

∆

)∆t

. (3)

We will assume that d ≥ 6. Otherwise, d can be estimated exactly in O(logn) more
queries. Just run the algorithm that finds the defective items that asks O(logn) queries [19].
Here we give a 2-estimation algorithm. This can be extended in a straightforward manner to
c-estimation for any constant c.

A p-query is a query Q that contains each item i ∈ [n] randomly and independently with
probability p. In the algorithm, OI(Q) = 1 if Q ∩ I 6= ∅ and 0 otherwise.

Consider the following algorithm We now prove

I Lemma 9. Let |I| = d ≥ 6. If u ≤ d ≤ w then with probability at least 1− δ, d ≤ D ≤ 2d.
The algorithm asks O(log(1/δ) log(w/u)) queries.

In particular, for u = 1 and w = n, the algorithm asks

O

(
log 1

δ
logn

)
queries.
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Algorithm 1 Estimate (u,w, δ).
Input: u and w such that u ≤ d ≤ w and a failure probability δ

Output: D such that w.p. at least 1− δ, d ≤ D ≤ 2d.

1. For each pi = 1/(u · 2i/4), i = 0, 1, 2, 3, · · · , 8 log(w/u),
2. For t = O(log(1/δ)) independent pi-queries Qi,1, . . . , Qi,t do:
3. qi = (OI(Qi,1) + · · ·+OI(Qi,t))/t.
4. Choose the first i0 such that qi0 < 0.83.
5. If no such i0 exists then output(“d > w”).
6. Otherwise output(D := 2/pi0).

Proof. Let i1 be such that pi1−1 > 2/d and pi1 ≤ 2/d. Then for j = 0, 1, · · · ,

2j/4/d < pi1+3−j ≤ 2(j+1)/4/d.

For every i, j we have

µi := E[qi] = E[OI(Qi,j)] = Pr[I ∩Qi,j 6= ∅] = 1− (1− pi)d.

Since d ≥ 6 we have E[qi1+3] = µi1+3 ≤ 1− (1− 21/4/d)d ≤ 0.74 and

Pr[D > 2d] = Pr[pi0 < 1/d] = Pr[i0 > i1 + 3]
≤ Pr[qi1+3 ≥ 0.83] ≤ δ/2. (4)

The first inequality in (4) follows from the fact that if i0 > i1 + 3 then qi1+3 ≥ 0.83. The
second inequality follows from Chernoff bound (2) with µ = 0.74 and ∆ = 0.83.

Now, since

E[1− qi1+3−j ] = 1− µi1+3−j = (1− pi1+3−j)d

≤ e−pi1+3−jd < e−2j/4
,

we have E[1− qi1−2] ≤ E[1− qi1−1] ≤ 0.136 and

Pr[D < d] = Pr[pi0 > 2/d] = Pr[i0 ≤ i1 − 1]

=
i1−1∑
i=0

Pr[i0 = i] ≤
i1−1∑
i=0

Pr[qi < 0.83]

=
i1−3∑
i=0

Pr[1− qi > 0.17] +
i1−1∑

i=i1−2
Pr[1− qi > 0.17]

≤
i1−3∑
i=0

(
e · e−2(i1−i+3)/4

0.17

)0.17·t

+ δ

4 (5)

≤
∞∑

k=0

(
0.95 · e−2k/4

)0.17·t
+ δ

4 ≤
δ

4 + δ

4 = δ

2 .

In the first summand of (5) we use Chernoff bound (3). In the second summand we use
Chernoff bound (2) for µ = 0.136 and ∆ = 0.17. J
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