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Abstract
In this paper, we study testing decision tree of size and depth that are significantly smaller than the
number of attributes n.

Our main result addresses the problem of poly(n, 1/ϵ) time algorithms with poly(s, 1/ϵ) query
complexity (independent of n) that distinguish between functions that are decision trees of size s

from functions that are ϵ-far from any decision tree of size ϕ(s, 1/ϵ), for some function ϕ > s. The
best known result is the recent one that follows from Blanc, Lange and Tan, [3], that gives ϕ(s, 1/ϵ) =
2O((log3 s)/ϵ3). In this paper, we give a new algorithm that achieves ϕ(s, 1/ϵ) = 2O(log2(s/ϵ)).

Moreover, we study the testability of depth-d decision tree and give a distribution free tester
that distinguishes between depth-d decision tree and functions that are ϵ-far from depth-d2 decision
tree.
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1 Introduction

Decision tree is one of the popular predictive modelling approaches used in many areas
including statistics, data mining and machine learning. Recently, property-testing of sub-
classes of decision trees have attracted much attention [1, 3, 6, 9, 10, 12]. In property testing,
the algorithm is provided by an access to a black box to some Boolean function f and labeled
random examples of f according to some distribution D. Given a subclass of decision trees
C, we need to decide whether f is a decision tree in C or “far” from being in C with respect
to D, [4, 11, 13].

Since finding efficient algorithms for this problem is difficult, the following relaxation is
considered. Let H be a larger class of decision trees H ⊃ C. Then, we are interested in the
question: can we efficiently test C by H? That is, to efficiently decide whether f is a decision
tree in C or “far” from being in H with respect to D, [12]. In this context, the challenge is
to find a small class H ⊃ C such that efficient testing algorithm exists. In this paper, we
address this problem while examining and constructing algorithms that are efficient in the
query complexity and run in polynomial time.

1.1 Models

Let C and H ⊇ C be two classes of Boolean functions f : {0, 1}n → {0, 1}. In the
distribution-free model, the algorithm has an access to a black box query and random
example query. The black box query, for an input x ∈ {0, 1}n returns f(x). The random
example query, when invoked, returns a random example (x, f(x)) such that x is chosen
according to an arbitrary and unknown distribution D. In the uniform distribution model,
D = U is the uniform distribution over {0, 1}n.
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17:2 On Testing Decision Tree

A function g ∈ H is called ϵ-close to f ∈ C with respect to the distribution D if,
PrD[g(x) ̸= f(x)] ≤ ϵ. In the distribution-free property testing C by H, [12], (resp. uniform
distribution property testing), for any Boolean function f , we need to distinguish, with high
probability and via the above queries to f , between the case that f is in C versus the case
that f is ϵ-far (not ϵ-close) from every function in H with respect to D (resp. the uniform
distribution). Such an algorithm is called a tester for C by H. When H = C, the tester is
called a tester for C.

1.2 Decision Tree
A decision tree is a rooted binary tree in which each internal node is labeled with a variable
xi and has two children. Each leaf is labeled with an output from {0, 1}. A decision tree
computes a Boolean function in the following way: given an input x ∈ {0, 1}n, the value of
the function on x is the output in the leaf reached by the path that starts at the root and
goes left or right at each internal node according to whether the variable’s value in x is 0
or 1, respectively.

The size of a decision tree is the number of leaves of the tree. The depth of a node
(resp. leaf) in a decision tree is the number of edges in the path from the root to the node
(resp. leaf). The depth of the tree is the maximum over all the depth values of its leaves. A
depth-d decision tree T is a decision tree of depth at most d. A size-s decision tree T is a
decision tree of size at most s.

1.3 Other Representations of Decision Tree
A monomial is a conjunction of variables, and a term is a conjunction of literals (variable
and negated variable). Two terms t1 and t2 are called disjoint if t1 ∧ t2 = 0 (over the field
F2). A multilinear polynomial (or just a polynomial) is Boolean function that is defined as
a sum of monomials over the field F2. Every Boolean function can be expressed uniquely as
a multilinear polynomial. A disjoint-terms sum is a sum of disjoint terms. Every Boolean
function can be represented as a disjoint-terms sum. The representation is not unique.

A decision tree f can be represented as a disjoint-terms sum according to the following
recurrence. If the decision tree is a leaf, then its disjoint-terms sum representation is the
constant in this leaf. If the root label of f is xi then, f = xif1 + xif0 where f1 and f0 are
the disjoint-terms sum of right and left sub-trees of f respectively. It is easy to see that the
number of terms we get in this recurrence is equal to the number of leaves in the tree labeled
with 1. Therefore, every leaf corresponds to a term and the number of literals in this term is
equal to the depth of the leaf. To represent a disjoint-terms sum as a polynomial, we write
for each appearance of xi as xi + 1 and expand the expressions with the regular arithmetic
rules in the field F2.

2 Main Result and Technique

In this section, we present previous and new results for testing decision trees. In the next
two subsections, we consider two significant results in testing.

2.1 Testing Decision Tree of Size s

Let f be a Boolean function over the variables x1, . . . , xn. For xi1 , . . . , xij
and ξ1, . . . , ξj ∈

{0, 1}, denote by f|xi1←ξ1,...,xij
←ξj

the function that results from substituting xir = ξr,
r = 1, . . . , j in f .
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In [3], Blanc, Lange and Tan give the first tester that runs in poly(n, 1/ϵ) time with
poly(log s, 1/ϵ) log n query complexity and distinguishes between functions that are s-size
decision tree and functions that are ϵ-far from every size-ϕ(s, 1/ϵ) decision tree for some
function ϕ(s, 1/ϵ). When n ≫ s, one can use the reduction from [6] to get a poly(n, 1/ϵ)
time algorithm with poly(s, 1/ϵ) query complexity (independent of n) for the same problem.
The function ϕ achieved in [3] is ϕ(s, 1/ϵ) = 2(log3 s)/ϵ3 . We use a different approach to get
ϕ(s, 1/ϵ) = 2log2(s/ϵ).

In fact, Blanc, Lange and Tan [3] solve a more challenging problem. Their tester is a
tolerant tester. That is, it distinguishes between functions that are ϵ-close to s-size decision
tree and functions that are Ω(ϵ)-far from every size-ϕ(s, 1/ϵ) decision tree.

To achieve their result, Blanc et. al. define for every function f a complete decision tree
T (d, f) of depth d = O(log3 s/ϵ3) as follows. They define the noise sensitivity of f , NS(f),
as the probability that f(x) ̸= f(x + y) where x is uniform random, and for every i, yi = 1
with probability p = O(ϵ/ log s). The score of f with respect to xi, Scorei(f), is defined to
be the expected decrease in the noise sensitivity of f provided that xi is queried. The label
of the root of T (d, f) is selected to be the variable xi that maximizes the score. The left and
right sub-trees of T (d, f) are T (d− 1, f|xi←0) and T (d− 1, f|xi←1), respectively. Then T (0, g)
is defined to be a leaf labeled with 0 if E[g] < 1/2 and 1 otherwise. Here g is the function
that results from f by substituting the partial assignment defined by the path from the root
to the leaf. They prove that, for d = O(log3 s/ϵ3), if f is a size-s decision tree, then f is
ϵ/4-close to T (d, f), and if f is ϵ-far from every size-2O(log3 s/ϵ3) then, since T (d, f) is size-2d(

= 2O(log3 s/ϵ3)
)

decision tree, f is ϵ-far from T (d, f). Moreover, they show that a query to
T (d, f) can be done in poly(n, 1/ϵ) time and poly(log s, 1/ϵ) log n queries. Therefore, T (d, f)
and f can be queried to test if they are ϵ/4-close or ϵ-far. By applying the reduction from [6],
a tester that solves the same problem in poly(n, 1/ϵ) time and poly(s, 1/ϵ) queries to f is
obtained.

In this paper, we use a different approach. Let f be a size-s decision tree. Our algorithm
regards f as a polynomial. Although f may have exponential number of monomials, we are
interested in the influential ones only, that is, the small monomials. The number of small
monomials in the polynomial representation of size-s decision tree may be exponential. To
control the number of small monomials, we shuffle the monomials by choosing a uniform
random a ∈ {0, 1}n and considering T (x) = f(x + a). In disjoint-terms sum representation of
f (see Subsection 1.3), a large term t in f (a term that results from a leaf of depth Ω(log(s/ϵ))
in the tree), with high probability (w.h.p), more than quarter of its variables become positive
in T , and therefore, it only generates large monomials. Therefore, the shuffling process
ensures that the number of significant monomials in T is as small as poly(s/ϵ). This technique
is used in [8] for learning decision tree under the uniform distribution.

Let c be a large constant and let F be the sum of the monomials of size r = c log(s/ϵ)
in T (x). Let G be the sum of monomials of size greater than r and less than 16r in T (x).
First, we run the algorithm of Bshouty and Mansour in [8] to exactly learn F and G in
polynomial time. If the learning algorithm fails, then w.h.p, f is not size-s decision tree and
the algorithm rejects. Then, we define a decision tree T (d, F, G) of depth d = O(log2(s/ϵ))
as follows. Define Frac(F, xi) to be the fraction of the number of monomials in F that
contain xi. Choose a variable xi1 with the minimum index i1 that maximizes Frac(F, xi1)
and use it as the label of the root of T (d, F, G). The left and right sub-trees of T (d, F, G)
are T (d − 1, F (0), G(0)) and T (d − 1, F (1), G(1)), respectively, where F (ξ) is the sum of all
monomials that appear in F|xi1←ξ and not in G|xi1←ξ, and G(ξ) is the sum of all monomials
that appear in G|xi1←ξ and not in F|xi1←ξ.
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17:4 On Testing Decision Tree

We are interested in making a random walk in this tree. Assume we are given the first
m−1 steps in the random walk ξ(m−1) = (ξ1, ξ2, . . . , ξm−1) ∈ {0, 1}m−1, F ξ(m−1) and Gξ(m−1) .
We find the variable with the minimum index im that maximizes Frac(F ξ(m−1)

, xim
). Choose

a random uniform ξm ∈ {0, 1}. Then, for ξ(m) = (ξ1, ξ2, . . . , ξm), F ξ(m) is defined to be the
sum of all the monomials in F ξ(m−1)

|xim←ξm
that are not in Gξ(m−1)

|xim←ξm
, and Gξ(m) is defined to be

the sum of all the monomials in Gξ(m−1)

|xim←ξm
that are not in F ξ(m−1)

|xim←ξm
. If F ξ(m) is a constant

function η ∈ {0, 1}, then we have reached a leaf labeled with η. The way we define F ξ(m) and
Gξ(m) turns to be crucial in the algorithm and is needed for its correctness proof. We note
here that, unlike the tester of Blanc, Lange and Tan, this tree is not the decision tree of T or
F , because every path in the tree treats F and G as sets of monomials rather than functions.

We show that, when f is a size-s decision tree, for a random shuffling and random ξ =
(ξ1, ξ2, . . . , ξm) ∈ {0, 1}m, with high probability, Frac(F ξ(m)

, xim
) is at least 1/O(log(s/ϵ)).

Hence, for a random walk in the tree T (d, F, G), each step decreases the number of monomials
in F ξ(m) by a factor of 1− 1/O(log(s/ϵ)) on average. Therefore, since F contains at most
poly(s/ϵ) monomials, with high probability, a random walk in T (d, F, G) reaches a leaf in
O(log2(s/ϵ)) steps.

Now suppose f is ϵ-far from every size-2O(log2(s/ϵ)) decision tree. It might happen that a
function f that is ϵ-far from size-2O(log2(s/ϵ)) decision tree passes all the above tests, because
the above algorithm relies only on the small monomials of T . Moreover, it might happen that
the small monomials of such function coincide with the monomials of a small size decision
tree. As a result, we add another test at each leaf of the tree that checks if the function T at
the leaf of the tree T|xi1←ξ1,...,xim←ξm

is ϵ/4-close to a constant function.
For a function that is ϵ-far from every size-2O(log2(s/ϵ)) decision tree, if it is not rejected

because its small monomials coincide with the monomial of small size decision tree, then the
random walks will often reach a small depth leaf. On the other hand, if almost all the small
depth leaves give a good approximation of the function, then T is ϵ-close to a small depth
tree. Therefore, the function is rejected with high probability.

We also show that, although the tester treats F and G as sets of monomials and not as
functions, if f is size-s decision tree then the tree gives a good approximation of T .

The above tester runs in poly(n, 1/ϵ) time and queries. Using the reduction in [6], it can
be changed to a tester that runs in poly(s, 1/ϵ)n time and makes poly(s, 1/ϵ) queries.

2.2 Testing Decision Tree of Depth d

The algorithm of Blanc, Lange and Tan [3] also distinguishes between depth-d decision tree
and functions that are ϵ-far from depth-O(d3/ϵ3) decision trees under the uniform distribution.
Again, we can make the query complexity independent of n using the reduction of Bshouty, [6],
and get a 2O(d)n time uniform-distribution tester that asks 2O(d)/ϵ queries and distinguishes
between depth-d decision tree and functions that are ϵ-far from depth-O(d3/ϵ3) decision
trees.

In this paper, we give a new simple distribution-free tester that runs in 2O(d)n time, asks
2O(d)/ϵ queries and distinguishes between depth-d decision tree and functions that are ϵ-far
from depth-d2 decision trees.

Our algorithm relies on the following fact. Let f be a depth-d decision tree. Consider
the polynomial representation of f = M1 + M2 + · · · + Mm. For any maximal monomial
Mi = xi1xi2 · · ·xit (a monomial that is not sub-monomial of any other monomial in f) and
any ξ1, . . . , ξt ∈ {0, 1}, the function f|xi1←ξ1,...,xit←ξt

is depth (d− 1)-decision tree.
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We can define a depth-d2 decision tree Tf that is equivalent to f as follows: Find a
maximal monomial Mi = xi1xi2 · · ·xit

. Then use all its variables in the first t levels of the
decision tree Tf . That is, build a complete tree of depth t that all its nodes at level j are
labeled with xij . This defines a different path for each xi1 = ξ1, . . . , xit = ξt. Then, in the
last node of such path, attach the tree Tg for g = f|xi1←ξ1,...,xit←ξt

. Since depth-d decision
trees are degree-d polynomials, we have t ≤ d, and since the decision trees at level t are
depth-(d− 1) decision trees, the depth of Tf is at most d2 (in fact it is at most d(d− 1)/2).

For the tester, we will not construct Tf , but instead, we show that for any assignment a,
finding the route that a takes in the tree Tf can be done efficiently. For this end, we first
show that if f is a depth-d decision tree then, the relevant variables of f can be found in
Õ(22d) + 2d log n queries. Then, we show that a maximal monomial of f can be found in
Õ(2d) queries. For an assignment a drawn according to a distribution D, if f is a depth-d
decision tree, the route that a takes in Tf ends before depth d2. If f is ϵ-far from depth-d
decision tree, then, either finding the relevant variables of f fails, or finding a maximal
monomial of size at most d fails or, with probability at least ϵ, the route in Tf goes beyond
depth d2. The later happens because if it does not for O(1/ϵ) examples drawn according to
a distribution D, then truncating the tree up to depth d2, results a tree that is w.h.p ϵ-close
of a depth d2-decision tree with respect to D.

Notice that the query complexity of this tester depends on n because finding the relevant
variables of f takes Õ(22d) + 2d log n queries which depends on n. To make the query
complexity independent of n, we use the reduction of Bshouty in [6].

2.3 Non-Polynomial Time Testers
A recent breakthrough result of Blanc et. al. [2] with the reduction of Bshouty [6] gives
a uniform tester for size-s decision tree that runs in n(s/ϵ)O(log((log s)/ϵ)) time and makes
(s/ϵ)O(log((log s)/ϵ)) queries.

3 A Tester for Depth-d Decision Tree

In this section we prove the following result:

▶ Theorem 1. There is a distribution-free tester that makes q = Õ(22d/ϵ) queries to unknown
function f , runs in O(qn) time and
1. Accepts w.h.p if f is a depth-d decision tree.
2. Rejects w.h.p if f is ϵ-far from depth-d2 decision trees.

3.1 The Key Lemma
We start with some notations and definitions, and then prove the key Lemma for the tester.

Recall that monomial is a conjunction of variables. A k-monomial is a monomial with
at most k variables. A polynomial (over the field F2) is a sum (in the binary field F2) of
monomials. An s-sparse polynomial is a sum of at most s monomials. We say that the
polynomial f is of degree-d if its monomials are d-monomials.

We say that xi is relevant variable in f if f|xi←0 ̸= f|xi←1. It is well known that (see for
example Lemma 4 in [7]):

▶ Lemma 2. A depth-d decision tree is a 3d-sparse degree-d polynomial with at most 2d

relevant variables.
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17:6 On Testing Decision Tree

Let f = M1 + M2 + · · ·+ Mt be a polynomial. We say that Mi is a maximal monomial
of f if Mi is not a sub-monomial of any other monomial Mj , i.e., for every other monomial
Mj , there is a variable in Mi that is not in Mj .

We now prove the key Lemma for our tester:

▶ Lemma 3. Let f be a depth-d decision tree and f = M1 + M2 + · · ·+ Mt be its polynomial
representation. Let Mi = xi1 · · ·xid′ , d′ ≤ d be a maximal monomial of f . For any
ξ1, ξ2, . . . , ξd′ ∈ {0, 1}, we have that f|xi1←ξ1,··· ,xi

d′
←ξd′

is depth-(d− 1) decision tree.

Proof. The proof is by induction on the number of variables m of f . The case m = 1 is
trivial. Now assume that the result holds for any m ≤ k.

Let T be any depth-d decision tree with k + 1 variables that represents f . Let Mi =
xi1 · · ·xid′ , d′ ≤ d be a maximal monomial of f . Let X = {xi1 , . . . , xid′}. If the variable of
the root of T is xij ∈ X then, T|xij

←0 and T|xij
←1 are left and right decision sub-trees of T

and are of depth at most d− 1. Then, T|xi1←ξ1,··· ,xi
d′
←ξd′

is of depth at most d− 1 for any
ξ1, . . . , ξd′ ∈ {0, 1}.

If the variable of the root of the tree T is xℓ ̸∈ X, then the left sub-tree T|xℓ←0 is
a depth-(d − 1) decision tree and has at most k variables. We now claim that Mi is a
maximal monomial of T|xℓ←0. This is because of the fact that substituting xℓ = 0 in the
polynomial representation only removes monomials in f . Since xℓ is not in Mi, it does not
remove Mi. Therefore, Mi is maximal monomial in T|xℓ←0, and by the induction hypothesis
T|xℓ←0,xi1←ξ1,··· ,xi

d′
←ξd′

is depth-(d− 2) decision tree.
The right sub-tree T|xℓ←1 is a depth-(d− 1) decision tree that has at most k variables.

We now claim that T|xℓ←1 also has Mi as a monomial and it is maximal. Assume for the
sake of contradiction that Mi is removed or not maximal, then there must be a monomial
Mj = xℓMi in T . Since Mi is sub-monomial of Mj , we get a contradiction to the fact
that Mi is maximal in f . Therefore, by the induction hypothesis T|xℓ←1,xi1←ξ1,··· ,xi

d′
←ξd′

is
depth-(d− 2) decision tree. This implies that

T|xi1←ξ1,··· ,xi
d′
←ξd′

= xℓ · T|xℓ←1,xi1←ξ1,··· ,xi
d′
←ξd′

+ xℓ · T|xℓ←0,xi1←ξ1,··· ,xi
d′
←ξd′

is depth-(d− 1) decision tree. ◀

For every degree-d polynomial f , we define the following decision tree Tf . If f is constant
function, then Tf is a leaf labeled with this constant. Let f = M1 + M2 + · · ·+ Mt. Consider
any maximal monomial Mi of f . Let Mi = xi1 · · ·xid′ where i1 < i2 < · · · < id′ . The tree
Tf has all the variables xi1 , · · · , xid′ at the first d′ levels of the tree. That is, the first d′

levels of the tree is a complete tree where the label of all the nodes at level j is xij
. So every

ξ1, . . . , ξd′ ∈ {0, 1} leads to a different vertex at level d′ in Tf from which we recursively
attach the decision tree Tg where g = f|xi1←ξ1,··· ,xi

d′
←ξd′

.
We now prove:

▶ Lemma 4. Let f be a degree-d polynomial. Then, for h = d(d− 1)/2:
1. If f is a depth-d decision tree, then Tf is depth h-decision tree.
2. If f is ϵ-far from every depth h + 1 decision tree according to a distribution D then, for a

random assignment a drawn according to the distribution D, with probability at least ϵ,
the path that a takes in Tf reaches depth h + 1.

Proof. 1. follows immediately from Lemma 3.
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To prove 2., let T ′f be the tree Tf where every vertex of depth h + 1 is changed to a
leaf labeled with 0. Since f is ϵ-far from every depth h + 1 decision tree according to the
distribution D, it is ϵ far from T ′f . Since the leaves of T ′f of depth at most h correctly compute
f , the probability that a random assignment a chosen according to distribution D ends up
in a leaf of depth at most h is less than 1− ϵ. This completes the proof. ◀

3.2 The Tester
In this section, we prove Theorem 1. To that end, we start by the following Lemma:

▶ Lemma 5. We have
1. There is an algorithm that for a degree-d polynomial f makes q = Õ(22d)+2d log n queries,

runs in time O(qn) and finds the relevant variables of f .
2. There is an algorithm that for a degree-d polynomial over 2d variables X makes q′ = Õ(2d)

queries, runs in time O(q′n) and finds a maximal monomial in f .
The proof of Lemma 5 is given in subsection 3.3. This immediately gives the following result
that we need for our tester.

▶ Lemma 6. Let f be a sparse-3d degree-d polynomial over 2d variables. Let h = d(d− 1)/2.
Given the relevant variables of f , for any a ∈ {0, 1}n, the path that a takes in Tf up to depth
at most h + 1 can be computed in Õ(2d)h time.

The tester’s paradigm is as follows. First, the tester finds the relevant variables of f . If
the number of relevant variables exceeds 2d, then the tester rejects. The tester then, for
t = O(1/ϵ) assignments a(1), . . . , a(t) drawn according to the distribution D, finds the route
of each a(i) in Tf . If no maximal monomial of size at most d can be found then the tester
rejects. If one of the routes exceeds depth h = d(d− 1)/2, the algorithm rejects. Otherwise
it accepts. Each route takes time Õ(2d). So the number of queries is q = Õ(22d)/ϵ + 2d log n

and the time is O(qn). We now use the reduction of Bshouty in [6] to make the query
complexity independent of n and get the result. See Lemma 26 in Appendix A.

3.3 Proof of Lemma 5
In this subsection, we prove Lemma 5. We show how to find the relevant variables and a
maximal monomial of any degree-d polynomial.

The following is a very well known result [8]:

▶ Lemma 7. For any non-constant degree-d polynomial f over F2, we have Pr[f(x) ̸=
f(0)] ≥ 1/2d.

The following is a well known result in learning theory. We prove it for completeness.

▶ Lemma 8. There is an algorithm that given any degree-d polynomial f over v variables
and a set X of some of its relevant variables, asks 2d log(1/δ) + log v queries and, with
probability at least 1− δ, decides if the variables in X are all its relevant variables, and if
not, finds a new relevant variable of f .

Proof. Let X ′ = {xi1 , . . . , xit
} be the set of variables that are not in X. Define g = f+f|X′←0.

Since g is of degree at most d, by Lemma 7, with 2d log(1/δ) queries to g, with probability
at least 1 − δ, we can decide if g is a constant function. If not, we get an assignment a

such that g(a) ̸= g(0). If g is constant function τ ∈ {0, 1}, then f(x) = f|X′←0 + τ and f is
independent of X ′. So, the variables in X are all the relevant variables of f

STACS 2022
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If g(a) ̸= g(0), then since g(0) = 0, we have f(a) ̸= f|X′←0(a) = f(a|X′←0). Now
recursively flip half of the entries of a that differ from a|X′←0 and ask a query and keep
the two assignments that have different values in f . Eventually, we get an entry aik+1 that
flipping it changes the value of the function. Then, xik+1 is relevant variable in f . Now
xik+1 ̸∈ X is a new relevant variable because the entries of each xij

∈ X in a agree with the
value of the same entry in a|X′←0. The number of queries in this procedure is at most log v.
This completes the proof. ◀

Therefore, for degree-d polynomial, choosing confidence δ/2d in the above algorithm, with
probability at least 1− δ, we find the first 2d relevant variables of f using Õ(22d) log(1/δ) +
2d log n queries. If f has more than 2d relevant variables, then f is not a depth-d decision
tree and the tester rejects.

We now prove

▶ Lemma 9. Let f be a degree-d polynomial and X be the set of its relevant variables. Let
M = xi1 · · ·xik

be a sub-monomial of some monomial of f (M is not necessarily a monomial
of f). There is an algorithm that asks O(2d log(1/δ)+2k log |X|) queries and, with probability
at least 1 − δ, decides if M is a maximal monomial of f , and if it is not, it finds a new
variable xik+1 such that M ′ = xi1 · · ·xik

xik+1 is a sub-monomial of some monomial of f .

Proof. Define the function G(x) = 1 +
∑

(ξ1,...,ξk)∈{0,1}k f|xi1←ξ1,··· ,xik
←ξk

(x). We prove the
following:
1. A query to G can be simulated by 2k queries to f .
2. G is a polynomial of degree at most d− k.
3. M is maximal monomial of f if and only if G = 0.
4. If G ̸= 0, then for any relevant variable xik+1 of G, M ′ = xi1 · · ·xik

xik+1 is a sub-monomial
of some monomial of f .

The first item is obvious. We prove 2-4. Since M is a sub-monomial of some monomial
of f , we have f = Mg + h, where g is a polynomial of degree at most d− k (independent
of xi1 , . . . , xik

) and h is a polynomial of degree at most d that M is not sub-monomial of
any of its monomials. Notice that M is maximal monomial of f if and only if g = 1. For
a monomial M ′′ in h, we have that some variable in M , say w.l.o.g. xi1 , is not in M ′′ and
therefore,∑

(ξ1,...,ξk)∈{0,1}k

M ′′
|xi1←ξ1,··· ,xik

←ξk
(x) =

∑
ξ1∈{0,1}

∑
(ξ2,...,ξk)∈{0,1}k−1

M ′′
|xi2←ξ2,··· ,xik

←ξk
(x) = 0.

Denote by ξ := (ξ1, · · · , ξk) ∈ {0, 1}k, then we can write:

G(x) + 1 =
∑

ξ∈{0,1}k

f|xi1←ξ1,··· ,xik
←ξk

(x)

= g(x)
∑

ξ∈{0,1}k

M|xi1←ξ1,··· ,xik
←ξk

(x) +
∑

ξ∈{0,1}k

h|xi1←ξ1,··· ,xik
←ξk

(x)

= g(x) +
∑

(M ′′ monomial in h)

∑
(ξ1,...,ξk)∈{0,1}k

M ′′
|xi1←ξ1,··· ,xik

←ξk
(x)

= g(x).

Hence,f = MG + M + h and the results 2-4 follows.
By Lemma 8, there is an algorithm that asks 2d−k log(1/δ) + log |X| queries to G (and

therefore, O(2d log(1/δ) + 2k log |X|) queries to f) and, with probability at least 1− δ, either
decides that G = 0, in which case M is maximal monomial, or finds a new relevant variable
xik+1 of G, in which case M ′ = xi1 · · ·xik

xik+1 is a sub-monomial of some monomial of f . ◀
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For degree-d polynomials with |X| ≤ 2d relevant variables, we choose confidence δ/2d in
the above algorithm and then, with probability at least 1− δ, we find a maximal monomial
of f .

4 A Tester for Size-s Decision Tree

In this section we prove:

▶ Theorem 10. There is a (uniform-distribution) tester that makes q = poly(s, 1/ϵ) queries
to unknown function f , runs in poly(s, 1/ϵ)n time and
1. Accepts w.h.p if f is a size-s decision tree.
2. Rejects w.h.p if f is ϵ-far from size-(s/ϵ)O(log(s/ϵ)) decision trees.

4.1 Preliminary Results
For a Boolean function f , the constant-depth of f , cd(f), is the minimum number ℓ of
variables X = {xj1 , · · · , xjℓ

} such that f|X←0 is a constant function. We define M(f) the
set of all monomials in the minimum size polynomial representation of f . Since minimum
size polynomial representation of a Boolean function is unique, M(f) is well defined. For a
set of monomials S, we denote ΣS =

∑
M∈S M . Notice that ΣM(f) = f and M(ΣS) = S.

For any Boolean function and an interval I (such as [d] = {1, 2, . . . , d}, [d1, d2] = [d2]\[d1− 1]
or (d1, d2] = [d2]\[d1]), we define f I =

∑
M∈M(f) and |M |∈I M where |M | is the number of

variables in M . We first prove:

▶ Lemma 11. For any S′ ⊆M(f), we have cd(ΣS′) ≤ cd(f). In particular, for any interval
I, we have cd(f I) ≤ cd(f).

Proof. Let cd(f) = r. Then, there is a set X = {xj1 , · · · , xjr
} such that f|X←0 is constant.

Therefore, for every non-constant M ∈ M(f), we have M|X←0 = 0. Then, (ΣS′)|X←0 is
constant and cd(ΣS′) ≤ cd(f). ◀

▶ Lemma 12. Let f be any Boolean function. If cd(f) ≤ ℓ, then there is a variable xi that
appears in at least 1/ℓ fraction of the non-constant monomials of f .

Proof. If cd(f) ≤ ℓ, then there is a set X = {xj1 , · · · , xjℓ
} such that f|X←0 is a constant

function. This implies that for every non-constant monomial, there is xi ∈ X that appears
in it. By the pigeonhole principle the result follows. ◀

Let a ∈ {0, 1}n be a random uniform assignment. Consider, T (x) = f(x + a). Then:

▶ Lemma 13. Let f be a size-s decision tree and let T (x) = f(x + a) for a random
uniform assignment a ∈ {0, 1}n. For a random uniform ξ1, . . . , ξj ∈ {0, 1} and any variables
xi1 , . . . , xij where each iℓ may depend on T , a, i1, . . . , iℓ−1 and ξ1, . . . , ξℓ−1 but is independent
of ξℓ, . . . , ξj and q = (xi1 ← ξ1, . . . , xij

← ξj), with probability at least 1−s2−h, cd
(
T|q

)
≤ h.

Proof. We have T|xi1←ξ1,...,xij
←ξj

(0) = T (0|xi1←ξ1,...,xij
←ξj

) = f(a + 0|xi1←ξ1,...,xij
←ξj

).
Since b := a + 0|xi1←ξ1,...,xij

←ξj
is random uniform in {0, 1}n, the path that b takes in the

computation of f(b) is a random uniform path in f . With probability at least 1 − s2−h,
this path reaches a leaf at depth less than or equal to h in f . Therefore, with probability
at least 1 − s2−h, there are h′ ≤ h variables xj1 , . . . , xjh′ (the variables in this path)
such that fxj1←bj1 ,...,xj

h′
←bj

h′
is constant, say τ ∈ {0, 1}. Let J = {j1, j2, . . . , jh′} and

I = {i1, i2, . . . , ij} and suppose, w.l.o.g, J ∩ I = {i1, . . . , ir}. Then,
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τ = f|xj1←bj1 ,...,xj
h′
←bj

h′
(x) = f|xj1←bj1 ,...,xj

h′
←bj

h′
(x + a)

= T|xj1←bj1 +aj1 ,...,xj
h′
←bj

h′
+aj

h′
=

(
T|xi1←ξ1,...,xir←ξr

)
|(J\I)←0

and thus,

(T|q)|(J\I)←0 = (T|xi1←ξ1,...,xij
←ξj

)|(J\I)←0

= (T|xi1←ξ1,...,xir←ξr
)|(J\I)←0,xir+1←ξr+1,...,xij

←ξj
= τ.

Therefore, cd
(
T|q

)
≤ |J\I| ≤ h′ ≤ h. ◀

Let

r = log(s/ϵ). (1)

The tester uses Lemma 13, poly(log(s/ϵ))/ϵ times, therefore we can choose h = 2r which, by
union bound, adds a failure probability of (poly(log(s/ϵ))/ϵ) · s2−h = Õ(ϵ/s) to the tester.
Let E1 be the event

E1 : (∀q) cd(T|q) ≤ 2r, (2)

for all the q that are generated in the tester.
For the rest of this section, we let f be a size-s decision tree. Let f = f1 + f2 + · · ·+ fs

be the disjoint-terms sum representation of f .1 Let Ti = fi(x + a) for i ∈ [s]. It is easy to
see that T = T1 + T2 + · · ·+ Ts is disjoint-terms sum representation of T . We denote by T +

i

the conjunction of the non-negated variables in Ti. We prove:

▶ Lemma 14. Let λ be any constant. For a random uniform a, with probability at least
1− s(ϵ/s)λ the following event E2(λ) holds

E2(λ) : For every i, if |Ti| > 16λr then |T +
i | ≥ 4λr. (3)

Proof. Since Ti(x) = fi(x + a) and a is random uniform, each variable in Ti is positive with
probability 1/2. By Chernoff bound the result follows. ◀

To change the disjoint-terms representation of T to polynomial representation, we take
every term Ti and expand it to sum of monomials2. A monomial that is generated from even
number of different terms will not appear in the polynomial, while, those that are generated
from odd number of different terms will appear in the polynomial.

Let M1 + M2 + · · · + Mℓ be the multivariate polynomial representation of T , where
|M1| ≤ |M2| ≤ · · · ≤ |Mℓ|. Note that ℓ can be exponential in n. We say that Mi is generated
by Tj if j is the smallest integer for which Tj generates Mi. The following is a trivial result:

▶ Lemma 15. If Mi is generated by Tj , then |Tj | ≥ |Mi| ≥ |T +
j | and T +

j is a sub-monomial
of Mi. That is, Mi = T +

j M ′
i for some monomial M ′

i .

1 Every size-s decision tree can be represented as a sum of terms T1 + T2 + · · · + Ts′ , s′ ≤ s, where
Ti ∧ Tj = 0 for every i ≠ j. The number of terms s′ is the number of leaves labeled with 1. See for
example [8]. Here we assume s′ = s because we can always change a term t to txj + txj .

2 For example x1x2x̄3x̄4 = x1x2(x3 + 1)(x4 + 1) = x1x2x3x4 + x1x2x3 + x1x2x4 + x1x2.
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▶ Lemma 16. If E2(λ) in (3) holds, then the number of monomials Mi of size at most 4λr

is at most s(s/ϵ)16λ.

Proof. By Lemma 14, the monomials that has size at most 4λr are generated from terms of
size at most 16λr. We have at most s terms of size at most 16λr and each one generates at
most 216λr monomials. So we have at most s(s/ϵ)16λ such monomials. ◀

▶ Lemma 17. If E2(λ) in (3) holds, then there are s monomials N1, N2, . . . , Ns, each of
size at least 4λr, such that for every monomial Mi (of T ) of size at least 16λr, there is Nj

where Mi = NjM ′
i for some monomial M ′

i .

Proof. Let Ni = T +
i if |T +

i | ≥ 4λrn and Ni = x1x2 · · ·xn otherwise. Let Mi be a monomial
of T of size at least 16λr. By Lemma 15, Mi is generated by a monomial Tj of size at least
16λr. By Lemma 14, |T +

j | ≥ 4λr. By Lemma 15, Nj = T +
j is a sub-monomial of Mi. ◀

We remind the reader that for an interval R, T R is the sum of the monomials M of T

of size |M | ∈ R. For a set of monomials A, we denote ∨A = ∨M∈AM . We also need the
following lemma:

▶ Lemma 18. Suppose E2(λ) holds. Let P = ∨M(T (16λr,s]). For a random uniform
ξ1, . . . , ξj ∈ {0, 1} and any variables xi1 , . . . , xij

where each iℓ may depend on T , i1, . . . , iℓ−1
and ξ1, . . . , ξℓ−1 but independent of ξℓ, . . . , ξj and q = (xi1 ← ξ1, . . . , xij

← ξj), with probab-
ility at least 1− s(ϵ/s)2λ, Pr

[
P|q = 1

]
≤ s

(
ϵ
s

)2λ
.

Proof. By Lemma 17, we have P = N1P1∨N2P2∨· · ·∨NsPs, where Pi is a Boolean function
and Ni is a monomial of size at least 4λr for each i ∈ {1, . . . , s}. The probability that each
(Ni)|q is not zero and is of size at most 2λr is at most 2−2λr = (ϵ/s)2λ. Since, for all i ∈ [s],
(Ni)|q is zero or |(Ni)|q| > 2λr implies Pr[P|q = 1] ≤ s(ϵ/s)2λ, the result follows. ◀

4.2 The Tester
In this subsection, we give the tester and prove its correctness. Recall that r = log(s/ϵ). Let
c ≥ 2 be any constant. The tester first chooses a random uniform a ∈ {0, 1}n and defines
T (x) = f(x + a). Then, it learns all the monomials of size 16r′ where3 r′ = 16cr. This can be
done by the algorithm in [8] in poly(n, s/ϵ) time and queries. We show later how to eliminate
n in the query complexity. Then, the tester splits the monomials of size at most 16r′ to
monomials of size less or equal to r′ (the function F ) and those that have size between r′

and 16r′ (the function G). The tester performs O(1/ϵ) random walks in a decision tree. For
each stage j, the set Hj is defined in a way that (1) it is a subset of the monomials of the
function F|xi1←ξ1,...,xij−1←ξj−1

and (2) it contains a variable that appears in at least 1/(2r)
fraction of the monomials. At each stage j, the tester deterministically chooses a variable
xij with the smallest index ij that appears in at least 1/(2r) fraction of the monomials of
ΣHj and chooses a random ξj ∈ {0, 1} for xij

. See the details in Algorithm 1.
Although this decision tree is not the decision tree of F , we can still show that when f is

size-s decision tree, with probability at least 2/3 the random walk ends after O(log2(s/ϵ))
steps and then the tester accepts. When it is ϵ-far from any size-(s/ϵ)O(log(s/ϵ)) decision tree
then, with probability at least 2/3, something goes wrong (the learning algorithm fails or no
variable appears in at least 1/(2r) fraction of the monomials of Hj) or the random walk does
not end after Ω(log2(s/ϵ)) steps and then it rejects.

3 Here c can be 2. We kept it to show the effect of this constant on the success probability of the tester.
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Algorithm 1 : Test(f) - A tester for size-s decision tree.

Input: Black box access to f

Output: Accept or Reject
1: T ← f(x + a) for random uniform a ∈ {0, 1}n.
2: Learn T [16r′]. If FAIL then Reject.
3: F ← T [r′]; G← T (r′,16r′]; H0 ←M(F ); L0 ←M(G).
4: for i = 1 to 40/ϵ do
5: j ← 0; q0 ← Empty sequence.
6: while ΣHj is not constant and j < 210c(log2(s/ϵ)) do
7: j ← j + 1.
8: Find a variable xij

with the smallest index that appears in at least 1/(2r) fractions
of the monomials in Hj−1.

9: If no such variable exists then Reject.
10: Choose a random uniform ξj ∈ {0, 1}.
11: qj ← (qj−1; xij

← ξj).
12: ▷ I.e., add to the list of substitutions qj−1 the substitution xij

← ξj .
13: Hj ←M((ΣHj−1)|xij

←ξj
)\M((ΣLj−1)|xij

←ξj
)

14: Lj ←M((ΣLj−1)|xij
←ξj

)\M((ΣHj−1)|xij
←ξj

)
15: end while
16: if j = 210c(log2(s/ϵ)) then
17: Reject.
18: end if
19: end for
20: if Pr[T|qj

= 1] is in [ϵ/4, 1− ϵ/4] then
21: Reject
22: end if
23: Accept.

The tester query complexity is poly(n, s/ϵ). We use the reduction from [6] to change the
query complexity to poly(s/ϵ).

▶ Lemma 19. Assume that the event E2(16c) in (3) holds. Let F = T [r′] and G = T (r′,16r′].
Let xi1 , . . . , xij

be variables, ξ1, . . . , ξj be random uniform values in {0, 1}, qj = (xi1 ←
ξ1, . . . , xij

← ξj), qj+1 = (qj , xij+1 ← ξj+1), Hj, Hj+1 and Lj as defined in the procedure
Test(f) in Algorithm 1. Then, with probability at least 1− s(ϵ/s)3c, we have
1.

Hj ⊆M
(

(T|qj
)[r′]

)
. (4)

Let E be the event that (4) holds for all j ≤ 210c log2(s/ϵ) and all the 40/ϵ random walks
of the tester. Then, Pr[E] ≥ 1− (ϵ/s)2c.

Assuming that E holds, then,
2. There is a variable xij+1 that appears in 1/(2r) fraction of the monomials in Hj.
3. If ξj+1 = 0, then |Hj+1| ≤ (1− 1/(2r))|Hj |.
4. If ξj+1 = 1, then |Hj+1| ≤ |Hj |.

Proof. Let T = F + G + W such that W = T (16r′,s]. We first show that with probability
at least 1− s(ϵ/s)3c, we have (W|qj

)[r′] = 0. Consider N1, N2, . . . , Ns in Lemma 17. Every
monomial in W is of the form MNi for some monomial M and i ∈ [s]. We also have
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|Ni| ≥ 4r′ for all i ∈ [s]. The probability that for some i ∈ [s] we have that (Ni)|qj
is not

zero and of size at most r′ is at most s2−3r′ ≤ s(ϵ/s)3c. Therefore, with probability at least
1− s(ϵ/s)3c, we have (W|qj

)[r′] = 0.
By induction, we prove that:

1. Hj ∩ Lj = ∅.

2. Hj contains monomials of size at most r′ and
3.

ΣHj + ΣLj = F|qj
+ G|qj

. (5)

For j = 0 the result follows from the fact that H0 =M(T [r′]) =M(F ), L0 =M(T (r′,16r′]) =
M(G) and q0 = () is the empty sequence. Assume the above hold for j − 1. We now prove it
for j. 1 and 2 follow immediately from steps (13) and (14) in the algorithm. For 3, we have4

Hj + Lj = Hj ∪ Lj =M((ΣHj−1)|xij
←ξj

) +M((ΣLj−1)|xij
←ξj

)

=M((ΣHj−1)|xij
←ξj

+ (ΣLj−1)|xij
←ξj

) =M((ΣHj−1 + ΣLj−1)|xij
←ξj

)

=M((F|qj−1 + G|qj−1)|xij
←ξj

) =M(F|qj
+ G|qj

),

which implies the result. Since Hj contains the monomials of size at most r′, (F|qj
)[r′] = F|qj

and Hj ∩ Lj = ∅, we get Hj ⊆ (Hj + Lj)[r′] = S
(

F|qj
+ (G|qj

)[r′]
)

. Then, with probability
at least 1− s(ϵ/s)3c, we have

(T|qj
)[r′] = (F|qj

)[r′] + (G|qj
)[r′] + (W|qj

)[r′] = F|qj
+ (G|qj

)[r′] + (W|qj
)[r′]

= F|qj
+ (G|qj

)[r′],

and then, Hj ⊆ S
(

F|qj
+ (G|qj

)[r′]
)

= S
(

(T|qj
)[r′]

)
. This completes the proof of 1.

By Lemma 11, Equation (2) and case 1 of this Lemma, we have: cd(ΣHj) ≤ cd(T [r′]
|qj

) ≤
cd(T|qj

) ≤ 2r. Therefore, by Lemma 12 the result 2 follows.
We now prove (3-4). Since Hj+1 = M((ΣHj)|xij+1←ξj+1)\M((ΣLj)|xij+1←ξj+1) ⊆

M((ΣHj)|xij+1←ξj+1), we get 4. Since xij+1 appears in more than 1/(2r) fraction of the
monomials in Hj , we get 3. ◀

Before we prove the next result, we give some more notations. For a set of monomials A and
q = (xi1 ← ξ1, . . . , xij ← ξj), we denote A|q = {Mq|M ∈ A}. Recall that ∨A = ∨M∈AM .
The following properties are easy to prove: Let g be a Boolean function, A, B sets of
monomials, q = (xi1 ← ξ1, . . . , xij

← ξj) and q′ = (xi′1
← ξ′1, . . . , xi′

j
← ξ′j). Then:(I)

(A|q)|q′ = A|q,q′ , (II) M(g|q) ⊆M(g)|q, (III) (∨A)|q = ∨A|q, (IV) if A ⊆ B then5 ∨A⇒ ∨B

and (V) ΣA⇒ ∨A and g ⇒ ∨M(g).
Using the above notations and results we prove:

▶ Lemma 20. Suppose events E2(c) and E2(16c) in (3) hold. If ΣHj = η is a constant
function, η ∈ {0, 1}, then with probability at least 1− (ϵ/s)2c−1, Pr[T|qj

̸= η] ≤ s
(

ϵ
s

)2c−1
.

4 The operation + for sets is the symmetric difference of sets.
5 f ⇒ g means if f(x) = 1 then g(x) = 1. In particular, Pr[f = 1] ≤ Pr[g = 1].
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Proof. Let T = F + G + W , where F = T [r′], G = T (r′,16r′] and W = T (16r′,s]. We have,

Pr[T|qj
̸= η] = Pr[F|qj

+ G|qj
+ W|qj

̸= η] = Pr[ΣHj + ΣLj + W|qj
̸= η] By (5)

= Pr[ΣLj + W|qj
̸= 0] ≤ Pr[ΣLj = 1] + Pr[W|qj

= 1].

Since W = T (16r′,s] ⇒ ∨M(T (16r′,s]), by Lemma 18, we have, with probability at least
1− s(ϵ/s)32c, Pr[W|qj

= 1] ≤ s
(

ϵ
s

)32c
. Since

Lj =M((ΣLj−1)|xij
←ξj

)\M((ΣHj−1)|xij
←ξj

) ⊆M((ΣLj−1)|xij
←ξj

)

⊆M(ΣLj−1)|xij
←ξj

= (Lj−1)|xij
←ξj

,

we can conclude that, Lj ⊆ (L0)|q =M(G)|q ⊆M(T (r′,s])|q =M(T (16cr,s])|q, which implies
that ΣLj ⇒ ∨Lj ⇒ ∨M(T (16cr,s])|q = (∨M(T (16cr,s]))|q. Therefore, by Lemma 18, with
probability at least 1− s(ϵ/s)2c, Pr[ΣLj = 1] ≤ Pr[(∨M(T (16cr,s]))|q] ≤ s

(
ϵ
s

)2c
. ◀

▶ Lemma 21. Suppose the events E2(4c), E2(16c) and E hold. If f is a size-s decision tree
then, with probability at least 1− (ϵ/s)O(s/ϵ), ΣHk is constant for k ≤ 210 log2(s/ϵ).

Proof. By Lemma 16, we have |H0| = |M(F )| = |M(T [r′])| ≤ s(s/ϵ)64c. By Lemma 19,
we have that with probability 1/2, ξj = 1 and then |Hj+1| ≤ |Hj |. And, with probability
1/2, ξj = 0 and then |Hj+1| ≤ (1 − 1/(2r))|Hj |. Therefore, when ξ1, . . . , ξt contains
2r ln(s(s/ϵ)64c) ≤ 28c log2(s/ϵ) zeros, then ΣHk will be constant for k ≤ t. The probability
of ξi = 0 is 1/2, and thus, by Chernoff bound the result follows. ◀

▶ Lemma 22. If f is a size-s decision tree, then with probability at least 1− poly(ϵ/s), the
tester accepts.

Proof. By Lemma 21, with probability at least 1 − poly(ϵ/s), the tester does not reject
inside the Repeat loop. By Lemma 20, with probability at least 1− poly(ϵ/s), Pr[T|qj

̸=
η] ≤ poly(ϵ/s), hence, with probability at least 1 − poly(ϵ/s), the tester will not reject in
line 20. ◀

▶ Lemma 23. Let R = 210c log2(s/ϵ). If f is ϵ-far from every size-2R decision tree, then
with probability at least 2/3, the tester rejects.

Proof. If f is ϵ-far from every size-2R decision tree, then T = f(x + a) is ϵ-far from every
size-2R decision tree.

Consider the tree T ∗ that is generated in the tester for all possible random walks, where
each node in the tree is labeled with the variable xij that appears in at least 1/(2r) of the
monomials in Hj−1 if such variable exists, and is labeled with Reject when the algorithm
reaches Reject. In the tree, we will have three types of nodes that are labeled with Reject.
Type I are nodes where there is no variable that appears in at least 1/(2r) fractions of the
monomials of Hj−1. Type II are the nodes that are of depth R + 1, and Type III are the
nodes of depth less than R where ΣHj is constant η and Pr[T|qj

= η] ≥ ϵ/4.
If, with probability at least ϵ/4, a random walk in the tree T ∗ reaches a Reject node,

then the probability that the tester rejects is 1−
(
1− ϵ

4
)40/ϵ ≥ 2

3 , and we are done.
Suppose, for the contrary, this is not true. Then, define a decision tree T ′ that is equal to

T ∗, where each Reject node is replaced with a leaf labelled with 0, and each other other leaf
is labeled with 0 if Pr[T|qj

] ≤ ϵ/4 and 1 if Pr[T|qj
] ≥ 1− ϵ/4. Then, T ′ is a depth-R tree

(and therefore size-2R tree). The probability that T ′(x) is not equal to T (x) is less than the
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probability that a random walk arrives to a Reject leaf, or if it arrives to a non-Reject leaf,
then T|qj

(x) is not equal to the label in the leaf. Therefore, Pr[T ′(x) ̸= T (x)] ≤ ϵ
4 + ϵ

4 < ϵ,

a contradiction. ◀

As we said earlier, the above tester runs in poly(n, 1/ϵ) time and queries. We now use
the reduction of Bshouty in [6] and get a tester that runs in time poly(s, 1/ϵ)n and makes
poly(s, 1/ϵ) queries. See Lemma 26 in Appendix A.
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A Reductions in Testing

The following reductions are deduced immediately from [5, 6].
We say that a class C is closed under zero-one projection if for every f ∈ C, every i ∈ [n]

and every ξ ∈ {0, 1} we have f|xi←ξ ∈ C. We say that C is symmetric if for every permutation
π : [n] → [n] and every f ∈ C we have fπ ∈ C where fπ(x) := f(xπ(1), · · · , xπ(n)). All the
classes in this paper are closed under zero-one projection and symmetric.

The following results are proved in [6] (Theorem 2) when H = C. The same proof works
for any C ⊆ H.

▶ Lemma 24 ([6]). Let C ⊆ H be classes of Boolean functions (over n variables) that
are symmetric sub-classes of k-JUNTA and are closed under zero-one projection. Suppose
C is distribution-free learnable from H in time T (n, ϵ, δ) using Q(n, ϵ, δ) random example
queries and M(n, ϵ, δ) black-box queries. Then, there is a distribution-free two-sided adaptive
algorithm for ϵ-testing C by H that runs in time T (k, ϵ/12, 1/24) + O(mn) and makes
m = Õ

(
M(k, ϵ/12, 1/24) + k ·Q(k, ϵ/12, 1/24) + k

ϵ

)
queries.

▶ Lemma 25 ([6]). Let C ⊆ H be classes of Boolean functions (over n variables) that are
symmetric sub-classes of k-JUNTA and are closed under zero-one projection. Suppose C is
learnable from H under the uniform distribution in time T (n, ϵ, δ) using Q(n, ϵ, δ) random
example queries and M(n, ϵ, δ) black-box queries. Then, there is a (uniform distribution)
two-sided adaptive algorithm for ϵ-testing C by H runs in time T (k, ϵ/12, 1/24) + O(mn)
and that makes m = Õ

(
M(k, ϵ/12, 1/24) + Q(k, ϵ/12, 1/24) + k

ϵ

)
queries.

The following is proved in [6] when H = C. The same proof gives the following result:

▶ Lemma 26 ([6]). Let C and C ⊆ H be classes of Boolean functions that are symmetric
sub-classes of k-JUNTA and are closed under zero-one projection. Suppose there is a tester
T for Ck = {f ∈ C|f is independent on xk+1, . . . , xn} such that
1. T is a two-sided adaptive ϵ-tester (resp. distribution-free ϵ-tester) that runs in time

T (k, ϵ, δ).
2. If f ∈ Ck then, with probability at least 1− δ, T accepts.
3. If f is ϵ-far from every function in Hk (resp., with respect to D) then, with probability at

least 1− δ, T rejects.
4. T makes Q(k, ϵ, δ) random example queries and M(k, ϵ, δ) black-box queries.

Then, there is a two-sided adaptive algorithm for ϵ-testing (resp., distribution-free al-
gorithm for ϵ-testing) C by H that makes m = Õ

(
M(k, ϵ/12, 1/24) + Q(k, ϵ/12, 1/24) + k

ϵ

)
(resp., makes m = Õ

(
M(k, ϵ/12, 1/24) + k ·Q(k, ϵ/12, 1/24) + k

ϵ

)
) queries and runs in time

T (k, ϵ/12, 1/24) + O(mn).
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