
Unikernel-Based Real-Time Virtualization Under
Deferrable Servers: Analysis and Realization
Kuan-Hsun Chen #

University of Twente, The Netherlands

Mario Günzel #

TU Dortmund University, Germany

Boguslaw Jablkowski #

EMVICORE GmbH, Dortmund, Germany

Markus Buschhoff #

EMVICORE GmbH, Dortmund, Germany

Jian-Jia Chen #

TU Dortmund University, Germany

Abstract
For cyber-physical systems, real-time virtualization optimizes the hardware utilization by consol-
idating multiple systems into the same platform, while satisfying the timing constraints of their
real-time tasks. This paper considers virtualization based on unikernels, i.e., single address space
kernels usually constructed by using library operating systems. Each unikernel is a guest operating
system in the virtualization and hosts a single real-time task.

We consider deferrable servers in the virtualization platform to schedule the unikernel-based
guest operating systems and analyze the worst-case response time of a sporadic real-time task
under such a virtualization architecture. Throughout synthesized tasksets, we empirically show that
our analysis outperforms the restated analysis derived from the state-of-the-art, which is based on
Real-Time Calculus. Furthermore, we provide insights on implementation-specific issues and offer
evidence that the proposed scheduling architecture can be effectively implemented on top of the
Xen hypervisor while incurring acceptable overhead.

2012 ACM Subject Classification Computer systems organization → Embedded and cyber-physical
systems; Software and its engineering → Real-time systems software

Keywords and phrases Unikernel, Virtualization, Reservation Servers, Deferrable Servers, Cyber-
Physical Systems, Real-Time Systems

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2022.6

Supplementary Material Software (ECRTS 2022 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.8.1.2

Funding This work has been supported by Deutsche Forschungsgemeinschaft (DFG), as part of
Sus-Aware (Project No. 398602212). This result is part of a project (PropRT) that has received
funding from the European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreement No. 865170).

1 Introduction

Virtualization technology has been widely and successfully used in data centers and cloud
environments to consolidate multiple systems as virtual machines (VMs) into the same
platform (so-called host). Due to the increasing use of multi-core processors in embedded and
cyber-physical systems (CPS’s), platform virtualization now is gaining traction also in these
domains [15], since it allows for cost reduction, increases efficiency and enhances flexibility.

C
o
n
si
st

en
t *
Complete * W

ell D
o
cu
m
ented * Easy t

o R

eu
se
 *

 *
 Evaluated

 *
 E
C
R
T
S
 *

 Ar
tifact *

 A
E

© Kuan-Hsun Chen, Mario Günzel, Boguslaw Jablkowski, Markus Buschhoff, and
Jian-Jia Chen;
licensed under Creative Commons License CC-BY 4.0

34th Euromicro Conference on Real-Time Systems (ECRTS 2022).
Editor: Martina Maggio; Article No. 6; pp. 6:1–6:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:k.h.chen@utwente.nl
https://orcid.org/0000-0002-7110-921X
mailto:mario.guenzel@tu-dortmund.de
https://orcid.org/0000-0001-7575-7014
mailto:b.jablkowski@emvicore.de
mailto:m.buschhoff@emvicore.de
mailto:jian-jia.chen@cs.uni-dortmund.de
https://orcid.org/0000-0001-8114-9760
https://doi.org/10.4230/LIPIcs.ECRTS.2022.6
https://doi.org/10.4230/DARTS.8.1.2
https://doi.org/10.4230/DARTS.8.1.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Unikernel-Based Real-Time Virtualization

However, virtualization technology was initially not designed to cope with strict timing
constraints and those are inherent to CPS’s. In such systems, meeting timing requirements
(so-called timeliness) is as important as the functional correctness. Depending on the
applications, a deadline miss may result in lower service quality or even a catastrophic system
failure in the worst case. Thus, virtualization must be compatible to real-time software stack
and satisfy the time constraints by employing hypervisor-level real-time scheduling policies.

In order to satisfy timing requirements in virtualized environments, e.g., the popular
Xen hypervisor [36, 37], periodic server-based approaches have been widely used – especially
deferrable servers [33]. For instance, the real-time deferrable server (RTDS) scheduler [35, 36]
has been officially1 supported in Xen since 2015, by which each virtual CPU (vCPU) is
treated as one deferrable server assigned with an execution budget and a (replenishment)
period to serve its corresponding VMs. The budget of the vCPU is consumed only when a task
is running on the vCPU. To ensure each real-time task is served sufficiently, corresponding
timing analyses [3, 31, 30] should be employed to compute the required capacity for each
server budget. Under such setups, the scheduling decision involves two levels, the hypervisor
scheduler and the schedulers within the VMs, in a hierarchical manner.

To account for the interplay of servers and tasks, the applicability of such server-based
approaches is based on the tightness of corresponding worst-case response time analyses. Note
that a task system deployment under over pessimistic analyses may lead to unnecessarily
low hardware utilization. For deferrable servers, Saewong et al. developed a sufficient
schedulability analysis based on an assumption that server capacity is made available at the
very end of the server’s period in the worst case [28]. Davis and Burns further developed an
exact test to ultimately optimize the schedulability of deferrable servers [8].

However, they also showed that the schedulability of deferrable servers is worse than the
other server-based approaches, like periodic servers [29] and sporadic servers [32], due to the
well-known phenomenon of back-to-back hits [8, 6], i.e., the interference introduced by the
suspension of higher priority servers. As the state-of-the-art, Cuijpers and Bril in [7] discussed
that the schedulability of deferrable servers is possible to outperform periodic servers and
sporadic servers, if one deferrable server only serves one single task. Under such a constraint,
the behavior of the deferrable server is no longer influenced by the presence of low-priority
tasks. However, a general task model is considered based on real-time calculus [34].

As reported in an empirical study [1], the periodic task activation and the sporadic
activation with minimum inter-arrival time are a common industry practice, i.e., 82% and
47% respectively over the investigated systems, and different types of task activation might
be involved in the same systems. Thus, it is practically relevant whether the worst-case
response time analysis from [7] can be further tightened for a periodic or sporadic task.

Contributions. In this work, we explore deferrable servers for unikernel-based virtualization,
in which each server serves only one single sporadic task on a virtualized platform. Specifically,
we develop the corresponding worst-case response time analysis under fixed-priority scheduling.
In practice, we leverage the concept of unikernel to motivate and realize the proposed
scheduling architecture. In a nutshell, the contributions of this work are as follows:

We present why unikernel-based virtualization can facilitate the schedulability of deferrable
servers. Specifically, we present how to convert the analysis proposed by Cuijpers and Bril
in [7] to sporadic tasks served by deferrable servers. Under one practical scenario, our
worst-case response time analysis dominates the state-of-the-art (see Section 4).

1 https://wiki.xenproject.org/wiki/Xen_Project_Schedulers

https://wiki.xenproject.org/wiki/Xen_Project_Schedulers

K.-H. Chen, M. Günzel, B. Jablkowski, M. Buschhoff, and J.-J. Chen 6:3

Table 1 Notation used in this paper.

Symbol Definition
τi = (Ti, Ci) Sporadic task
Ti Minimum inter-arrival time
Ci Worst-case execution time
DSi = (Pi, Qi) Deferrable server
Pi Replenishment period
Qi Capacity
R−DS

i (x) Worst-case response time for x time units on DSi

R+DS
i (x) Worst-case resumed time for x time units on DSi

Secondly, we explain how to realize our unikernel-based approach on top of the Xen
hypervisor with a few design details. Under the proposed deferrable server model, we
implement our own hypervisor scheduler and keep the routines of scheduler bookkeeping
and budget replenishment as efficient as possible (see Section 5).
Finally, we compare our analysis with the state-of-the-art [7] with synthetic periodic
task systems. The results show that the applicability of deferrable servers indeed can
be greatly improved (see Section 6.1). In addition, we also conduct a case study based
on the Xen hypervisor with our deferrable server model and show that our approach of
unikernel-based virtualization is feasible in practice (see Section 6.2).

2 Deferrable Server and Task model

We consider that deferrable servers [33] are adopted to preserve the required bandwidth of
each virtualized CPS application, so-called virtual machine (VM). Since each VM is realized
as a unikernel with one specific vCPU, each VM is treated as one deferrable server DSi

serving only one single sporadic task τi. A sporadic task τi releases an infinite number of
task instances, called jobs, in which the worst-case execution time (WCET) of any of them
is at most Ci and the arrival times of any two consecutive jobs of them must be separated
by at least the minimum inter-arrival time Ti. The jobs of task τi are served based on
the first-come first-serve policy within DSi. Please note that our worst-case response time
analysis does not require any limitation on the type of task deadlines, i.e., even arbitrary
deadline tasks with deadline Di > Ti are allowed.

Each deferrable server DSi is denoted as a tuple (Pi, Qi), where Pi is its replenishment
period and Qi is its capacity. If the j-th replenishment time is t, then the next replenishment
time is t + Pi. The budget of a deferrable server DSi is set to Qi initially and is consumed
linearly while the corresponding task τi is served. When the budget becomes 0, the server
DSi needs to wait until the next replenishment time. At the time instant to replenish the
server DSi, the budget is replenished to Qi and any unused time budget is lost at the end of
each replenishment period. The first job release of every task τi is assumed to be after the
first budget replenishment of DSi.

Deferrable servers are scheduled based on preemptive fixed-priority (static-priority)
scheduling. For a multiprocessor platform, it is possible to apply partitioned or global
scheduling for the deferrable servers. Under a partitioned scheduling paradigm, a deferrable
server (vCPU) is dedicated to one physical processor (pCPU). Under a global scheduling
paradigm, a deferrable server (vCPU) can migrate from one physical processor to another.

ECRTS 2022

6:4 Unikernel-Based Real-Time Virtualization

3 Service Condition and Execution Scenarios of Deferrable Servers

In this section we discuss how the service condition of deferrable servers can be sufficiently
tested on different systems. By analyzing the possible behaviors of a job served by a deferrable
server, two lemmas are derived to provide some useful properties for the next section.

3.1 Service Condition of Deferrable Servers
Under the adopted scheduling paradigm, if the capacity of a deferrable server DSk within
the given replenishment period is feasible, we say that DSk fulfills its service condition. That
is, in this case, any request of Qk amount of computation demand of its served task τk at
the moment when the budget is fully replenished must be finished within Pk amount of time.
This assumption is also required in the related work [7, 8, 28, 20]. Otherwise, one can provide
an over-specified capacity Qk that can never be guaranteed within one period Pk, and the
worst-case analysis also has to investigate interplay with the virtualization scheduler.

As a deferrable server DSi retains its unused budget until the next replenishment period
when no job requests it to serve, it can be considered that DSi voluntarily suspends its
execution [6]. As a result, a DSi may impose back-to-back interference to lower-priority servers
(or tasks). Such back-to-back interference can be considered as bursty interference [20, 5], i.e.,
one additional job should be considered by extending the classical critical instant theorem,
or release jitter of DSi, which can be set to Pi − Qi [8].

A sufficient service condition test for DSk is a sufficient test to validate whether DSk

fulfills its service condition or not. Therefore, under uniprocessor preemptive fixed-priority
scheduling of systems composed of only fixed-priority deferrable servers, also stated in [8], a
sufficient service condition test for the deferrable servers is

∀ DSk, ∃0 < t ≤ Pk, Qk +
∑

DSi∈hpk

⌈
t + Pi − Qi

Pi

⌉
Qi ≤ t (1)

where hpk is the set of deferrable servers whose priorities are higher than DSk. It has
been shown that

∑
DSi

Qi

Pi
≤ ln 3

2 ≈ 0.40546 ensures that the condition stated in Eq. (1)
holds [5, 20].2

For multiprocessor systems, under partitioned scheduling, the condition in Eq. (1) can
be directly applied by defining hpk as the set of higher-priority deferrable servers assigned
on the same physical processor as DSk. Under global preemptive fixed-priority scheduling
of systems composed of only fixed-priority deferrable servers on m homogeneous (identical)
physical processors, a sufficient service condition test can be written as3

∀ DSk, ∃0 < t ≤ Pk, Qk +

∑
DSi∈hpk

⌈
t+Pi−Qi

Pi

⌉
Qi

m
≤ t (2)

where hpk is the set of deferrable servers whose priorities are higher than DSk under global
scheduling and m is the number of homogeneous processors.

Although the sufficient service condition tests in Eqs. (1) and (2) are valid for systems
composed of only deferrable servers, they can be extended to consider the co-existence of
typical sporadic tasks and other fixed-priority servers by adding corresponding interference
terms. More specifically, let I(t) be the worst-case interference of the higher-priority servers
and/or tasks for an interval length t. For the rest of this paper, we assume that the sufficient
service condition for DSk is:

∃0 < t ≤ Pk, Qk + I(t) ≤ t (3)

2 Their proof in [20] ensures a weaker condition: ∀DSk, ∃0 < t ≤ Pk, Qk +
∑

DSi∈hpk

⌈
t+Pi

Pi

⌉
Qi ≤ t.

3 A sketched proof is provided in Appendix for completeness.

K.-H. Chen, M. Günzel, B. Jablkowski, M. Buschhoff, and J.-J. Chen 6:5

In order to analyze the worst-case response time of a sporadic task τk served by DSk,
we further need two additional properties based on finer granularity of the service provided
by DSk. In particular, the worst-case response time R−DS

k (x) for requesting x amount of
computation demand, for 0 ≤ x ≤ Qk, can be derived as:

R−DS
k (x) = inf {t|x + I(t) = t} (4)

Moreover, right after finishing x amount of computation demand, the deferrable server DSk

may be preempted by other higher-priority activities. We further define the worst-case
resumed time R+DS

k (x), for 0 ≤ x < Qk, as the longest time that DSk finishes x amount of
computation demand and is scheduled to serve further demands if they exist. That is:

R+DS
k (x) = inf {t|(x + ϵ) + I(t) = t} for infinitesimal ϵ > 0

= inf {t|x + I(t) < t} (5)

We note that R+DS
k (Qk) is not defined above, as it is unnecessary in our analysis, and the

proper definition involves more complications.
Since I(t) is usually of the form

∑
i

⌈
t+ji

Pi

⌉
ρi, where ji and ρi are some real values like

ji = (Pi − Qi) and ρi = Qi in Equation (1), the exact value of R−DS
k (x) can be computed

using fixed-point iterations, where t is increased gradually until x + I(t) = t is reached. The
exact value of R+DS

k (x) can be obtained by fixed-point iterations as well, if the standard
interference function I(t) is replaced by

∑
i

(⌊
t+ji

Pi

⌋
+ 1

)
ρi.

Please note that the sufficient service condition test, i.e., Eq. (3), is only introduced to
give an intuition behind the definition of R−DS

k (x) and R+DS
k (x). However, our analysis is

not limited to the scenarios where Eq. (3) holds, but only to all possible scenarios where
the service condition holds, i.e., any request of Qk amount of computation demand must be
finished within Pk amount of time when the budget is fully replenished. If this condition is
ensured by any means, our timing analysis is applicable.

3.2 Serving one Task by a Deferrable Server
In this section we have a closer look at how a deferrable server DSk serves a job J released
by the task τk at time rJ . At the job release of J there may be unfinished backlog L(rJ),
i.e., unfinished execution demand from previously released jobs of τk. Moreover, we denote
by C(rJ) ≤ Ck the computation demand of J at its release rJ . Whenever there is available
budget B(t) > 0 of the server DSk, the budget can be used to serve first the backlog L(t)
and if the backlog reaches L(t) = 0 then the budget is used to serve the computation demand
C(t) of J . The first time the computation demand reaches 0 is called the finish fJ of J , i.e.,
we have C(fJ) = 0.

If at the release rJ of the job J there is enough budget to complete both the backlog
L(rJ) and the computation demand C(rJ) then the job J finishes as soon as additional
L(rJ) + C(rJ) budget is consumed.

▶ Lemma 1. If a job J of task τk is released at time rJ and the remaining budget of DSk is
higher than the execution demand C(rJ) of J at time rJ plus the backlog L(rJ) from previous
jobs of τk at time rJ , then J finishes within R−DS

k (L(rJ) + Ck) time units.

Proof. If the budget is higher than the execution time plus the backlog at time rJ , then
J and all previously released unfinished jobs can execute whenever the server DSk is not
interfered. The job J finishes when L(rJ)+C(rJ) amount of computation demand is finished,
which is after at most R−DS

k (L(rJ) + Ck) time units. ◀

ECRTS 2022

6:6 Unikernel-Based Real-Time Virtualization

In particular whenever there is no backlog and the remaining budget at time rJ is at
least Ck time units, then the job J finishes within R−DS

k (Ck) time units.
However, there are cases in which the budget is not sufficient:

▶ Definition 2 (Exhausted budget). We say the budget B is exhausted by job J if there exists
a point in time t such that the following conditions are met:

There is remaining computation demand C(t) > 0 that wants to consume the budget.
The budget B(t) = 0 has reached 0.
Instead the processor idles or a lower priority server (or task) is served.

In such a case the jobs have to wait until the next budget replenishment br to be served.
If after the budget replenishment the budget B(br) = Qk is sufficient to finish the backlog
and computation demand, i.e., Qk ≥ L(br) + C(br), then the worst-case response time of J

can be described by the following lemma.

▶ Lemma 3. If after a budget replenishment at time br the remaining backlog L(br) and the
remaining computation demand C(br) can be fully served, i.e., Qk ≥ L(br) + C(br), then the
job has a response time of at most (br − rJ) + R−DS

k (L(br) + C(br)) time units.

Proof. Similar to Lemma 1, at time br the remaining computation demand of L(br) + C(br)
has to be finished. Since the budget is high enough, i.e., Qk ≥ L(br) + C(br), this takes
at most R−DS

k (L(br) + C(br)) time units. The response time of J is the result of the time
it takes from the release of J until br plus the time to finish the remaining computation
demand, i.e., (br − rJ) + R−DS

k (L(br) + C(br)). ◀

4 Worst-Case Response Time Analysis for One Single Task

In this section, we provide a worst-case response time analysis for a sporadic task τk served
by a deferrable server DSk, which fulfills its service condition. That is, throughout this
section, we implicitly assume that R−DS

k (Qk) ≤ Pk. Furthermore, the utilization of task τk

is assumed to be no more than the utilization of the deferrable server DSk, i.e., Ck

Tk
≤ Qk

Pk
;

otherwise, the worst-case response time of task τk is by definition unbounded.
We first explain how to convert the analysis in [7] based on real-time calculus to sporadic

tasks served by DSk. Then, we provide our analysis for a scenario that Tk ≥ Pk and Ck ≤ Qk,
and demonstrate the dominance of our analysis over the analysis in [7] when considering
sporadic tasks in Section 4.2. As our analysis requires to evaluate sup0≤x<Ck

R+DS
k (x) +

R−DS
k (Ck − x), we explain how to implement this search in Section 4.3.

4.1 Existing Analysis Converting from Real-Time Calculus
We restate here the analysis from Cuijpers and Bril [7] based on real-time calculus for
sporadic tasks. Note that we use a slightly different notation system from that in [7] due to
notation discrepancy between real-time calculus and real-time scheduling theory. Suppose
that rk(t) is the accumulated workload in time interval [0, t) for task τk.

Let S be some S > 0 such that

rk(s + S) − rk(s) ≤ Qk

Pk
× S, ∀s ≥ 0 (6)

Under the assumption that Ck

Tk
≤ Qk

Pk
, setting S to Ck × Pk

Qk
ensures that

S = Ck × Pk

Qk
≤ Ck × Tk

Ck
= Tk and rk(s + S) − rk(s) ≤ Ck = Ck

S
× S = Qk

Pk
× S,

i.e., Eq. (6) holds.

K.-H. Chen, M. Günzel, B. Jablkowski, M. Buschhoff, and J.-J. Chen 6:7

As for the deferrable server DSk, if it has a full budget at time t, its service provision from
time interval t to t + R−DS

k (h) is at least h. This notation is the inverse representation of the
accumulative service in real-time calculus under the same assumption. In terms of real-time
calculus, DSk is guaranteed to provide at least h amount of service within an interval length
of R−DS

k (h).
Let h be the minimum value ≤ Qk such that

h

R−DS
k (h)

≥ rk(s + S) − rk(s)
S

, ∀s ≥ 0. (7)

Let H denote R−DS
k (h) for brevity. Cuijpers and Bril [7] showed that the worst-case response

time of τk is upper bounded by S + 2H.
With the above definitions of H and S, we can restate the worst-case response time

analysis from Cuijpers and Bril [7] for sporadic tasks.

▶ Theorem 4. Suppose that the deferrable server DSk fulfills its service condition and that
Ck

Tk
≤ Qk

Pk
. Then

S can be set to Ck × Pk

Qk
≤ Tk

H is upper bounded by R−DS
k (Qk) ≤ Pk

The worst-case response time of a sporadic task τk served by DSk is upper bounded by

Ck × Pk

Qk
+ 2R−DS

k (Qk) ≤ Ck × Pk

Qk
+ 2Pk ≤ Tk + 2Pk.

Proof. It comes directly from Theorem 1 in [7] and the above analysis of S and H. ◀

4.2 Our Analysis for Sporadic Tasks
One practical scenario is that the replenishment period Pk is set to its served task period Tk,
and the capacity Qk is set to Ck, i.e., Tk = Pk and Ck = Qk. Such a configuration might be
out of intuition by expecting the period alignment is perfect. Assuming the timing behaviors
of servers are the same as tasks, the Liu and Layland bound [19] might be applicable at the
first glance. However, the response time of a task may still be interfered by a backlog of the
previous unfinished job due to any potential misalignment. Hence, a corresponding timing
analysis is still needed.

The analysis in Theorem 4 is applicable for sporadic tasks. However, for the scenario
with Tk ≥ Pk and Ck ≤ Qk, in this section, we show that a tighter analysis can be achieved
by examining the interplay between τk and DSk more closely.

▶ Definition 5 (Consecutive DS service interval). An interval G = [a, b) ⊆ R is called a
consecutive DS service interval if it is a minimal interval such that the following properties
are met:

a and b are time instances where DSk replenishes its budget.
All jobs of τk that are released during G finish their execution during G.
Only jobs of τk that are released during G can be executed.

A consecutive DS service interval can be constructed in the following way: Let a be a
time instant such that 1) DSk replenishes its budget at a, 2) there is no unfinished job of τk

at time a, and 3) a job of τk is released during [a, a + Pk). Then, we set b to be the time of
the next replenishment of DSk such that there is again not unfinished job of τk at time b.
The interval [a, b) is a consecutive DS service interval. Please note that every job is inside a
consecutive DS service interval as the above procedure to construct consecutive DS service
intervals can be repeated for the whole time domain.

ECRTS 2022

6:8 Unikernel-Based Real-Time Virtualization

job release of τk budget replenishment of DSk job execution

b1 Ck − b1 b2 Ck − b2

br1 br2 br3 br4a = br0 b = br5

γ1 γ2 γ3 γ4

Figure 1 Analysis scenario for Theorem 7. We analyse the second job J2 (marked in grey) in the
consecutive DS service interval [a, b).

The first job in any consecutive DS service interval receives budget Qk. Under the
assumption that Ck ≤ Qk this job finishes after at most R−DS

k (Ck) time units.

▶ Lemma 6. Under the assumption that Ck ≤ Qk and Tk ≥ Pk, the following holds:
1. Between any two budget replenishments there is at most one job release.
2. Every job finishes until the second replenishment period after the job release.
3. There is at most one previous unfinished job of τk at any job release of τk.
4. There are at most two jobs of τk executed between two consecutive budget replenishments

of DSk.

Proof. 1: If there would be two job releases between two budget replenishments, then
Tk < Pk, which contradicts our assumption.
2: By contradiction: Assume that J is the earliest job such that it does not finish until the
second replenishment period after its release. Let bri−1 and bri the two consecutive budget
replenishments before and after the release of J . By 1, the previous job J ′ is released before
bri−1. Moreover, since J is the first job such that 2 does not hold, J ′ finishes until bri. At
time bri there is no backlog from J ′ or from earlier jobs. The computation demand at bri by
J is at most Ck ≤ Qk. By Lemma 3 the job J finishes until bri + R−DS

k (Ck) ≤ bri + Pk by
the sufficient service assumption stated in Section 3.1.
3 and 4: Follow directly from 1 and 2. ◀

▶ Theorem 7. Suppose that the deferrable server DSk fulfills its service condition and that
Ck

Tk
≤ Qk

Pk
. If Ck ≤ Qk and Tk ≥ Pk, then

Rτ
k ≤ max

(
(Pk − Tk) + sup

0≤x<Ck

(R+DS
k (x) + R−DS

k (Ck − x)), R−DS
k (Ck)

)
(8)

Proof. We prove this theorem over induction of the jobs in each consecutive DS service
interval. Let G be some consecutive DS service interval. We show by induction that for all
jobs that are released during G, the upper bound on the worst-case response time given by
Eq. (8) holds. We denote by Ji the i-th job that is released by τk during G. Moreover, we
denote by γi the time between the release of Ji and the subsequent budget replenishment bri.
Due to the assumption that Tk ≥ Pk, we have γ1 ≥ γ2 + (Tk −Pk) ≥ γ3 + 2(Tk −Pk) ≥ . . . as
demonstrated in Figure 1. By Lemma 6 there is at least one budget replenishment between
any two consecutive job releases. Indeed, there is exactly one budget replenishment between
two consecutive job releases since otherwise the earlier job would finish until the second
budget replenishment after its release and the consecutive DS service interval would end.
Therefore Ji is always released during bri−1 and bri. We define bi as the time that Ji is
executed before bri and Rτ

k,i be the response time of the job Ji. For the intermediate jobs Ji

in the consecutive DS service interval we show that the following holds:

K.-H. Chen, M. Günzel, B. Jablkowski, M. Buschhoff, and J.-J. Chen 6:9

backlog no backlog
budget not exhausted between (not possible) Rτ

k,i ≤ R−DS
k (Ck)

release of Ji and bri γi ≤ R+DS
k (bi)

(Case 2) (Case 1)

budget exhausted between Rτ
k,i ≤ (Pk − Tk) + R+DS

k (bi) + R−DS
k (Ck − bi)

release of Ji and bri γi ≤ R+DS
k (bi)

(Case 3)

Moreover, for the last job Ji in consecutive DS service intervals (if a last job exists) we show
that the following holds:

backlog no backlog
budget not exhausted between Rτ

k,i ≤ Rτ
k,i−1 R−DS

k (Ck)
release of Ji and bri (Case 2) (Case 1)

budget exhausted between Rτ
k,i ≤ (Pk − Tk) + R+DS

k (bi) + R−DS
k (Ck − bi)

release of Ji and bri γi ≤ R+DS
k (bi)

(Case 3)

First job J1. At the release of J1 there is Qk ≥ Ck amount of budget and no backlog from
previous jobs. Therefore, the budget is not exhausted between the release of J1 and the next
budget replenishment. Hence, the first job is always in Case 1. By Lemma 1 the response
time Rτ

k,1 of J1 is upper bounded by R−DS
k (Ck). If J1 is an intermediate job, then it does

not finish before br1. In particular an execution demand of b1 time units could be served
between the release of J1 and br1, although there was enough budget available. We conclude
that the worst-case resumed time R+DS

k (b1) has to be at least γ1.

Induction step Ji−1 → Ji. Under the assumption that Ji−1 is an intermediate job, we
show that for Ji the bounds presented in the tables still hold.
Case 1: The budget is not exhausted between the release of Ji and bri, and there is no backlog

from Ji−1. This job behaves analogously to the first job J1. The worst-case response time
Rτ

k,i is upper bounded by R−DS
k (Ck) due to Lemma 1. If Ji is the last job in G, then this

is the only bound from the table to be proven. Otherwise, γi ≤ R+DS
k (bi) holds since only

an execution demand of bi time units during the interval of length γi could be served.
Case 2: The budget is not exhausted between the release of Ji and bri, and there is backlog

from Ji−1. In this case there is demand at all times during bri−1 and the release of Ji. If
Ji would not finish before bri, then the budget would be exhausted no later than at time
bri−1 +R−DS

k (Qk) ≤ bri. This is not possible by the assumption of this case. Therefore in
this case Ji must finish before bri and is therefore always the last job in the consecutive
DS service interval G. Since the job finishes before bri we have Rτ

k,i ≤ γi ≤ γi−1 which is
upper bounded by Rτ

k,i−1 since Ji−1 has to finish after bri−1 to produce a backlog for Ji.
Case 3: The budget is exhausted between the release of Ji and bri. For this case, it is irrele-

vant if Ji is an intermediate or the last job since the same properties have to be proven.
Since by Lemma 6 the job finishes until the second budget replenishment after its release,
this means at the replenishment time bri there is no backlog from the previous job Ji−1.
Moreover, the remaining computation demand from Ji is at most Ck − bi ≤ Qk. By
Lemma 3 the response time of Ji is upper bounded by γi + R−DS

k (Ck − bi). Moreover,
we know that γi ≤ (Pk − Tk) + γi−1 ≤ (Pk − Tk) + R−DS

k (bi−1). Since Ji−1 has to be
served by DSk for Qk − bi time units after bri−1 such that Ji exhausts the budget of

ECRTS 2022

6:10 Unikernel-Based Real-Time Virtualization

t

t 7→ I(t) + x

t 7→ t

x

R−DS
k (x)

Figure 2 Computation of R−DS
k (x) by finding

the intersection of two functions.

x

x 7→ R−DS
k (x)

d1

d2

d3

c1 c2 c3

Figure 3 Shape of R−DS
k (x).

DSk before bri, we have bi−1 ≤ Ck − (Qk − bi), resulting in bi−1 ≤ bi. We conclude that
γi ≤ (Pk −Tk) + γi−1 ≤ (Pk −Tk) + R−DS

k (bi−1) ≤ (Pk −Tk) + R−DS
k (bi) ≤ R−DS

k (bi) and
the worst-case response time is upper bounded by (Pk − Tk) + R+DS

k (bi) + R−DS
k (Ck − bi).

Conclusion. By induction we have proven that the bounds from the above stated tables
hold. Since bi < Ck holds for those jobs with exhausted budget, the response time bound in
Eq. (8) holds for all jobs by analyzing all consecutive DS service intervals. ◀

▶ Theorem 8 (Dominance discussion). The worst-case response time bound presented in
Theorem 7 dominates the bound from Theorem 4 when Ck ≤ Qk and Tk ≥ Pk.

Proof. As (Pk − Tk) ≤ 0 by assumption, the worst-case response time bound provided
in Theorem 7 is upper bounded by sup0≤x<Ck

R+DS
k (x) + R−DS

k (Ck). Since R+DS
k (x) ≤

R−DS
k (Ck) for all x < Ck, the bound from Theorem 7 is also upper bounded by 2R−DS

k (Ck) ≤
Ck · Pk

Qk
+ 2R−DS

k (Qk) which is the bound from Theorem 4. ◀

4.3 Efficient Computation of Worst-Case Response Time Bound
For the computation of the worst-case response time upper bound presented in Theorem 7
the supremum

sup
0≤x<Ck

R+DS
k (x) + R−DS

k (Ck − x) (9)

has to be computed. In this section we discuss a method to do this efficiently without
computing the values for R+DS

k and R−DS
k at every point using fixed-point iterations. As

presented in Section 3.1, I(t) is of the form
∑

i

⌈
t+ji

Pi

⌉
ρi for some positive real values ji, Pi

and ρi. Fixed-point iterations can be used to compute the value of R−DS
k (x), in particular

the intersection between the functions t 7→ t and t 7→ I(t) + x is computed, as presented in
Figure 2.

The efficient presentation and formulation presented in this section is based on the
observation that R−DS

k (x) and R+DS
k (x) coincide and grow linearly if the intersection with

I + x is on a plateau, i.e., if I is constant during the interval (R−DS
k (x) − δ, R−DS

k (x) + δ)
then R−DS

k (y) = R−DS
k (x) + (y − x) for all y ∈ (x − δ, x + δ). At those points x where there is

a jump of I at R−DS
k (x), the values of R+DS

k (x) and R−DS
k (x) are computed using fixed-point

K.-H. Chen, M. Günzel, B. Jablkowski, M. Buschhoff, and J.-J. Chen 6:11

Algorithm 1 Computation of all values in S with ci ≤ Ck.

Input: I(t) =
∑

i

⌈
t+ji

Pi

⌉
· ρi

Output: The set S with all values (ci, di) where ci ≤ Ck.

1: S := []; x := 0
2: while x ≤ Ck do
3: Compute R−DS

k (x) and R+DS
k (x) by fixed-point iterations.

4: c := x; d := R+DS
k (x)−R−DS

k (x)
5: Add (c, d) to the set S
6: x := x + mini (−(x + ji) mod Pi) ▷ Time until next jump.
7: return S

iterations. The shape of R−DS
k is presented in Figure 3. Please note that the shape of R−DS

k

and R+DS
k coincide during the linear parts and only at the jumps (c1, c2, . . .) the function

R−DS
k takes the lower value and R+DS

k takes the higher value.
Based on the shape of the functions R−DS

k and R+DS
k , there exists a set of tuples

S = {(c1, d1), (c2, d2), (c3, d3), . . .} such that

R−DS
k (x) = x +

∑
(ci,di)∈S

χx>ci
· di and R+DS

k (x) = x +
∑

(ci,di)∈S

χx≥ci
· di (10)

where χx>ci is 1 if x > ci and 0 else, and χx≥ci is 1 if x ≥ ci and 0 else. The computation
of the values of S is presented in Algorithm 1. In each step of the while-loop the size of a
jump is computed by the difference between R−DS

k and R+DS
k , and the corresponding tuple

is added to the set S. Afterwards, the time until the next jump is computed by finding
the next point in time where the intersection t with x + I(t) reaches a jump, i.e., after
mini (−(x + ji) mod Pi) additional time units.

With the representation of R−DS
k and R+DS

k achieved in Eq. (10), the supremum in Eq. (9)
can be rewritten as

sup
0≤x<Ck

R+DS
k (x) + R−DS

k (Ck − x) (11)

= x +
∑

(ci,di)∈S

χx≥ci
· di + sup

0≤x<Ck

x +
∑

(ci,di)∈S

χCk−x>ci
· di (12)

= Ck +
∑

(ci,di)∈S

(χx≥ci
+ χx<Ck−ci

) · di (13)

In particular, only finitely many cases have to be checked to find the exact solution of the
supremum formulated in Eq. (9).

5 Architecture Model

In this section, we present our unikernel-based architecture for hosting virtualized CPS
applications. First, we introduce the concept of unikernel-based CPS applications. Next, we
shorty describe the Xen architecture as well as its implications for scheduling and compare it
with our approach. Finally, we provide some design and implementation details.

5.1 Unikernel-based CPS Applications
In data-centers and cloud environments, each VM is expected to host a general purpose
operating system to ease the effort of porting legacy software with a lot of inherent libraries
and functionalities. However, most CPS applications are functionally dedicated, single-
purposed and thus not dependent on additional functionality. Due to the encapsulation of

ECRTS 2022

6:12 Unikernel-Based Real-Time Virtualization

Figure 4 depicts the typical scheduling archi-
tecture in platform virtualization: The schedul-
ing decision is split into two layers, the OS sched-
uler of the guest and the hypervisor scheduler.

Figure 5 illustrates our approach where
scheduling decisions are reduced to one layer
only, due to the adaptation of unikernels.

superfluous libraries and the execution of non-essential processes that are not related to the
task of interest, deploying real-time tasks of CPS on a general-purpose OS in fact arises
various issues like resource efficiency and timing predictability.

Towards this, several efforts have been made in recent years for the realization of single-
purpose appliances [21, 22, 24, 26], so called unikernels. These are sealed, single-purpose VM
images that can be constructed using the concept of library operating systems (LibOS) [12, 13].
LibOS’s allow for the tailoring of an OS code base to the particular needs of a given task, by
which only those parts of the OS API are included into the VM image.

This approach has several advantages. Unikernels are characterized by a minimal VM
image size which highly increases their security properties, due to the minimal attack surface
for malicious code injections This also translates to a substantial reduction of overall system
resource usage. Moreover, unikernels can be instantiated and become fully functional within
only a few milliseconds. It has further been shown that unikernels are more efficient and
safer than modern container technologies [23]. Please note that while unikernels have indeed
a minimal attack surface in comparison with full-fledged operating systems and are fully
isolated from other guests, depending on the given scenario, some additional security defence
mechanisms would have to be adopted, but considered out of scope in this work.

Considering these benefits of unikernels, as well as the fact that most CPS applications
are specialized and functionally dedicated tasks and can be implemented as single-purpose
appliances, CPS applications provide an excellent target for unikernels.

5.2 Scheduling Architecture
The case-study results presented in this paper are linked to the Xen hypervisor [2], which we
have chosen to realize our unikernel-based approach for hosting virtualized CPS applications.
Xen is a type 1 hypervisor and allows for the consolidation of multiple systems on a single
platform. Xen runs directly on host’s hardware and is the first software layer to execute after
the bootloader. The hypervisor is responsible for managing hardware resources, including
CPUs and memory. It also handles timers and the scheduling of VMs. Specific to Xen is a
privileged VM called Domain 0. It is the first VM to load under Xen, it holds the drivers to
the underlying hardware and this is also where the toolstack resides that enables management
of further VMs. Typically Domain 0 is deployed on Linux. In order to make use of the
existing drivers in Domain 0, Xen uses an approach called paravirtualization, which exposes
an API to the guest VM for delegating privileged instructions, including driver calls. This
approach is much more efficient than emulation. The backbone of the paravirtualization

K.-H. Chen, M. Günzel, B. Jablkowski, M. Buschhoff, and J.-J. Chen 6:13

driver concept under Xen is the split device driver model. The drivers consist of two parts:
the front-end and the back-end. The front-end is situated in the guest VM while the back-end
resides in Domain 0. Both parts are isolated and communicate through shared memory.

As shown in Figure 4, the scheduling decision in Xen is split into two tiers. The bottom
tier is constituted by the hypervisor scheduler which assigns virtual CPUs (vCPU) to physical
CPUs (pCPU). The second tier consists of the guest operating system schedulers within
virtual machines, which in turn assign their threads to vCPUs. This split is needed for two
reasons. The first being the possibility to abstract physical resources (e.g. pCPUs) into logical
resources (e.g. vCPUs) which is a premise for achieving better hardware utilization. Secondly,
it allows the hypervisor to enforce timing isolation between the concurrently running VMs.
For systems that comprise of task sets without strict timing requirements and that implement
a fair share scheduler, this architecture allows for a high resource utilization while at the same
time preventing any faulty or compromised VM from hijacking system resources, and by this
from negatively influencing the behavior of other VMs in the system. However, when it comes
to the need of providing timing guarantees, this scheduling architecture also complicates the
corresponding schedulability analysis. As discussed in Section 3.1, the suspension behavior
of deferrable servers additionally interferes with the response time of lower priority servers or
tasks in the worst case. While improving the applicability of deferrable servers in Section 4.3,
our approach, i.e., one sporadic task per server, aligns well with the concept of unikernels, by
which CPS applications are deployed as single tasked VMs. As shown in Figure 5, this renders
the scheduler instances inside the VMs obsolete. Due to the fact that each of our unikernels
hosts a single task, there is no point of assigning more than one vCPU per unikernel.

5.2.1 Real-Time Networking
As in practice, CPS applications commonly assume distributed architectures, the I/O
processing of network packets is a matter of particular importance. Xen handles packet
processing in Domain 0 where the network driver resides. Each instantiated VM under Xen is
connected to a dedicated virtual network interface (VIF) and a corresponding dedicated VIF-
thread. This is the context where the actual packet processing takes place. Unfortunately,
by default, the VIF-threads in Xen are scheduled independently of the priority of their
VMs. This can lead to priority violation, i.e., the order of packet processing mismatches
the priorities of vCPUs. In order to solve this issue, we align the priorities of the packet
processing threads with the corresponding priorities of the vCPUs in the hypervisor scheduler.

5.3 Design Principles
In our model, each vCPU is implemented as a deferrable server and is described by its
capacity and replenishment period. Due to our adaptation of unikernels, each vCPU has only
one task assigned to it. The vCPU is released under the sporadic task activation. The budget
denotes the amount of time a vCPU can consume for its execution during the replenishment
period. The budget of the vCPU is set to the given capacity at its replenishment periodically.
The vCPU can either be runnable or blocked. While running, the vCPU consumes its budget.
A vCPU with a depleted budget will not be scheduled. If there are no eligible (runnable and
with budget) vCPUs, the hypervisor will schedule an idle vCPU. As vCPUs are implemented
as deferrable servers, they can defer their budget to be used at a later time. However, the
budget cannot be preserved and transferred into the next period. Budgets that were not
consumed during their current periods are lost.

ECRTS 2022

6:14 Unikernel-Based Real-Time Virtualization

Our implementation relies on partitioned queues, i.e., each pCPU possesses and manages
its own run queue of vCPUs. That is, the scheduling model is under (multiprocessor)
partitioned scheduling paradigm. The priorities are statically assigned to the vCPUs according
to their replenishment periods, following the rate-monotonic (RM) policy. As mentioned
in Section 3.1, the utilization bound ln(3/2) ≈ 0.40546 guarantees the sufficient service
condition of the deferrable servers on one physical processor, whereas a tighter analysis can
be achieved by adopting Eq. (1). Each time a vCPU is assigned to a run queue, the vCPU is
inserted accordingly to its priority. In the case of the RM algorithm, the highest priority is
given to the VM with the shortest replenishment period. In this process also the priorities
of all lower prioritized vCPUs are updated. Scenarios where a vCPU is assigned to a run
queue include the instantiation of a new VM or an existing VM becoming runnable. Blocked
vCPUs are removed from the run queue.

5.4 Implementation on Xen

The Xen hypervisor provides an interface to schedulers by exposing an abstract scheduler
struct which contains pointers to functions which have to be implemented when adding a new
scheduler to Xen. The scheduler policy independent code is situated in the scheduler.c file.
All of the functions defined in the interface have analogs in this file. It comprises scheduler
policy independent code which after execution calls the specialized functions from a specific
scheduler implementation. The most important function in schedule.c is schedule(). As the
name suggests, this function is executed when a scheduling decision is needed. In order
to choose the next vCPU to run, it deschedules the currently running vCPU and calls the
specialized do_schedule() function from the custom scheduler file. The default scheduling
policy for Xen is implemented in the Credit Scheduler which is a fair-share scheduler and
therefore not suitable for scheduling tasks with real-time constraints. We have extended Xen
with our own scheduler that implements our deferrable server model. In the following, we
shorty describe some of its implementation details.

The do_schedule() function is critical to the performance of the scheduler, as it is invoked
very often. Therefore, we have designed it to be fast and simple. In order to achieve this, we
keep our run queue sorted. The sorting process is conducted while inserting or reinserting
vCPUs after instantiation or unblocking. As the run queue is already sorted with respect
to vCPUs priorities, our do_schedule() function has to conduct only two operations. First,
it updates the bookkeeping (consumed budget) for the currently running vCPU. Secondly,
it chooses the next vCPU to run from the top of the run queue. In the case that there are
no eligible vCPUs to run, the algorithm returns the idle vCPU. In our implementation, the
scheduling quantum is set to 100 µs, at which the server budget is updated. The pseudocode
for our function is depicted in Algorithm 2.

Another aspect worth mentioning is the implementation of the budget replenishment.
One way to implement budget replenishment is inside the do_schedule() function. However,
this would break the efficiency of this function, due to the unnecessarily high amount of
budget validations. In most cases, the do_schedule() will be invoked more often than budget
replenishment is necessary. Therefore, we transferred this functionality to timers. For each
of the vCPUs a timer is instantiated with a period that equals the replenishment period of
the task. The replenishment itself is happening inside the timer handler. We have extended
our toolstack for the scheduler interface in the management domain with the possibility to
migrate replenishment timers to other pCPUs in the system. This allows for testing and
fine-tuning of the impact of timer interrupts on scheduling.

K.-H. Chen, M. Günzel, B. Jablkowski, M. Buschhoff, and J.-J. Chen 6:15

Algorithm 2 Pseudocode of the do_schedule() function from our deferrable server scheduler.

1: next = null
2: consumeBudget(getCurrentVCPU)
3: for each vCPU in RunQ do
4: if vCPU.isRunnable then
5: if vCPU.hasBudget then
6: next ← vCPU
7: break
8: if vCPU == null then
9: next ← idleVCPU

10: return next

10 50 100
0.0

0.2

0.4

0.6

Figure 6 W CRTOur
W CRTSOT A

for different number n

of servers per test.

10% 20% 30% 40%
0.0

0.2

0.4

0.6

Figure 7 W CRTOur
W CRTSOT A

for different total util-
ization U on one processor.

6 Evaluation and Discussion

Firstly we evaluate the tightness of our response time analysis in comparison to the state of
the art [7]. Then, we conduct an empirical case study on a previously synthesized task set.
With this case study we aim at showing that our approach of unikernel-based virtualization
under deferrable servers is feasible in practice.

6.1 Numerical Simulation

We conducted numerical evaluation to compare our worst-case response time bound (The-
orem 7) with the upper bound derived from [7] (Theorem 4). We present two experiments: 1)
we distinguish different number of servers, and 2) we distinguish different total utilization of
the servers, i.e., U =

∑
DSi

Qi

Pi
. To synthesize a system with n servers with a total utilization

of U we applied 4 steps:
We generated n utilization values Ui ∈ (0, 1) that add up to the total utilization U by
applying the UUniFast method presented in [4].
We generated n replenishment periods Pi by drawing them log-uniformly from the interval
[1, 100][ms] as it is suggested in [11] for the generation of task sets.
We generated n servers DS1, . . . , DSn by specifying the replenishment periods Pi from
above and by setting the capacity Qi to Pi · Ui. Priorities are set in rate-monotonic order.
We generated the tasks τi by drawing the minimum inter-arrival time Ti uniformly at
random from the interval [1.0Pi, 1.5Pi] and by drawing the worst-case execution time Ci

uniformly at random from the interval [0.5Qi, 1.0Qi].

ECRTS 2022

6:16 Unikernel-Based Real-Time Virtualization

In the first experiment we generated 1000 sets of servers and their tasks at random
using the procedure specified at the beginning of this section for each given number of
servers in {10, 50, 100}. For each system in the first experiment, the utilization was drawn
uniformly from the interval [0.1, 0.4] since it has been shown in [5] or Theorem 8 in [20] that
U ≤ ln 3

2 ≈ 0.40546 guarantees that the service condition stated in Eq. (1) holds.
In the second experiment we generated 1000 sets of servers and their tasks at random using

the same procedure specified previously for each given total utilization in {0.1, 0.2, 0.3, 0.4}.
For each system in the second experiment, the number of servers n was drawn uniformly at
random from the interval [10, 100].

We applied our worst-case response time analysis (WCRTOur) and the converted analysis,
i.e., Theorem 4, derived from the real-time calculus based worst-case response time analysis
in [7] (WCRTSOT A). In Figures 6 and 7 we present the values of W CRTOur

W CRTSOT A
for all tasks in

the tests as boxplots. In particular the lower the value, the better the performance of our
analysis is. The medians are depicted by a horizontal line, the boxes mark a quartile of the
data points, and the whiskers present all values.

We observe in Figure 6 that our bound is in median 90.5% smaller than the worst-case
response time bound from Theorem 4. Although the number of servers per test does not
make a difference in the performance of our method compared to the state of the art, in
Figure 7 we can see that the utilization has an impact. The higher the utilization, the closer
our bound gets to the bound of the state of the art. However, even with 40% utilization, our
bound is in median still 84.4% smaller than the bound derived by the state of the art.

Please note that we limited our experiments for U ≤ ln 3
2 ≈ 0.40546 so that the service

condition of a deferrable server is always fulfilled. Otherwise, the service condition of a
deferrable server cannot be always guaranteed and the focus of the evaluation would be drifted
to the service condition tests of deferrable servers. However, our analysis in Theorems 4 and 7
is applicable as long as the deferrable server can fulfill its service condition.

6.2 Case Study
In this subsection, we describe our practical case study. We provide the experiment setup,
the measurement methodology and present the results. Similar to the numerical simulation,
we synthesize four periodic tasks with a total utilization 40%, and specify the capacity and
replenishment period for each deferrable server. Their parameters are shown in Table 2.
Note that we stick to periodic tasks to focus on the incurring overhead. They are deployed
in form of four unikernels, which are instantiated on the same single processor core. Domain
0 receives one separate core.

The experiments were conducted on a commercial off-the-shelf hardware, a barebone
Intel NUC Kit with an Intel i5-8259U 4-core processor running at a constant speed of 2.3
GHz. Turbo Mode, hyper-threading as well as all power management features were disabled.
Domain 0 ran on a 64-Bit version of Ubuntu 20.04.1 LTS Server with a para-virtualized
Linux kernel 5.4.0-59-generic. The used hypervisor was Xen in version 4.14.1 extended with
our deferrable server scheduler and our toolstack.

6.2.1 Benchmark
For the purpose of this case study a User Datagram Protocol (UDP)-based client-server
benchmark has been implemented in the programming language C. The client-server model
fits the distributed nature of CPS’s. The benchmark servers represent our CPS tasks (e.g.
protection or control algorithms) deployed as unikernels. The computational workloads of

K.-H. Chen, M. Günzel, B. Jablkowski, M. Buschhoff, and J.-J. Chen 6:17

Table 2 Four periodic tasks and their corresponding deferrable servers for our case study. Note
that the time unit is [ms] and the WCRT of each task is derived from our analysis.

Periodic Task Deferrable Server WCRT
T1 = 12, C1 = 1 P1 = 10, Q1 = 2 1
T2 = 20, C2 = 4 P2 = 20, Q2 = 4 12
T3 = 60, C3 = 8 P3 = 50, Q3 = 10 26
T4 = 130, C4 = 9 P4 = 100, Q4 = 10 79

the tasks have been configured to fit the parameters of the analyzed task set as Table 2. The
benchmark clients are used for triggering the computation inside the unikernels by generating
requests (network packets). The requests can be interpreted as, for example, sensor values
for a given task. After completing its computation, each task sends a response packet to
the corresponding client. The responses can be seen as control commands destined for an
actuator in a given CPS. The architecture of our benchmark is depicted in Figure 8.

During benchmarking we collect three different types of latencies for every single re-
quest/response pair. The most important one is the task response time – a) in Figure 8. We
define it as the time interval between the moment when a network packet (request) destined
for a given unikernel (task) arrives at the bottom of the Linux TCP/IP network stack in
Domain 0 and the time-stamp at which a corresponding departing packet is delegated to the
network adapter for a response transmission. In other words, the packet arrival time-stamp
and the corresponding packet departure time-stamp correlate with the task release and task
finish times from our schedulability analysis. In order to collect these values, we hook into
the TCP/IP stack layer-2 kernel functions using systemtap4 [27] and log the appropriate
time-stamps. Another latency type is the task execution time – b) in Figure 8. It allows for
quantifying the amount of processor cycles a task needed for completing is workload from the
moment it has been scheduled to the point of time where it finishes its computation. We use
it to estimate or verify the actual computational workload of our task on the given hardware.
To this end, we implemented a clock cycle precise measurement technique as in [25]. This
type is not suited for measuring the task response time, as it does not account for the time a
given task may remain blocked after its release, e.g. due to its lower priority. On the client,
we can also measure the round-trip times for the request/response pairs – c) in Figure 8. We
use them to check the plausibility of the other latency types.

Last but not least, before we can present and discuss the results, we have to address
the aspect of latencies related to networking. The schedulability analysis from Section 4
currently concentrates on local scheduling and does not account for latencies imposed by
networking. However, the response times measured by the means of our benchmark include
delays related the entire software network stack of the host. Therefore, for the purpose of
the following case study, we empirically estimated the latencies related to the network stack
and adjusted our computed worst-case response time bounds with the worst-case network
processing time. In the course of our experiments, the worst-case latency for the network
stack did not exceed 250 µs and amounted on average to 157 µs.

4 https://sourceware.org/systemtap

ECRTS 2022

https://sourceware.org/systemtap

6:18 Unikernel-Based Real-Time Virtualization

Hardware

Hypervisor

Domain 0

TCP/IP-Stack

Unikernel

Benchmark
Server (Task)

NIC Driver Backend Frontend

Hardware

Linux

Benchmark
Client

a)

b)

c)

Figure 8 Benchmark architecture and the latencies measurement locations.

VM1 VM2 VM3 VM4

0
5

10
15

20
25

D
el

ay
[m

s]

Figure 9 Boxplots of the response
time values for the different VMs.

Table 3 The minimum value, arithmetic mean, stand-
ard deviation, worst-case response time and the worst-case
response time bound for the different VMs.

VM Min. x σ WCRT WCRT(B)

VM1 1 ms 1.11 ms 0.047 ms 1.215 ms 1.25 ms

VM2 3.88 ms 4.42 ms 0.49 ms 5.83 ms 12.25 ms

VM3 7.86 ms 10.99 ms 2.02 ms 14.03 ms 26.25 ms

VM4 8.84 ms 15.54 ms 5.14 ms 27.83 ms 79.25 ms

6.2.2 Case Study Results

In the following, we present and discuss the results of our case study. In order to estimate
the response times of the evaluated VMs, a total of twenty-two thousand measurements
have been conducted. The results are depicted in form of four boxplots in Figure 9 and the
corresponding numerical values are presented in Table 3. Please note that the estimated
worst case delay, i.e., 250 µs, as discussed above is added into each WCRT(B) of VMs.

As can be seen in Figure 9, our deferrable server services the four VMs accordingly to
their priorities. Further, there are no outliers. This means that during the entire experiment
none of the VMs experienced any spikes in their latencies. This in turn translates to a
deterministic execution behavior. The standard deviation values from Table 3 support this
evidence. In the case of the highest prioritized VM1, σ amounts to 47 µs – and this includes
the variances caused by the network stack. For comparison, the σ computed from the task
execution times collected inside VM1 (see Figure 8, collection point b) amounts to 12 µs.

Next, in the case study none of the empirically measured WCRTs exceeds the computed
WCRTs bounds, i.e., WCRT (B), from our analysis. This information can be gathered by
comparing the WCRTs in Table 3. The comparison also shows that for decreasing VM
priorities the computed bounds become more and more conservative.

Our case study leads to the conclusion that our approach is not only feasible but can be
efficiently and safely realized in practice even on common-off-the-shelf hardware.

K.-H. Chen, M. Günzel, B. Jablkowski, M. Buschhoff, and J.-J. Chen 6:19

7 Related Work

Various virtualization techniques have been developed as a promising approach for embedded
systems and latency-sensitive cloud computing [14]. The scheduling of VMs often implies a
hierarchy of schedulers [9]. For hierarchical scheduling, server-based approaches are often
considered to represent each virtual machine with its own real-time tasks as a single entity,
which is scheduled by the hypervisor. Under fixed-priority scheduling, there are several
server-based approaches, e.g., periodic server [29], sporadic server [32], deferrable servers [33].
The concept of deferrable servers was first introduced in [33]. It was originally designated
to handle aperiodic activation in hard real-time systems. Afterwards, it has been utilized
for resource budgets in [8, 28], where most of timing analyses assume each server may serve
multiple tasks. As shown in [8], the lower priority tasks served by deferrable servers, however,
may suffer from the back-to-back interference of higher priority tasks, resulting in a lower
schedulability than the other periodic server approaches even under an exact schedulability
test. Cuijpers and Bril in [7] showed that the response timing analysis proposed in [8] is no
longer exact, in the absence of a low-priority task. When a deferrable server only serves a
single task, the applicability of deferrable servers could be better. The result was based on
real-time calculus [34], which considers a general model of task activation. In this work, we
focus on sporadic tasks to derive a tighter worst-case response time analysis.

For using server-based approaches in virtualization, Shin and Lee in [31] developed the
compositional scheduling framework (CSF) to compute the capacity of each server, given the
replenishment period and the properties of tasks and their scheduler. RT-Xen was introduced
in [35], adopting server-based approaches to schedule VMs. The CSF was introduced to RT-
Xen for assuring the schedulability of tasks [17]. Both global and partitioned EDF schedulers
were implemented for supporting multicore scheduling at the host-level [36]. In this work, we
also adopt the deferrable server. However, as RT-Xen was implemented to comply with the
compositional scheduling theory and addresses an architecture where scheduling decisions
are divided between the hypervisor and the guest OS level, it is not suitable to realize our
unikernel-based scheduling model. Therefore, we have extended the Xen hypervisor with our
own scheduling infrastructure that implements our deferrable server model.

Lackorzyński et al. were the first to introduce the concept of flattening the hierarchical
scheduling [16], where the task information is exported to the hypervisor scheduler. Drescher
et al. further proposed to abandon the usage of server-based approaches to achieve ExVM [10].
However, as also noted in [10, 18], such flattening mechanisms might either break the temporal
isolation between VMs, or expose task-specific information from a VM, which might not be
appealing to the purpose of using virtualization for CPS’s. Similarly, RTVirt [37] proposed
to enable a cross-layer communication over the schedulers in two different tiers. Although
this mechanism can adapt the scheduling decisions according to the dynamic changes, the
potential concern is similar to the aforementioned flattening mechanisms. In this work, the
main insight is to constrain the number of served real-time tasks of each deferrable server to
a single one, without violating any important properties.

8 Conclusions

In this work, we proposed to leverage the scheduling architecture of unikernel-based vir-
tualization to facilitate the schedulability of deferrable servers, in which each server only
serves one sporadic task. We presented how to derive the worst-case response time analysis
under practical scenarios. The evaluation results show that our analysis outperforms the

ECRTS 2022

6:20 Unikernel-Based Real-Time Virtualization

restated analysis based on the state-of-the-art [7]. In addition, we demonstrated that the
unikernel-based architecture can be effectively implemented on top of the Xen hypervisor [2]
and conducted a case study to evaluate the applicability of the proposed approach.

In future work we plan to investigate more scenarios over different relationships between a
sporadic task and its deferrable server, e.g., scenarios with Tk ≤ Pk. Further exploration may
unleash the full power of the deferrable servers and eventually benefit more CPS applications
under real-time virtualization.

References
1 Benny Akesson, Mitra Nasri, Geoffrey Nelissen, Sebastian Altmeyer, and Robert I. Davis. An

empirical survey-based study into industry practice in real-time systems. In 2020 IEEE Real-
Time Systems Symposium (RTSS), pages 3–11, 2020. doi:10.1109/RTSS49844.2020.00012.

2 Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neugebauer,
Ian Pratt, and Andrew Warfield. Xen and the art of virtualization. SIGOPS Oper. Syst. Rev.,
37(5):164–177, October 2003. doi:10.1145/1165389.945462.

3 Sanjoy Baruah and Nathan Fisher. Component-based design in multiprocessor real-time
systems. In 2009 International Conference on Embedded Software and Systems, pages 209–214,
2009. doi:10.1109/ICESS.2009.71.

4 Enrico Bini and Giorgio C. Buttazzo. Measuring the performance of schedulability tests.
Real-Time Systems, 30(1-2):129–154, 2005. doi:10.1007/s11241-005-0507-9.

5 Jian-Jia Chen, Wen-Hung Huang, and Cong Liu. k2U: A general framework from k-point
effective schedulability analysis to utilization-based tests. In Real-Time Systems Symposium
(RTSS), pages 107–118, 2015. doi:10.1109/RTSS.2015.18.

6 Jian-Jia Chen, Geoffrey Nelissen, Wen-Hung Huang, Maolin Yang, Björn B. Brandenburg,
Konstantinos Bletsas, Cong Liu, Pascal Richard, Frédéric Ridouard, Neil C. Audsley, Raj
Rajkumar, Dionisio de Niz, and Georg von der Brüggen. Many suspensions, many problems:
a review of self-suspending tasks in real-time systems. Real Time Syst., 55(1):144–207, 2019.
doi:10.1007/s11241-018-9316-9.

7 Pieter J. L. Cuijpers and Reinder J. Bril. Towards budgeting in real-time calculus: Deferrable
servers. In Proceedings of the 5th International Conference on Formal Modeling and Analysis
of Timed Systems, FORMATS’07, pages 98–113, Berlin, Heidelberg, 2007. Springer-Verlag.

8 Robert I. Davis and Alan Burns. Hierarchical fixed priority pre-emptive scheduling. In RTSS,
pages 389–398, 2005. doi:10.1109/RTSS.2005.25.

9 Z. Deng and J.W.-S. Liu. Scheduling real-time applications in an open environment. In
Proceedings Real-Time Systems Symposium (RTSS), pages 308–319, 1997. doi:10.1109/REAL.
1997.641292.

10 Michael Drescher, Vincent Legout, Antonio Barbalace, and Binoy Ravindran. A flattened
hierarchical scheduler for real-time virtualization. In Proceedings of the 13th International
Conference on Embedded Software, EMSOFT ’16, New York, NY, USA, 2016. Association for
Computing Machinery. doi:10.1145/2968478.2968501.

11 Paul Emberson, Roger Stafford, and Robert I Davis. Techniques for the synthesis of multipro-
cessor tasksets. In WATERS, pages 6–11, 2010.

12 D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr. Exokernel: An operating system architecture
for application-level resource management. In Proceedings of the 15th ACM Symposium on
Operating Systems Principles, pages 251–266, 1995. doi:10.1145/224056.224076.

13 Bryan Ford, Godmar Back, Greg Benson, Jay Lepreau, Albert Lin, and Olin Shivers. The
flux oskit: A substrate for kernel and language research. In Proceedings of the Sixteenth ACM
Symposium on Operating System Principles, pages 38–51, 1997.

14 Marisol García-Valls, Tommaso Cucinotta, and Chenyang Lu. Challenges in real-time virtu-
alization and predictable cloud computing. Journal of Systems Architecture, 60(9):726–740,
2014. doi:10.1016/j.sysarc.2014.07.004.

https://doi.org/10.1109/RTSS49844.2020.00012
https://doi.org/10.1145/1165389.945462
https://doi.org/10.1109/ICESS.2009.71
https://doi.org/10.1007/s11241-005-0507-9
https://doi.org/10.1109/RTSS.2015.18
https://doi.org/10.1007/s11241-018-9316-9
https://doi.org/10.1109/RTSS.2005.25
https://doi.org/10.1109/REAL.1997.641292
https://doi.org/10.1109/REAL.1997.641292
https://doi.org/10.1145/2968478.2968501
https://doi.org/10.1145/224056.224076
https://doi.org/10.1016/j.sysarc.2014.07.004

K.-H. Chen, M. Günzel, B. Jablkowski, M. Buschhoff, and J.-J. Chen 6:21

15 Boguslaw Jablkowski and Olaf Spinczyk. Cps-xen: A virtual execution environment for
cyber-physical applications. In Luís Miguel Pinho, Wolfgang Karl, Albert Cohen, and Uwe
Brinkschulte, editors, Architecture of Computing Systems - ARCS 2015 - 28th International
Conference, Porto, Portugal, March 24-27, 2015, Proceedings, volume 9017 of Lecture Notes
in Computer Science, pages 108–119. Springer, 2015. doi:10.1007/978-3-319-16086-3_9.

16 Adam Lackorzyński, Alexander Warg, Marcus Völp, and Hermann Härtig. Flattening hier-
archical scheduling. In Proceedings of the Tenth ACM International Conference on Embedded
Software, EMSOFT ’12, pages 93–102, New York, NY, USA, 2012. Association for Computing
Machinery. doi:10.1145/2380356.2380376.

17 Jaewoo Lee, Sisu Xi, Sanjian Chen, Linh T. X. Phan, Chris Gill, Insup Lee, Chenyang Lu,
and Oleg Sokolsky. Realizing compositional scheduling through virtualization. In Proceedings
of the 2012 IEEE 18th Real Time and Embedded Technology and Applications Symposium,
RTAS ’12, pages 13–22, USA, 2012. IEEE Computer Society. doi:10.1109/RTAS.2012.20.

18 Haoran Li, Meng Xu, Chong Li, Chenyang Lu, Christopher Gill, Linh Phan, Insup Lee,
and Oleg Sokolsky. Multi-mode virtualization for soft real-time systems. In 2018 IEEE
Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 117–128,
2018. doi:10.1109/RTAS.2018.00022.

19 C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in a hard-real-
time environment. Journal of the ACM, 20(1):46–61, 1973. doi:10.1145/321738.321743.

20 Cong Liu and Jian-Jia Chen. Bursty-interference analysis techniques for analyzing complex
real-time task models. In 2014 IEEE Real-Time Systems Symposium, pages 173–183, 2014.
doi:10.1109/RTSS.2014.10.

21 Anil Madhavapeddy, Thomas Leonard, Magnus Skjegstad, Thomas Gazagnaire, David Sheets,
Dave Scott, Richard Mortier, Amir Chaudhry, Balraj Singh, Jon Ludlam, Jon Crowcroft, and
Ian Leslie. Jitsu: Just-in-time summoning of unikernels. In Proceedings of the 12th USENIX
Conference on Networked Systems Design and Implementation, NSDI’15, pages 559–573, USA,
2015. USENIX Association.

22 Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David Scott, Balraj Singh,
Thomas Gazagnaire, Steven Smith, Steven Hand, and Jon Crowcroft. Unikernels: Library
operating systems for the cloud. SIGARCH Comput. Archit. News, 41(1):461–472, March
2013. doi:10.1145/2490301.2451167.

23 Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon Kuenzer, Sumit Sati,
Kenichi Yasukata, Costin Raiciu, and Felipe Huici. My vm is lighter (and safer) than
your container. In Proceedings of the 26th Symposium on Operating Systems Principles,
SOSP ’17, pages 218–233, New York, NY, USA, 2017. Association for Computing Machinery.
doi:10.1145/3132747.3132763.

24 Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu, Michio Honda, Roberto
Bifulco, and Felipe Huici. ClickOS and the art of network function virtualization. In 11th
USENIX Symposium on Networked Systems Design and Implementation, pages 459–473, 2014.

25 Gabriele Paoloni. How to benchmark code execution times on intel® ia-32 and ia-64 instruction
set architectures, 2010.

26 Donald E. Porter, Silas Boyd-Wickizer, Jon Howell, Reuben Olinsky, and Galen C. Hunt.
Rethinking the library OS from the top down. In Rajiv Gupta and Todd C. Mowry, editors,
Proceedings of the 16th International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, pages 291–304. ACM, 2011. doi:10.1145/1950365.1950399.

27 Vara Prasad, William Cohen, FC Eigler, Martin Hunt, Jim Keniston, and J Chen. Locating
system problems using dynamic instrumentation. In 2005 Ottawa Linux Symposium, pages
49–64, 2005.

28 Saowanee Saewong, Ragunathan Rajkumar, John P. Lehoczky, and Mark H. Klein. Analysis
of hierarchical fixed-priority scheduling. In ECRTS, pages 173–181, 2002. URL: http:
//csdl.computer.org/comp/proceedings/ecrts/2002/1665/00/16650173abs.htm.

ECRTS 2022

https://doi.org/10.1007/978-3-319-16086-3_9
https://doi.org/10.1145/2380356.2380376
https://doi.org/10.1109/RTAS.2012.20
https://doi.org/10.1109/RTAS.2018.00022
https://doi.org/10.1145/321738.321743
https://doi.org/10.1109/RTSS.2014.10
https://doi.org/10.1145/2490301.2451167
https://doi.org/10.1145/3132747.3132763
https://doi.org/10.1145/1950365.1950399
http://csdl.computer.org/comp/proceedings/ecrts/2002/1665/00/16650173abs.htm
http://csdl.computer.org/comp/proceedings/ecrts/2002/1665/00/16650173abs.htm

6:22 Unikernel-Based Real-Time Virtualization

29 Lui Sha, John P. Lehoczky, and Ragunathan Rajkumar. Solutions for some practical problems
in prioritized preemptive scheduling. In IEEE Real-Time Systems Symposium (RTSS), pages
181–191, 1986.

30 Insik Shin, Arvind Easwaran, and Insup Lee. Hierarchical scheduling framework for virtual
clustering of multiprocessors. In 2008 Euromicro Conference on Real-Time Systems, pages
181–190, 2008. doi:10.1109/ECRTS.2008.28.

31 Insik Shin and Insup Lee. Compositional real-time scheduling framework. In 25th IEEE
International Real-Time Systems Symposium, pages 57–67, 2004. doi:10.1109/REAL.2004.15.

32 Brinkley Sprunt, Lui Sha, and John P. Lehoczky. Aperiodic task scheduling for hard real-time
systems. Real-Time Systems, 1(1):27–60, 1989.

33 J.K. Strosnider, J.P. Lehoczky, and Lui Sha. The deferrable server algorithm for enhanced
aperiodic responsiveness in hard real-time environments. IEEE Transactions on Computers,
44(1):73–91, 1995. doi:10.1109/12.368008.

34 Lothar Thiele, Samarjit Chakraborty, and Martin Naedele. Real-time calculus for scheduling
hard real-time systems. In IEEE International Symposium on Circuits and Systems, Emerging
Technologies for the 21st Century, pages 101–104, 2000. doi:10.1109/ISCAS.2000.858698.

35 Sisu Xi, Justin Wilson, Chenyang Lu, and Christopher Gill. Rt-xen: Towards real-time
hypervisor scheduling in xen. In 2011 Proceedings of the Ninth ACM International Conference
on Embedded Software (EMSOFT), pages 39–48, 2011.

36 Sisu Xi, Meng Xu, Chenyang Lu, Linh T. X. Phan, Christopher Gill, Oleg Sokolsky, and
Insup Lee. Real-time multi-core virtual machine scheduling in xen. In Proceedings of the 14th
International Conference on Embedded Software, EMSOFT ’14, New York, NY, USA, 2014.
Association for Computing Machinery. doi:10.1145/2656045.2656066.

37 Ming Zhao and Jorge Cabrera. Rtvirt: Enabling time-sensitive computing on virtualized
systems through cross-layer cpu scheduling. In Proceedings of the Thirteenth EuroSys Con-
ference, EuroSys ’18, New York, NY, USA, 2018. Association for Computing Machinery.
doi:10.1145/3190508.3190527.

A Appendix

▶ Lemma 9. Under global preemptive fixed-priority scheduling of systems composed of only
fixed-priority deferrable servers on m homogeneous (identical) physical processors, a sufficient
service condition test can be written as Eq. (2).

Proof. This can be proved by contrapositive. Suppose that the service condition to provide
capacity Qk for DSk cannot be fulfilled during a period from a to a + Pk for contrapositive.
Under multiprocessor global preemptive fixed-priority scheduling, it implies that whenever
DSk is not served, the m processors are busy serving other higher-priority workload (i.e.,
servers in this case). The amount of execution time a higher-priority DSi can be executed
from a to a + t is upper-bounded by

⌈
t+Pi−Qi

Pi

⌉
Qi, by considering the back-to-back hitting.

Therefore, we know that ∃ DSk, ∀0 < t ≤ Pk, Qk +
∑

DSi∈hpk

⌈
t+Pi−Qi

Pi

⌉
Qi

m > t. By taking the
negation of the above condition, we reach the conclusion. ◀

https://doi.org/10.1109/ECRTS.2008.28
https://doi.org/10.1109/REAL.2004.15
https://doi.org/10.1109/12.368008
https://doi.org/10.1109/ISCAS.2000.858698
https://doi.org/10.1145/2656045.2656066
https://doi.org/10.1145/3190508.3190527

	1 Introduction
	2 Deferrable Server and Task model
	3 Service Condition and Execution Scenarios of Deferrable Servers
	3.1 Service Condition of Deferrable Servers
	3.2 Serving one Task by a Deferrable Server

	4 Worst-Case Response Time Analysis for One Single Task
	4.1 Existing Analysis Converting from Real-Time Calculus
	4.2 Our Analysis for Sporadic Tasks
	4.3 Efficient Computation of Worst-Case Response Time Bound

	5 Architecture Model
	5.1 Unikernel-based CPS Applications
	5.2 Scheduling Architecture
	5.2.1 Real-Time Networking

	5.3 Design Principles
	5.4 Implementation on Xen

	6 Evaluation and Discussion
	6.1 Numerical Simulation
	6.2 Case Study
	6.2.1 Benchmark
	6.2.2 Case Study Results

	7 Related Work
	8 Conclusions
	A Appendix

