
Non-Adaptive Proper Learning Polynomials
Nader H. Bshouty #

Department of Computer Science, Technion, Haifa, Israel

Abstract
We give the first polynomial-time non-adaptive proper learning algorithm of Boolean sparse mul-
tivariate polynomial under the uniform distribution. Our algorithm, for s-sparse polynomial
over n variables, makes q = (s/ϵ)γ(s,ϵ) log n queries where 2.66 ≤ γ(s, ϵ) ≤ 6.922 and runs in
Õ(n) · poly(s, 1/ϵ) time. We also show that for any ϵ = 1/sO(1) any non-adaptive learning algorithm
must make at least (s/ϵ)Ω(1) log n queries. Therefore, the query complexity of our algorithm is also
polynomial in the optimal query complexity and optimal in n.

2012 ACM Subject Classification Theory of computation

Keywords and phrases Polynomial, Learning, Testing

Digital Object Identifier 10.4230/LIPIcs.STACS.2023.16

Related Version Full Version: https://eccc.weizmann.ac.il/report/2022/098/

1 Introduction

In this paper, we study the non-adaptive learnability of the class of sparse (multivariate)
polynomials over GF(2). A polynomial over GF(2) is the sum in GF(2) of monomials, where
a monomial is a product of variables. It is well known that every Boolean function has a
unique representation as a (multilinear) polynomial over GF(2). A Boolean function is called
s-sparse polynomial if its unique polynomial expression contains at most s monomials.

In the learning model [1, 19], the learning algorithm has access to a black-box query
oracle to a function f that is s-sparse polynomial. The goal is to run in poly(n, s, 1/ϵ) time,
make poly(n, s, 1/ϵ) black-box queries and, with probability at least 2/3, learn a Boolean
function h that is ϵ-close to f under the uniform distribution, i.e., Prx[f(x) ̸= h(x)] ≤ ϵ.
The learning algorithm is called proper learning if it outputs a s-sparse polynomial. The
learning algorithm is called exact learning algorithm if ϵ = 0.

In the adaptive learning algorithms, the queries can depend on the answers to the previous
queries, wherein in the non-adaptive learning algorithms, the queries are independent of the
answers to the previous queries.

Adaptive proper and non-proper learning algorithms of s-sparse polynomials that run
in polynomial-time and make a polynomial number of queries have been studied by many
authors [2, 4, 5, 6, 7, 10, 12, 11, 14, 15, 17, 18].

Non-adaptive proper and non-proper learning algorithms of s-sparse polynomials have
been studied in [13, 16, 17]. In [16], Hellerstein and Servedio gave a non-proper learning
algorithm that learns only from random examples under any distribution (PAC-learning
without black-box queries, [19]) that runs in time nO(n log s)1/2 . Roth and Benedek, [17],
show that for any s ≥ 2 polynomial-time proper PAC-learning without black-box queries of
s-sparse polynomials implies RP=NP. They also gave a non-adaptive proper exact learning
(ϵ = 0) algorithm that makes (n/ log s)log s black-box queries. They also show that to exactly
learn s-sparse polynomial, you need at least (n/ log s)log s black-box queries. See also [13, 14].

© Nader H. Bshouty;
licensed under Creative Commons License CC-BY 4.0

40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023).
Editors: Petra Berenbrink, Patricia Bouyer, Anuj Dawar, and Mamadou Moustapha Kanté;
Article No. 16; pp. 16:1–16:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bshouty@cs.technion.ac.il
https://doi.org/10.4230/LIPIcs.STACS.2023.16
https://eccc.weizmann.ac.il/report/2022/098/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Non-Adaptive Proper Learning Polynomials

To the best of our knowledge, no polynomial-time non-adaptive proper (or non-proper)
learning algorithm is known for s-sparse polynomials. In this paper, we give the first
polynomial-time non-adaptive proper learning algorithm for sparse multivariate polynomial.
We prove

▶ Theorem 1. There is a non-adaptive proper learning algorithm for s-sparse polynomial
that runs in polynomial-time and makes (s/ϵ)O(1) log n queries.

In [17], Roth and Benedek show that any deterministic non-adaptive learning algorithm
with ϵ = 1/sO(1) must make at least (s/ϵ)Ω(1) log n queries. We prove the same bound
for randomized algorithms. This shows that our query complexity in Theorem 1 is also
polynomial in the optimal query complexity and optimal in n.

Our paper is organized as follows. In Section 2, we give the technique used for our
algorithm in Theorem 1. In Section 3, we provide some definitions and preliminary results.
The learning algorithm is given in Section 4. In Section 5, we give another algorithm that
has sublinear complexity in 1/ϵ when ϵ is “very” small. Then, in Section 6, we give lower and
upper bounds for the query complexity of algorithms with unlimited computational power.
Appendices A and B are dedicated to two proofs of two lemmas that are needed for the main
algorithm.

2 Techniques

In this section, we give a brief overview of the techniques used for the main result, Theorem 1.
For the other results, see Sections 5 and 6.

Our learning algorithm is composed of the following five reductions.
The first reduction reduces the non-adaptive learning of s-sparse polynomials to non-

adaptive exact learning s-sparse polynomials with monomials of size at most d = O(log(s/ϵ)),
i.e., degree-d s-sparse polynomials. Given a s-sparse polynomial f , we assign each variable
xi to 0 with probability1 p = 1 − 2−Θ(

√
log s/ log(1/ϵ)). In this partial assignment, with high

probability, monomial of size greater than d vanish. Then we learn the resulted functions.
We take enough random zero assignments (partial assignments) so that, with high probability,
for each small monomial M of f , there is an partial assignment q that M does not vanish
under q. Collecting all the monomials of degree at most d in all the resulted functions gives
a hypothesis that ϵ-approximate the target function f .

The second reduction reduces the non-adaptive exact learning of degree-d s-sparse
polynomials to non-adaptive exact learning only the monomials of degree d of the degree-d
s-sparse polynomial. This is done by running all the algorithms that learn the monomials of
degree i, i ∈ [d] on the target f (which is a degree-d s-sparse polynomial). After learning the
monomials of degree d in f , we let g be their sum and then learn the monomials of degree
d − 1 in f + g (which are the monomials of degree d − 1 in f). Then continue the same way
with f + g.

The third reduction reduces the non-adaptive exact learning of the monomials of degree
d in the degree-d s-sparse polynomials to exact learning degree-d s-sparse determinant-
polynomials. A degree-d s-sparse determinant-polynomial is a polynomial over the new nd

variables {yi,j}i∈[n],j∈[d] of the form∑
I∈S

det(Y(I))

1 We can also choose a constant p, but this value of p is the one that minimizes the query complexity of
the tester.

N. H. Bshouty 16:3

where S is a set of d-subsets of [n], |S| = s and for I = {i1, . . . , id} ∈ S, Y(I) is the d × d

matrix where Y(I)
k,j = yik,j . Notice that the degree-d s-sparse determinant-polynomials is a

homogeneous degree-d (d!s)-sparse polynomial over dn variables. For this reduction, we use
the operator ϕd defined in [9] that changes the degree-d s-sparse polynomial f to degree-d
s-sparse determinant-polynomial. This operator is linear, changes each monomial Πi∈Ixi

of degree d in f to det(Y(I)), removes monomials of degree less than d, and each black-box
query to ϕdf can be simulated by 2d = poly(s/ϵ) queries to f . Obviously, if we can learn S

in the degree-d s-sparse determinant-polynomial ϕdf , we can learn the monomials of degree
d of the degree-d s-sparse polynomials f .

Notice that the monomials of degree-d s-sparse determinant-polynomials are of the
form yi1,1yi2,2 · · · yid,d. This reduction aims to change the polynomial to a homogeneous
polynomial that their monomials are of the form yi1,1 · · · yid,d, so we can apply the following
(fourth) reduction, which can be applied only to such polynomials.

The fourth reduction uses the simulation in Lemma 2 (see also [9]), which shows that
any black-box query in GF(2t)n to a homogeneous degree-d polynomial f with monomials
of the form yi1,1 · · · yid,d can be simulated in poly(2d, t)Õ(n) = poly(s/ϵ)Õ(n) time by
O(21.66dt) = poly(s/ϵ)t black-box queries in GF(2)n. We will choose t = (d + 1) log n, which
is necessary for applying the following (fifth) reduction and the final algorithm.

Notice that this reduces exact learning degree-d s-sparse determinant-polynomials with
black-box queries in GF(2)dn to exact learning degree-d s-sparse determinant-polynomials
with black-box queries in GF(2t)dn. There are many non-adaptive learning algorithms of
sparse polynomials over large fields. However, unfortunately, as we said before, degree-d
s-sparse determinant-polynomials are degree-d (d!s)-sparse polynomials and d!s = sΩ(log log s),
which makes the time and query complexity of the algorithm super-polynomial. So, we need
another reduction to reduce the number of monomials.

The fifth reduction reduces non-adaptive exact learning degree-d s-sparse determinant-
polynomials with queries in GF(2t)dn to non-adaptive exact learning degree-d s-sparse
(multilinear) polynomial over GF(2t) with queries in GF(2t)n. We simply choose, uniformly
at random, dn elements αi,j in GF(2t) and substitute yi,j = αi,jxi. This changes each
det(Y(I)) to the monomial (det Γ(I))

∏
i∈I xi where for I = {i1, i2, . . . , id}, ΓI

k,j = αik,j .
We then argue that whp, det Γ(I) ≠ 0 and, therefore, we can find all the terms of the
determinant-polynomials of the target.

Combining all the above, we reduce non-adaptive learning s-sparse polynomial to non-
adaptive exact learning degree-d s-sparse polynomial with black-box that answer queries in
GF(2t)n. Now we use the algorithm of Ben-Or and Tiwari [3] with some modification to
learn degree-d s-sparse multilinear polynomial over GF(2t) with 2s queries. We show that
to use Ben-Or and Tiwari algorithm, it is enough to have t = (d + 1) log n. This implies
Theorem 1.

The following depicts the above reductions. Here, Ps is the class of s-sparse polynomials,
Pd,s is the class of degree-d s-sparse polynomials, DPd,s is the class of degree-d s-sparse
determinant-polynomials, Pd,s[2t] is the class of degree-d s-sparse multilinear polynomials
over GF(2t) and “qu. in” is an abbreviation of “queries in”.

DPd,s qu. in GF(2t)dn → Pd,s[2t] qu. in GF(2t)n

↑
Ps → Pd,s → Pd,s d-mono. → DPd,s qu. in GF(2)dn

STACS 2023

16:4 Non-Adaptive Proper Learning Polynomials

3 Definitions and Preliminary Results

We will denote by Ps the class of s-sparse polynomials over the Boolean variables (x1, . . . , xn)
and Pd,s ⊂ Ps, the class of degree-d s-sparse polynomials. For a power of two q, the classes
Ps[q] is the class of s-sparse multilinear polynomials over the field GF(q) and Pd,s[q] ⊂ Ps[q],
the class of degree-d s-sparse multilinear polynomials over GF(q).

Formally, let Sn,≤d = ∪i≤dSn,i, where Sn,i =
([n]

i

)
is the set of all i-subsets of [n] =

{1, 2, . . . , n}. The class Pd,s (resp. Pd,s[q]) is the class of all the polynomials of the form∑
I∈S

aI

∏
i∈I

xi

where S ⊆ Sn,≤d, |S| ≤ s and aI = 1 for all I (resp. aI ∈ GF(q)\{0} for all I). The class Ps

(resp. Ps[q]) is Pn,s (resp. Pn,s[q]).
Let {yj,i}i∈[n],j∈[d] be nd variables. A degree-d s-sparse determinant-polynomial is a

polynomial of the form∑
I∈S

det(Y(I)) (1)

where S ⊆ Sn,d, |S| ≤ s and for I = {i1, . . . , id} ⊆ [n], Y(I) is the d × d matrix where
Y(I)

j,k = yj,ik
. We denote by DPd,s the class of degree-d s-sparse determinant-polynomials and

DPd = ∪s≥0DPd,s.
Consider the operator ϕd : Pd,s → DPd,s defined as2

ϕdf =
∑

J⊆[d]

f

∑
j∈J

yj

 (2)

where yj = (yj,1, . . . , yj,n), j ∈ [d]. By Lemma 61 in [8], we have

ϕd

∑
I∈S

∏
i∈I

xi =
∑

I∈S,|I|=d

det(Y(I)).

That is,
1. ϕd removes all the monomials of degree less than d from f .
2. It changes each monomial

∏
i∈I xi with |I| = d to det(Y(I)).

3. Given ϕdf represented as in (1), one can find the degree-d monomials of f in linear time.
4. Every black-box query to ϕdf can be simulated by 2d black-box queries to f .
To see 3, notice that any row of Y(I) uniquely gives I and therefore uniquely gives the
monomial

∏
i∈I xi.

We denote by HPd the set of homogeneous polynomials F (over GF(2)) of degree d over
the variables Y = {yi,j}i∈[n],j∈[d] where each monomial of F is of the form y1,i1y2,i2 · · · yd,id

where {i1, i2, . . . , id} ∈
([n]

d

)
. Obviously, DPd,s ⊂ HPd.

The following Lemma shows why we need the operator ϕd. Its proof is in Appendix A.

2 In [8] the sum contains (−1)d−|J|. This disappears here since in GF(2), −1 = 1.

N. H. Bshouty 16:5

▶ Lemma 2. For any integer power of two t > 1 there is an algorithm that runs in time
n · poly(t, 2d) and finds N = Õ(21.66d)t polynomial-time computable maps Mi : GF(2t)dn →
GF(2)dn, i ∈ [N], and elements {αi}i∈[N] in GF(2t) such that for every β ∈ GF(2t)dn and
every F ∈ HPd

F (β) =
N∑

i=1
αiF (Mi(β)).

In particular, if F ∈ DPd then a black-box query in GF(2t)dn to F can be simulated in
time n · poly(N) by N black-box queries in GF(2)dn to F .

In this paper, the representation that is used for elements in the Galois field GF(2t) is
GF(2)[w]/ (g(w)) for some irreducible polynomial g ∈ GF(2)[w] of degree t.

4 The Learning Algorithm

In this section, we give the learning algorithm for Ps. Recall the reductions from Section 2.

DPd,s qu. in GF(2t)dn → Pd,s[2t] qu. in GF(2t)n

↑
Ps → Pd,s → Pd,s d-mono. → DPd,s qu. in GF(2)dn

4.1 The Reduction Algorithms
In this subsection, we give the reductions. We will prove a lemma for each reduction.

Let f(x1, . . . , xn) be any Boolean function. A p-zero projection of f is a random function,
f(z) = f(z1, . . . , zn) where each zi is equal to xi with probability p and is equal to 0 with
probability 1 − p. The first reduction is Lemma 6 from [11]. The Lemma in [11] is stated for
adaptive algorithms. The same proof holds for non-adaptive algorithms.

▶ Lemma 3 ([11] (Ps → Pd,s)). Let 0 < p < 1, w = (s/ϵ)log(1/p) ln(16s) and

D = log s

ϵ
+ log s + log log s + 6

log(1/p) .

Suppose there is a non-adaptive proper learning algorithm that exactly learns Pd,s with Q(d, δ)
queries in time T (d, δ) and probability of success at least 1 − δ. Then there is a non-adaptive
proper learning algorithm that learns Ps with O(w · Q(D, 1/(16w)) · log(1/δ)) queries, in time
w · T (D, 1/(16w)) log(1/δ), probability of success at least 1 − δ and accuracy 1 − ϵ.

We now give the second reduction.

▶ Lemma 4 (Pd,s → Pd,s d-monomials). Suppose there is a non-adaptive algorithm that
for f ∈ Pd,s exactly learns the monomials of degree d of f with Q(d, δ) queries in time
T (d, δ) and probability of success at least 1 − δ. Then there is a non-adaptive proper exact
learning algorithm that learns Pd,s with

∑d
j=0 Q(j, δ/d) queries, time O(d2s maxj Q(j, δ/d))+∑d

j=0 T (j, δ/d) and probability of success at least 1 − δ.

Proof. Let f ∈ Pd,s. Let fi be the sum of all the monomials of f of degree i, and si the
number of monomials of fi. Let A(d, δ) be a non-adaptive algorithm that exactly learns the
monomials of degree d of f ∈ Pd,s with Q(d, δ) queries in time T (d, δ) and probability of
success at least 1 − δ. We define an algorithm B as follows. First, algorithm B makes all

STACS 2023

16:6 Non-Adaptive Proper Learning Polynomials

the queries that all A(i, δ/d), i ≤ d, make. Let Ci be the set of queries that A(i, δ/d) makes,
i ≤ d. Then B continues to run A(d, δ/d) with the answers of the queries in Cd and learns
the monomials of degree d of f . Let fd be the sum of those monomials. Then B continues to
run A(d−1, δ/d) with {(a, f(a)+fd(a))|a ∈ Cd−1}. That is, for each query a of A(d−1, δ/d)
we query f to find f(a) and then return the answer f(a) + fd(a) to A(d − 1, δ/d). Since
f + fd is the sum of all the monomials of degree at most d − 1 of f , A(d − 1, δ/d) learns the
monomials of degree d − 1 of f + fd, which are the monomials of degree d − 1 of f . At the
d − i + 1-th stage, algorithm B continues to run A(i, δ/d) on

a, f(a) +
d∑

j=i+1
fj(a)

∣∣∣∣∣∣ a ∈ Cd−1


where fj , j ∈ {i + 1, i + 2, · · · , d} is the sum of all the monomials of f of degree j. Since
g := f +

∑d
j=i+1 fj is of degree i, A(i, δ/d) learns the monomials of degree i of g, which

are the monomials of degree i of f . Notice that all the queries are all made for f , so the
algorithm in non-adaptive.

It is clear that B exactly learns f , makes
∑d

j=0 Q(j, δ/d) queries, runs in time

O

 d∑
j=0

(
j∑

i=0
si

)
d · Q(j, δ/d)

+ T (j, δ/d) = O(d2s max
j

Q(j, δ/d)) +
d∑

j=0
T (j, δ/d),

and has probability of success at least 1 − δ. ◀

The following is the third reduction.

▶ Lemma 5 (Pd,s d-monomials → DPd,s). Suppose there is a non-adaptive proper exact
learning algorithm that learns DPd,s (with the matrix representation as in (1)) with Q(d, δ)
queries in time T (d, δ) and probability of success at least 1 − δ. Then there is a non-adaptive
exact learning algorithm that for f ∈ Pd,s learns the monomials of degree d of f with 2dQ(d, δ)
queries in time T (d, δ) + O(2dQ(d, δ)n) and probability of success at least 1 − δ.

Proof. Let A(d, δ) be a non-adaptive proper exact learning algorithm that learns DPd,s

with Q(d, δ) queries in time T (d, δ) and probability of success at least 1 − δ. We define an
algorithm B(d, δ) as follows. Define F = ϕdf ∈ DPd,s and run A(d, δ) to learn F . Recall
that ϕd removes all the monomials of degree less than d from f and changes each monomial∏

i∈I xi with |I| = d on f to det(Y(I)). By item 4 in Section 3, every black-box query to F

can be simulated by 2d black-box queries to f . Given F in its matrix representation as in
(1), we can find the degree-d monomials of f . See item 3 in Section 3. ◀

The following is the fourth reduction.

▶ Lemma 6 (DPd,s queries in GF(2)dn → DPd,s queries in GF(2t)dn). Let t be a power of
two. Suppose there is a non-adaptive proper exact learning algorithm that learns DPd,s

with Q(d, δ) black-box queries in GF(2t)dn, time T (d, δ) and probability of success at least
1 − δ. Then there is a non-adaptive proper exact learning algorithm that learns DPd,s with
21.66dtQ(d, δ) black-box queries in GF(2)dn, time T (d, δ) + poly(t, 2d)Q(d, δ)n and probability
of success at least 1 − δ.

Proof. The result follows from Lemma 2. ◀

The following is the fifth reduction.

N. H. Bshouty 16:7

▶ Lemma 7 (DPd,s queries in GF(2t)dn −→ Pd,s[2t] queries in GF(2t)n). Let ℓ =
⌈log(2s/δ)/(t − 1)⌉. Suppose there is a non-adaptive proper exact learning algorithm that
learns Pd,s[2t] with Q(d, δ) queries in GF(2t)n in time T (d, δ) and probability of success at
least 1 − δ. Then there is a non-adaptive proper exact learning algorithm that learns DPd,s

with ℓ · Q(d, δ/(2ℓ)) queries in GF(2t)dn in time O(ℓdnt) + ℓT (d, δ/(2ℓ)) and probability of
success at least 1 − δ.

Proof. Let A(d, δ) be a non-adaptive proper exact learning algorithm that learns Pd,s[2t]
with Q(d, δ) queries in time T (d, δ) and probability of success at least 1 − δ. Let
F (y1, y2, . . . , yd) ∈ DPd,s where yj = (yj,1, . . . , yj,n), j ∈ [d]. We define an algorithm
B(d, δ) as follows. Algorithm B uniformly at random chooses dnℓ elements α

(k)
j,i ∈ GF(2t),

j ∈ [d], i ∈ [n], and k ∈ [ℓ]. Let z
(k)
j = (α(k)

j,1 x1, . . . , α
(k)
j,nxn), j ∈ [d], k ∈ [ℓ] and

g(k)(x1, . . . , xn) = F (z(k)
1 , z

(k)
2 , . . . , z

(k)
d). If F =

∑
I∈S det(YI), then

g(k)(x1, . . . , xn) =
∑
I∈S

((
det Γ(k,I)

)∏
i∈I

xi

)

where for I = {i1, . . . , td},

Γ(k,I) =


α

(k)
1,i1

· · · α
(k)
1,id

...
. . .

...
α

(k)
d,i1

· · · α
(k)
d,id

 .

Therefore,
∏

i∈I xi is a monomial of g(k) if and only if
1. det(YI) is a term of F , and
2. det Γ(k,I) ̸= 0.
Now notice that each g(k) is an s-sparse polynomial. Therefore, if we learn the monomials of
g(k), k ∈ [ℓ], then we learn the terms det(YI) of F for which det Γ(k,I) ̸= 0. So, algorithm B

runs A(d, δ/(2ℓ)) to learn all g(k), and from the monomials of all g(k) finds the terms of F .
The probability that B fails to learn all the monomials of F is equal to the probability that

for some term det(YI) of F , there is no k ∈ [ℓ] such that det Γ(I,k) ̸= 0. Since α
(k)
j,i ∈ GF(2t)

are uniformly random, this probability is at most

s

(
1 −

(
1 − 1

2dt

)(
1 − 1

2(d−1)t

)
· · ·
(

1 − 1
2t

))ℓ

≤ s

(
1

2dt
+ 1

2(d−1)t
+ · · · + 1

2t

)ℓ

≤ s

2(t−1)ℓ
≤ δ

2 .

The probability that A(d, δ/(2ℓ)) fails to learn all g(k) is at most ℓ(δ/(2ℓ)) = δ/2. This
completes the proof. ◀

Now we show

▶ Lemma 8 (Pd,s[2t] queries in GF(2t)n). Let t = d′m be an integer where d < d′ = O(d) and
log n < m = O(log n). There is a deterministic non-adaptive proper exact learning algorithm
that learns Pd,s[2t] with 2s queries in GF(2t)n in time poly(d, s) · Õ(n).

Proof. The result follows from the BCH decoding and the algorithm of Ben-Or and Tiwari [3],
with a small modification. See the details in the Appendix B. ◀

STACS 2023

16:8 Non-Adaptive Proper Learning Polynomials

4.2 Query and Time Complexity
In this section, we prove,

▶ Theorem 9. Let β > 0 be any real number. There is a non-adaptive proper learning
algorithm for s-sparse polynomial with accuracy parameters ϵ = 1/sβ and confidence parameter
δ that makes

q = O

((s

ϵ

)2.66+ 1
β+1 + 3.262√

β+1 log n log(1/δ)
)

= O

((s

ϵ

)6.922
log n log(1/δ)

)
queries and runs in time Õ(n) · poly(s, 1/ϵ) log(1/δ).

Proof. Denote by ⌈x⌉2 the smallest power-of-two integer that is greater than or equal to x.
Notice that x ≤ ⌈x⌉2 < 2x.

We choose t = ⌈D + 1⌉2⌈log n⌉2 = O(D log n), τ := log(1/p),

D = log s

ϵ
+ log s + log log s + 6

τ
, and w =

(s

ϵ

)τ

ln(16s),

where p will be determined later. We only need to know here that for this choice of p,
we will have D = Θ(log(s/ϵ)). By Lemma 8, there is a deterministic non-adaptive proper
exact learning algorithm that learns PD,s[2t] with Q1(D, δ) = 2s queries over GF(2t) in time
T1(D, δ) = poly(D, s)Õ(n). By Lemma 7, there is a non-adaptive proper exact learning
algorithm that learns DPD,s with Q2(D, δ) = Õ(s) log(1/δ) queries over GF(2t) in time
T2(D, δ) = poly(D, s)Õ(n) log(1/δ) and probability of success at least 1 − δ. By Lemma 6,
there is a non-adaptive proper exact learning algorithm that learns DPd,s with

Q3(D, δ) = 21.66DtQ2(D, δ) = Õ

(
s2.66+ 1.66

τ +os(1)

ϵ1.66 log n log(1/δ)
)

queries in time

T3(D, δ) = T2(D, δ) + poly(t, 2D)Q2(d, δ)n = Õ(n)poly(s, 1/ϵ) log(1/δ)

and probability of success at least 1 − δ. By Lemma 5 and 4, there is a non-adaptive exact
learning algorithm that learns PD,s with

Q4(D, δ) = D2DQ3(D, δ/D) = Õ

(
s3.66+ 2.66

τ +os(1)

ϵ2.66 log n log(1/δ)
)

queries in time T4(D, δ) = Õ(n) · poly(s, 1/ϵ) log(1/δ) and probability of success at least 1 − δ.
Now, by Lemma 3, there is a non-adaptive proper learning algorithm that learns Ps with

Q(D, δ) = O(w · Q4(D, 1/(16w)) log(1/δ)) = Õ

(
s3.66+τ+ 2.66

τ +os(1)

ϵ2.66+τ
log n log(1/δ)

)

queries in time T (D, δ) = w·T4(D, 1/(16w)) log(1/δ) = Õ(n)·poly(s, 1/ϵ) log(1/δ), probability
of success at least 1 − δ and accuracy 1 − ϵ.

For ϵ = 1/sβ we choose3 τ =
√

2.66/(1 + β) and get

Q(D, δ) = O

((s

ϵ

)2.66+ 1
β+1 + 3.262√

β+1 log n log(1/δ)
)

. ◀

3 This choice of τ minimizes the query complexity of the algorthm.

N. H. Bshouty 16:9

5 The Learning Algorithm for Small ϵ

In this section, we give a more query-efficient learning algorithm for s-sparse polynomials
when ϵ < 1/s0.752 log s. We prove

▶ Theorem 10. Let β > 0 be any real number. There is a non-adaptive proper learning al-
gorithm for s-sparse polynomials with accuracy parameters ϵ = 1/sβ and confidence parameter
δ that makes

q =
(

s log 1
ϵ

)2 log s

sO(log log s) log n log(1/δ) =
(s

ϵ

) 2 log s+2 log β+O(log log s)
β+1 log n log(1/δ)

queries and runs in time Õ(qsn).

5.1 Technique

We will use the following result from [17]. See also [13].

▶ Lemma 11. Let Un,s be the set of all the assignments in {0, 1}n of Hamming weight at
least n − ⌊log s⌋ − 1. There is a non-adaptive exact learning algorithm for Ps that makes the
black-box queries in Un,s and runs in time sn(en/ log s)log s+1.

In particular,
1. Let f, g ∈ Ps be two distinct s-sparse polynomials. There is a ∈ Un,s such that f(a) ̸= g(a).
2. If f ∈ Ps depends on the variable xi then there are two assignments a, b ∈ Un,s that differ

only in the ith coordinate and f(a) ̸= f(b).
The above lemma follows from the fact that if f is of size s > 1, then there is i ∈ [n] such that
f = f1xi + f2 and f2 ̸≡ 0. Then either4 f2 = fxi←0 is of size ⌊s/2⌋, or f1 = fxi←0 + fxi←1 is
of size ⌊s/2⌋. See [17].

Item 2 follows from applying item 1 to f(x) and g(x) = f(1, x2, . . . , xn).
In the first stage of our algorithm, we set each variable to 0 with probability 1 −

1/O(log(s/ϵ)). This assignment removes monomials of size D > Ω((log s)(log(s/ϵ)). By
Lemma 3, to be able to collect all the monomials of size at most log(s/ϵ) of f , it is
enough to take O(log s) such assignments. This reduced the non-adaptive learning of s-
sparse polynomials to non-adaptive learning degree-d s-sparse polynomials, where d =
O((log s)(log s/ϵ)).

Now, let g be a degree-d s-sparse polynomial where d = O((log s)(log s/ϵ)). The function
g(x) depends on at most v = sd = O(s log s log(s/ϵ)) variables. We, uniformly at random,
assign the n variables of g into w = O(v2) new variables Y = {y1, y2, . . . , yw}. Let h(y) be
the resulted function. With high probability, different relevant variables in g are assigned
to different variables in Y . Now, assuming this event occurs, we run two algorithms. The
first one learns h(y) by the algorithm in Lemma 11. This takes |Uw,s| ≤ (ew/ log s)log s =
(s log(1/ϵ))O(log s) queries. The second algorithm uses item 2 in Lemma 11 to find the relevant
variable in g(x) corresponding to each yi (if any). To achieve that, for every two assignments
in Uw,s that differ in one coordinate, say i, we non-adaptively search for the relevant variable
among all the variables that are assigned to yi. Each search takes O(log n). This algorithm
takes w|Uw,s| log n = (s log(1/ϵ))O(log s) log n queries. This proves the Theorem.

4 fxi←0 is f when we substitute 0 in xi.

STACS 2023

16:10 Non-Adaptive Proper Learning Polynomials

5.2 The Algorithm
In this section, we give the algorithm and prove its correctness.

By Lemma 3 with log(1/p) = 1/ log(s/ϵ), we have

▶ Lemma 12 (Ps → Pd,s). Let w = 2 ln(16s). Suppose there is a non-adaptive proper
learning algorithm that exactly learns Pd,s with Q(d, δ) queries in time T (d, δ) and probability
of success at least 1 − δ. Then there is a non-adaptive proper learning algorithm that learns
Ps with O(w · Q(D, 1/(16w)) log(1/δ)) queries where

D =
(

log s

ϵ

)
(log s + log log s + 7),

in time w · T (D, 1/(16w)) log(1/δ), probability of success at least 1 − δ and accuracy 1 − ϵ.

The following is trivial:

▶ Lemma 13. There is a non-adaptive exact proper learning algorithm for C = {0, 1, x1, . . . ,

xn, x̄1, . . . , x̄n} that makes log n + O(1) queries and runs in time O(n log n).

We now prove

▶ Lemma 14. There is a proper exact learning algorithm for Pd,s with probability of success
at least 1 − δ that makes q = O(d(2e(ds)2/ log s)log s log n log(1/δ)) queries and runs in time
O(qn).

Proof. The algorithm draws uniformly at random a map ϕ : [n] → [m] where m = (2ds)2, and
defines F (x1, . . . , xm) = f(xϕ(1), . . . , xϕ(n)) and then exactly learns F using the algorithm in
Lemma 11. Then, for every i ∈ [m] and every a, b ∈ Um,s that differ in the ith coordinate, it
learns, using the algorithm in Lemma 13, f(π(i,a)) where

π
(i,a)
j =

{
aϕ(j) ϕ(j) ̸= i

xj ϕ(j) = i
.

Then the algorithm returns F (y1, . . . , ym) where yi = xj if there is a ∈ Um,s such that
f(π(i,a)) ∈ {xj , x̄j} and yi = 0 otherwise.

We now prove the correctness of the algorithm. Let xr1 , . . . , xrℓ
, ℓ ≤ ds, be the relevant

variables of f . The probability that ϕ(r1), . . . , ϕ(rℓ) are distinct is at least (1 − 1/m)(1 −
2/m) · · · (1 − (ℓ − 1)/m) ≥ 7/8. We now assume that this event occurs. In particular,
xϕ(r1), . . . , xϕ(rℓ) are the relevant variables of F .

Let ϕ(ri) = ti. Let a, b ∈ Um,s be two assignments that differ in the ti-th coordin-
ate and F (a) ̸= F (b). Then f(π(ti,a)) is a non-constant function, and since ϕ(ri) = ti,
we have f(π(ti,a)) ∈ {xri , x̄ri}. Therefore, yϕ(ri) = yti = xri and F (y1, . . . , ym) =
f(yϕ(1), . . . , yϕ(n)) = f .

The query complexity of the algorithm is |Um,s| = (em/ log s)log s for learning F and
d|Um,s| = d(em/ log s)log s log n for learning all f(π(i,a)). This algorithm has a success
probability of at least 7/8. Repeating the algorithm O(log(1/δ)) times gives the result. ◀

We are now ready to prove Theorem 10.

Proof. We first run the algorithm in Lemma 12. Then for each projection runs the algorithm
in Lemma 14 with d = D. This gives the query complexity in the Theorem. ◀

N. H. Bshouty 16:11

6 Upper and Lower Bounds

In this section, we prove lower and upper bounds for learning sparse polynomials with
unlimited computational power.

As we have seen in the previous sections, for constant confidence δ, the query complexity
of the learning algorithms for ϵ = 1/sβ is of the form (s/ϵ)γ′ log n. In this section, we will
study learning algorithms with query complexity(s

ϵ

)γ(β)
log n.

We denote by Γ(β) = minA γ(β) the minimal possible value of γ(β) among all the learning
algorithms A of s-sparse polynomials with unlimited computational power. Formally,

Γ(β) = min
A

lim
n→∞

log(q(A)/ log n)
log(s/ϵ) .

In particular, we may assume that s and 1/ϵ are arbitrary small compared to n.
By Theorem 9 and 10, we already know the following bounds

Γ(β) ≤


2.66 + 3.262√

β+1
+ 1

β+1 β < 0.752 log s

2 log s+2 log β+O(log log s)
β+1 β ≥ 0.752 log s

In this section, we prove the upper bound Γ(β) ≤ 1 + min(1, β)/(β + 1). The above
bounds gives the upper bound

Γ(β) ≤



1 + β
β+1 β < 1

1 + 1
β+1 1 ≤ β < 4.923

log β
β+1 + Θ

(
1
β

)
β ≥ 4.923

. (3)

The exact bound when β ≥ 4.923 is

Γ(β) ≤ min
0.801<η<0.847

η + 1
β + 1 +

(
1 + η−1)H2

(
1

(β + 1)(1 + η−1)

)
,

where H2(x) = −x log2 x − (1 − x) log2(1 − x) is the binary entropy function. In particular,
Γ(β) ≤ 1.5 for all β and Γ(β) → 0 as β → 0.

We then prove the lower bound,

Γ(β) ≥



1
β+1 0 < β < 0.441

0.694 0.441 ≤ β < 2.548

log β
β+1 + Θ

(
1
β

)
β ≥ 2.548

. (4)

The exact bound when β ≥ 2.548 is

Γ(β) ≥ β · H2(1/β)
β + 1 .

STACS 2023

16:12 Non-Adaptive Proper Learning Polynomials

Notice that our first algorithm in Section 4, for ϵ = 1/sO(1), makes (s/ϵ)γ log n queries
where 2.66 ≤ γ ≤ 6.922 and the lower bound for this case is (s/ϵ)1/(β+1) log n = (s/ϵ)Θ(1) log n.
Therefore, our first algorithm is polynomial in the optimal query complexity and optimal
in n.

The second algorithm in Section 5, for ϵ = 1/sω(log s), makes (s/ϵ)O((log s+log β)/β) log n =
(s/ϵ)oβ(1) log n queries and the lower bound is (s/ϵ)βH2(1/β)/(β+1) log n = (s/ϵ)Θ(log β/β) log n.
Therefore, the query complexity of the second algorithm is polynomial in the optimal query
complexity when β = sΩ(1).

All the upper bounds are in the full paper. We next give the lower bounds.

6.1 Lower Bounds
In this section, we give three lower bounds that prove the lower bound in (4). We remind
the reader that the parameters s and 1/ϵ are arbitrary small compared to n.

We first give the following information-theoretic lower bound.

▶ Theorem 15. Any non-adaptive algorithm for Ps with a confidence probability of at least
2/3 must make at least

Ω
((

log 1
ϵ

)
s log n

)
queries. In particular, when ϵ = 1/sβ, the bound is

Ω̃
((s

ϵ

) 1
β+1
)

log n and Γ(β) ≥ 1
β + 1 .

Proof. Consider the class C = Plog(1/(2ϵ)),s. Consider a (randomized) non-adaptive learning
algorithm AR for Ps with a confidence probability of at least 2/3 and accuracy ϵ. Then AR is
also a (randomized) non-adaptive learning algorithm for C. Since any two distinct functions
in C have distance 2ϵ, AR exactly learns5 C with a confidence probability of at least 2/3. By
Yao’s minimax principle, there is a deterministic non-adaptive exact learning algorithm AD

with the same query complexity as AR that learns at least (2/3)|C| functions in |C|. By the
information theoretic lower bound, the query complexity of AD is at least log |C| − 2. Since

log |C| = log
((n

log(1/(2ϵ))
)

s

)
= Ω

((
log 1

ϵ

)
s log n

)
,

the result follows. ◀

We now show the following.

▶ Theorem 16. Let ϵ = 1/sβ, β > 2. Any non-adaptive algorithm for Ps with a confidence
probability of at least 2/3 must make at least

Ω
((s

ϵ

) β·H2(1/β)
β+1 log n

)
queries.

In particular, for β > 2,

Γ(β) ≥ β · H2(1/β)
β + 1 ≥ log β

β + 1 .

5 Just take the function in C closest to the output of AR.

N. H. Bshouty 16:13

Proof. Let t = log(1/ϵ) − log s − 2 ≥ log s − 2 and r = log s. Let W be the set of all pairs
(I, J) where I and J are disjoint sets, I ∪ J = [t + r], |I| ≥ t, and |J | = t + r − |I| ≤ r.
For every (I, J) ∈ W , define fI,J =

∏
i∈I xi

∏
j∈J(1 + xj). For k ∈ [n]\[t + r] define

fI,J,k = xk · fI,J . Consider the set C of all such functions. First notice that fI,J,k ∈ C ⊂
Pt+r+1,s ⊆ Ps and Pr[fI,J,k = 1] ≥ 2−(t+r+1) = 2− log(1/ϵ)+1 = 2ϵ. Furthermore, since
for (I1, J1, k1) ̸= (I2, J2, k2) the degree of fI1,J1,k1 + fI2,J2,k2 is log(1/ϵ) − 1, we also have
Pr[fI1,J1,k1 ̸= fI2,J2,k2] ≥ 2ϵ. Therefore, any learning algorithm for Ps (with accuracy ϵ and
confidence 2/3) is a learning algorithm for C and thus is an exact learning algorithm for C.

Consider now a (randomized) non-adaptive exact learning algorithm AR for C with a
success probability of at least 2/3 and accuracy ϵ. By Yao’s minimax principle, there is a
deterministic non-adaptive exact learning algorithm AD that for uniformly at random f ∈ C,
with a probability at least 2/3, AD returns f . We will show that AD must make more than
q = (1/20)w log N queries where N = n − (t + r) and w = |W | =

∑r
i=0
(

t+r
i

)
. Now since,

r ≤ (t + r)/2 + 1,

w =
log s∑
i=0

(
log 1

ϵ − 2
i

)
≥ Ω̃

(
2H2
(

log s
log(1/ϵ)

)
log(1/ϵ)

)
= Ω̃

((
1
ϵ

)H2(1/β)
)

= Ω̃
((s

ϵ

) β·H2(1/β)
β+1

)
we get the result.

To this end, suppose for the contrary, AD makes q queries. Let S = {a(1), . . . , a(q)} be the
set of queries that AD makes. For every (I, J) ∈ W , let SI,J = {a ∈ S|fI,J(a) = 1}. Since
for any two distinct (I1, J1), (I2, J2) ∈ W , we have fI1,J1 · fI2,J2 = 0, the sets {SI,J}(I,J)∈W

are disjoint. Let f = fI′,J′,k′ be uniformly at random function in C. We will show that, with
probability at least 4/5, AD fails to learn f , which gives a contradiction.

Since

E(I,J)∈W [|SI,J |] =
∑

(I,J)∈W |SI,J |
|W |

= q

w
= (1/20) log N,

by Markov’s bound with probability at least 9/10, we have |SI′,J′ | ≤ (1/2) log N . Since for
(I, J) ̸= (I ′, J ′), f(I′,J′,k′)(SI,J) = {0}, the only queries that are relevant for learning k′ in f

are the ones in SI′,J′ . Therefore, it is enough to show that, if |SI′,J′ | ≤ (1/2) log N , then
with probability at least 9/10, the queries in SI′,J′ fail to learn k′. Since the algorithm is
deterministic and the number of possible answers to the queries in SI′,J′ is 2(1/2) log N =

√
N ,

the number of possible distinct outputs of the algorithm is at most
√

N . Since k′ is drawn
uniformly at random and can take N possible values, the probability that the algorithm
returns k′ is less than or equal to

√
N/N = 1/

√
N ≤ 1/10. Therefore, the algorithm fails to

output k′ with probability at least 9/10. This completes the proof. ◀

We now show

▶ Theorem 17. Let ϵ = 1/sβ, 0.44 ≤ β ≤ 2.61. Any non-adaptive algorithm for Ps with a
confidence probability of at least 2/3 must make at least

Ω
((s

ϵ

)0.694
log n

)
queries.

Proof. Let η be such that 1+βη
1+β = 5+

√
5

10 ≈ 0.7236. Then 0.0955 ≤ η ≤ 0.618. Also

1 + βη

β(1 − η) = 1
(1 + β)/(1 + βη) − 1 = 3 +

√
5

2 ≈ 2.618. (5)

STACS 2023

16:14 Non-Adaptive Proper Learning Polynomials

Let

t = log s + (2η − 1) log(1/ϵ) + 3 = (1 + β(2η − 1)) log s + 3 (6)

and r = (1−η) log(1/ϵ)−3 = β(1−η) log s−3. We first show that t ≥ 3. By 5, 1+βη > β(1−η)
and therefore (1 + β(2η − 1)) > 0. Thus, by 6, t ≥ 3.

Let σ = 8ϵ1−ηs = 8s1−β(1−η). Since, by 5, β(1 − η) = (1 + βη)/2.618 ≤ (1 + 2.61 ·
0.618)/2.618 < 1, we have σ ≥ 8.

Let W be the set of all r-sets J ⊆ I := [t + r]. For every J ∈ W , define fJ =∏
i∈I\J xi

∏
j∈J(1 + xj). Let U be the set of all σ-sets J = {(J1, t1), . . . , (Jσ, tσ)} where

J1, . . . , Jσ ⊆ I are distinct r-sets and tk ∈ [n]\[t + r]. Let

fJ (x) =
σ∑

k=1
xtk

fJk
=

σ∑
k=1

xtk

∏
i∈I\Jk

xi

∏
i∈Jk

(1 + xi)

 .

We first show that fJ is well-defined. That is, it is possible to choose σ distinct r-sets
J1, . . . , Jσ ⊂ I. This is possible because(

t + r

r

)
=

(
(1 + βη) log s

β(1 − η) log s − 3

)
= s

(1+βη)H
(

β(1−η)
1+βη

)
−o(1) = s0.9594(1+βη)−o(1) (7)

and σ = 8s1−β(1−η) = 8s1−0.382(1+βη) < s0.626(1+βη) < s0.9594(1+βη)−o(1) =
(

t+r
r

)
.

Consider the class C = {fJ |J ∈ U}. The number of monomials of fJ (x) is σ2r = s and
therefore C ⊆ Ps. Since the terms of fJ are disjoint, we have Pr[fJ = 1] = σ2−(t+r)−1 =
4ϵ1−ηs · (ϵη/s) = 4ϵ. Notice that the distance between every two functions in C can be as
small as 2 · 2−(t+r) = 2ϵη/s = 2ϵη+β , which may take values less than ϵ. Therefore, the
argument used in Theorem 16 will not hold here.

Consider now a (randomized) non-adaptive learning algorithm AR for C with a success
probability of at least 2/3 and accuracy ϵ. By Yao’s minimax principle, there is a deterministic
non-adaptive learning algorithm AD that for a uniformly at random target function fJ ∈ C,
with probability at least 2/3, AD returns a hypothesis h(J) that is ϵ-close to fJ . Consider the
deterministic algorithm A′D that runs AD and outputs J ′ where fJ ′ is the closest function
in C to h(J). Since h(J) is ϵ-close to both fJ and fJ ′ , fJ and fJ ′ are 2ϵ-close. We will
show in the sequel that if fJ and fJ ′ are 2ϵ-close, then |J ∩ J ′| ≥ σ/2. This shows that
A′D returns a σ-set J ′ that, with probability at least 2/3, |J ∩ J ′| ≥ σ/2 where fJ is the
target function. We now show that if A′D makes less than q = (1/100)w log N queries where
w =

(
t+r

r

)
and N = n − (s + t) then, with probability at least 2/3, algorithm A′D fails to

output such J ′. Now, since, by (7),(
t + r

r

)
= s0.9594(1+βη)−o(1) =

(s

ϵ

)0.9594 1+βη
β+1 −o(1)

=
(s

ϵ

)0.6942−o(1)
,

the result follows.
To this end, suppose A′D makes less than q queries. Let S = {a(1), . . . , a(q)} be the queries

that A′D makes. For every J ∈ W , let SJ = {a ∈ S|fJ(a) = 1}. Since for any two distinct
J1, J2 ∈ W , we have fJ1fJ2 = 0, the sets {SJ}J∈W are disjoint. Since

EJ∈W [|SJ |] =
∑

J∈W |SJ |
|W |

= q

w
= log N

100 ,

by Markov’s bound, at least 49/50 fraction of the r-subsets J of [t+r] satisfy |SJ | ≤ (1/2) log n.
Now, for a uniformly at random target function fJ = f{(J1,t1),...,(Jσ,tσ)} ∈ C, let Xi be an
indicator random variable that is equal to 1 if |SJi | > (1/2) log N . Then E[Xi] ≤ 1/50. Let

N. H. Bshouty 16:15

X = X1 + · · · + Xσ. Since E[X] ≤ σ/50, by Markov’s bound, with probability at least 4/5,
at least 9σ/10 of the Jis in J satisfy |SJi

| < (1/2) log N . Assume, wlog, |SJi
| < (1/2) log N

for i ≤ 9σ/10. As in Theorem 16, the algorithm A′D can find each ti, i ≤ 9σ/10 with
probability at most 1/

√
N < 1/20. Since the tis are drawn iid and uniformly at random, by

Chernoff bound, with probability at least 4/5, the algorithm A′D fails to find σ/2 of the tis
for i ≤ 9σ/10. Therefore, with probability at least 2/3, A′D fails to return a σ-set J ′ such
that |J ∩ J ′| ≥ σ/2.

It remains to show that if fJ is 2ϵ-close to fJ ′ , then |J ∩ J ′| ≥ σ/2. Suppose, for the
contrary, |J ∩ J ′| < σ/2. Suppose, wlog, J = {(J1, t1), . . . , (Jσ, tσ)} and

J ′ = {(J1, t1), . . . , (Jℓ, tℓ), (Jℓ+1, t′ℓ+1), . . . , (Jµ, t′µ), (J ′µ+1, t′µ+1), . . . , (J ′σ, t′σ)}

where Ji, J ′k, i ∈ [σ], k ≥ µ + 1 are distinct r-subsets of [r + t] and t′i ̸= ti for µ ≥ i > ℓ. Then

fJ + fJ ′ =
µ∑

k=ℓ+1
(xtk

+ xt′
k
)fJk

+
σ∑

k=µ+1
xtk

fJk
+

σ∑
k=µ+1

xt′
k
fJ′

k
.

Since fJi
, fJ′

k
, i ∈ [σ], k ≥ µ + 1 are pairwise disjoint and 2σ − µ − ℓ > σ/2, we have

Pr[fJ ̸= fJ ′] = Pr[fJ + fJ ′ = 1] = (2σ − µ − ℓ)2−(t+r)−1 >
σ

2 4ϵ1−ηs · (ϵη/s) = 2ϵ.

A contradiction. ◀

References
1 Dana Angluin. Queries and concept learning. Machine Learning, 2(4):319–342, 1987.
2 Amos Beimel, Francesco Bergadano, Nader H. Bshouty, Eyal Kushilevitz, and Stefano Var-

ricchio. Learning functions represented as multiplicity automata. J. ACM, 47(3):506–530,
2000. doi:10.1145/337244.337257.

3 Michael Ben-Or and Prasoon Tiwari. A deterministic algorithm for sparse multivariate
polynominal interpolation (extended abstract). In Janos Simon, editor, Proceedings of the
20th Annual ACM Symposium on Theory of Computing, May 2-4, 1988, Chicago, Illinois,
USA, pages 301–309. ACM, 1988. doi:10.1145/62212.62241.

4 Francesco Bergadano, Nader H. Bshouty, and Stefano Varricchio. Learning multivariate
polynomials from substitution and equivalence queries. Electron. Colloquium Comput. Com-
plex., TR96-008, 1996. URL: https://eccc.weizmann.ac.il/eccc-reports/1996/TR96-008/
index.html.

5 Laurence Bisht, Nader H. Bshouty, and Hanna Mazzawi. On optimal learning algorithms for
multiplicity automata. In Gábor Lugosi and Hans Ulrich Simon, editors, Learning Theory,
19th Annual Conference on Learning Theory, COLT 2006, Pittsburgh, PA, USA, June 22-25,
2006, Proceedings, volume 4005 of Lecture Notes in Computer Science, pages 184–198. Springer,
2006. doi:10.1007/11776420_16.

6 Avrim Blum and Mona Singh. Learning functions of k terms. In Mark A. Fulk and John Case,
editors, Proceedings of the Third Annual Workshop on Computational Learning Theory, COLT
1990, University of Rochester, Rochester, NY, USA, August 6-8, 1990, pages 144–153. Morgan
Kaufmann, 1990. URL: http://dl.acm.org/citation.cfm?id=92620.

7 Nader H. Bshouty. On learning multivariate polynomials under the uniform distribution. Inf.
Process. Lett., 61(6):303–309, 1997. doi:10.1016/S0020-0190(97)00021-5.

8 Nader H. Bshouty. Testers and their applications. Electron. Colloquium Comput. Complex.,
page 11, 2012. URL: https://eccc.weizmann.ac.il/report/2012/011, arXiv:TR12-011.

9 Nader H. Bshouty. Testers and their applications. In Moni Naor, editor, Innovations in
Theoretical Computer Science, ITCS’14, Princeton, NJ, USA, January 12-14, 2014, pages
327–352. ACM, 2014. doi:10.1145/2554797.2554828.

STACS 2023

https://doi.org/10.1145/337244.337257
https://doi.org/10.1145/62212.62241
https://eccc.weizmann.ac.il/eccc-reports/1996/TR96-008/index.html
https://eccc.weizmann.ac.il/eccc-reports/1996/TR96-008/index.html
https://doi.org/10.1007/11776420_16
http://dl.acm.org/citation.cfm?id=92620
https://doi.org/10.1016/S0020-0190(97)00021-5
https://eccc.weizmann.ac.il/report/2012/011
http://arxiv.org/abs/TR12-011
https://doi.org/10.1145/2554797.2554828

16:16 Non-Adaptive Proper Learning Polynomials

10 Nader H. Bshouty. Almost optimal testers for concise representations. Electronic Colloquium
on Computational Complexity (ECCC), 26:156, 2019. URL: https://eccc.weizmann.ac.il/
report/2019/156, arXiv:TR19-156.

11 Nader H. Bshouty. Almost optimal proper learning and testing polynomials. In Armando
Castañeda and Francisco Rodríguez-Henríquez, editors, LATIN 2022: Theoretical Informatics
- 15th Latin American Symposium, Guanajuato, Mexico, November 7-11, 2022, Proceedings,
volume 13568 of Lecture Notes in Computer Science, pages 312–327. Springer, 2022. doi:
10.1007/978-3-031-20624-5_19.

12 Nader H. Bshouty and Yishay Mansour. Simple learning algorithms for decision trees
and multivariate polynomials. SIAM J. Comput., 31(6):1909–1925, 2002. doi:10.1137/
S009753979732058X.

13 Michael Clausen, Andreas W. M. Dress, Johannes Grabmeier, and Marek Karpinski. On
zero-testing and interpolation of k-sparse multivariate polynomials over finite fields. Theor.
Comput. Sci., 84(2):151–164, 1991. doi:10.1016/0304-3975(91)90157-W.

14 Arne Dür and Johannes Grabmeier. Applying coding theory to sparse interpolation. SIAM J.
Comput., 22(4):695–704, 1993. doi:10.1137/0222046.

15 Paul Fischer and Hans Ulrich Simon. On learning ring-sum-expansions. SIAM J. Comput.,
21(1):181–192, 1992. doi:10.1137/0221014.

16 Lisa Hellerstein and Rocco A. Servedio. On PAC learning algorithms for rich boolean function
classes. Theor. Comput. Sci., 384(1):66–76, 2007. doi:10.1016/j.tcs.2007.05.018.

17 Ron M. Roth and Gyora M. Benedek. Interpolation and approximation of sparse multivariate
polynomials over GF(2). SIAM J. Comput., 20(2):291–314, 1991. doi:10.1137/0220019.

18 Robert E. Schapire and Linda Sellie. Learning sparse multivariate polynomials over a field
with queries and counterexamples. J. Comput. Syst. Sci., 52(2):201–213, 1996. doi:10.1006/
jcss.1996.0017.

19 Leslie G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142, 1984.
doi:10.1145/1968.1972.

A Proof of Lemma 2

Recall that HPd is the set of homogeneous polynomial F of degree d over the variables
Y = {yi,j}i∈[n],j∈[d] where each monomial of F is of the form y1,i1y2,i2 · · · yd,id

where
{i1, i2, . . . , id} ∈

([n]
d

)
. Throughout this section, q will be a power of two. All the arithmetic

operations in the field GF(qt) have time complexity poly(t, log q). Therefore, each arithmetic
operation will be considered as one unit-time.

Let d > 1 be an integer. We write GF(qt) N−→dGF(q) if there are Nd linear maps
Mi,j : GF(qt) → GF(q), i ∈ [N], j ∈ [d] and elements {αi}i∈[N] in GF(qt) such that for every
a1, a1, . . . , ad ∈ GF(qt)

d∏
j=1

aj =
N∑

k=1

αk

d∏
j=1

Mk,j(aj)

 . (8)

We say that GF(qt) N−→dGF(q) in time T if such maps can be found in time T .
We first prove

▶ Lemma 18. If GF(2t) N−→dGF(2) in time T , then we can find maps M∗
k : GF(2t)dn →

GF(2)dn, k ∈ [N] in time O(Tn) that are computable in time O(dnt) such that, for every
F ∈ HPd and every β ∈ GF(2t)dn, we have

F (β) =
N∑

i=1
αiF (M∗

i (β)).

https://eccc.weizmann.ac.il/report/2019/156
https://eccc.weizmann.ac.il/report/2019/156
http://arxiv.org/abs/TR19-156
https://doi.org/10.1007/978-3-031-20624-5_19
https://doi.org/10.1007/978-3-031-20624-5_19
https://doi.org/10.1137/S009753979732058X
https://doi.org/10.1137/S009753979732058X
https://doi.org/10.1016/0304-3975(91)90157-W
https://doi.org/10.1137/0222046
https://doi.org/10.1137/0221014
https://doi.org/10.1016/j.tcs.2007.05.018
https://doi.org/10.1137/0220019
https://doi.org/10.1006/jcss.1996.0017
https://doi.org/10.1006/jcss.1996.0017
https://doi.org/10.1145/1968.1972

N. H. Bshouty 16:17

Proof. Since GF(2t) N−→dGF(2) in time T , we can find Nd linear maps Mi,j : GF(2t) → GF(2),
i ∈ [N], j ∈ [d] and elements {αi}i∈[N] in GF(2t) such that for every a1, a1, . . . , ad ∈ GF(qt),
(8) holds.

We define M∗
k ((yj,i)i∈[n],j∈[d]) = (Mk,j(yj,i))i∈[n],j∈[d]. Let F be any function in HPd.

Suppose

F ((yj,i)i∈[n],j∈[d]) =
∑

I={i1,i2,...,id}∈S

γI

d∏
j=1

yj,ij


where S ⊆

([n]
d

)
and γI ∈ GF(2) for all I ∈ S. Then for every β ∈ GF(2t)dn, by 8, we have

F (β) =
∑

I={i1,i2,...,id}∈S

γI

d∏
j=1

βj,ij


=

∑
I={i1,i2,...,id}∈S

γI

N∑
k=1

αk

d∏
j=1

Mk,j(βj,ij)



=
N∑

k=1

αk

∑
I={i1,i2,...,id}∈S

γI

 d∏
j=1

Mk,j(βj,ij
)


=

N∑
k=1

αkF ((Mk,j(βj,i))i∈[n],j∈[d]) =
N∑

k=1
αkF (M∗

k (β)). ◀

In particular, to prove Lemma 2, it is enough to prove.

▷ Claim 19. For any integer power of two t > 1, we have GF(2t) Õ(21.66d)t−−−−−−→dGF(2) in time
poly(t, 2d).

We now prove some Lemmas which lead to this result.
Using exhaustive search for the linear maps Mi,j and {αi}i∈N , we have

▶ Lemma 20. If GF(qt) N−→dGF(q) then GF(qt) N−→dGF(q) in time qO(tdN).

The following four Lemmas are easy to prove.

▶ Lemma 21. If GF(qt) N−→dGF(q) in time T then for every N ′ ≥ N , GF(qt) N ′

−−→dGF(q) in
time T .

▶ Lemma 22. If GF(qt) N−→dGF(q) in time T then for every d′ ≤ d, GF(qt) N−→d′GF(q) in
time O(T).

▶ Lemma 23. If GF(qt1t2) N2−−→dGF(qt1) in time T1 and GF(qt1) N1−−→dGF(q) in time T2 then

GF(qt1t2) N1N2−−−−→dGF(q)

in time O(T1 + T2 + N1N2t1t2).

▶ Lemma 24. If GF(qt) N1−−→d1GF(q) in time T1 and GF(qt) N2−−→d2GF(q) in time T2 then

GF(qt) N1N2−−−−→d1+d2GF(q)

in time O(T1 + T2 + N1N2).

STACS 2023

16:18 Non-Adaptive Proper Learning Polynomials

In particular, by Lemmas 22 and 24, we get

▶ Lemma 25. If GF(qt) N−→d′GF(q) in time T then GF(qt) N⌈d/d′⌉

−−−−−→dGF(q) in time O(dT/d′+
N⌈d/d′⌉).

Now we prove

▶ Lemma 26. If q ≥ d(t − 1), then GF(qt) d(t−1)+1−−−−−−→dGF(q) in time poly(dt).

Proof. Let f (1), . . . , f (d) ∈ GF(q)[x] be arbitrary d polynomials of degree t − 1 where
f (i) =

∑t−1
j=0 f

(i)
j xj . Choose an element β ∈ GF(qt) such that GF(qt) ∼= GF(q)[β]. Then

a1 := f (1)(β), . . . , ad := f (d)(β) are arbitrary d elements in GF(qt). So it is enough to show
that

∏d
i=1 f (i)(β) can be expressed as in (8) with N = d(t − 1) + 1.

Let f =
∏d

i=1 f (i)(x) = f0 +f1x+ . . .+fd(t−1)x
d(t−1). One way to express the coefficients

of f as functions of f
(i)
j , i ∈ [d], j = 0, 1, . . . , d(t − 1), is the following: First, we have

fd(t−1) =
∏d

i=1 f
(i)
t . Then substitute d(t − 1) distinct elements η1, . . . , ηd(t−1) of the field

GF(q) in
∏d

i=1 f (i)(x) and interpolate to find coefficients f0, . . . , fd(t−1)−1. This shows that
for every i = 0, 1, . . . , d(t − 1), there are ωi,0, ωi,1, . . . , ωi,d(t−1) independent of f

(i)
j , i ∈ [d],

j = 0, 1, . . . , d(t − 1) such that

fi = ωi,0

d∏
k=1

f
(k)
t +

d(t−1)∑
j=1

wi,jf(ηj) = ωi,0

d∏
k=1

f
(k)
t +

d(t−1)∑
j=1

wi,j

d∏
k=1

f (k)(ηj).

Then
d∏

i=1
f (i)(x) =

d(t−1)∑
i=0

fix
i =

d(t−1)∑
i=0

ωi,0xi

 d∏
k=1

f
(k)
t +

d(t−1)∑
j=1

d(t−1)∑
i=0

wi,jxi

 d∏
k=1

f (k)(ηj).

Let

αi =
d(t−1)∑

i=0
wi,jβi

for j = 0, 1, . . . , d(t − 1). Then
d∏

i=1
f (i)(β) = α0

d∏
k=1

f
(k)
t +

d(t−1)∑
j=1

αj

d∏
k=1

f (k)(ηj).

Now recall that f (i)(β), i ∈ [d] are d (arbitrary) elements in GF(qt). Since ηj ∈ GF(q) we
have f

(k)
i and f (k)(ηj) are linear functions from GF(qt) to GF(q). This implies the result. ◀

The following lemma proves Claim 19 for a power of two t = O(log d).

▶ Lemma 27. Let c be a constant. Let t be a power of two such that t < c log d. We have
GF(2t) 21.66d

−−−−→dGF(2) in time poly(2d).

Proof. By Lemma 26, GF(22) 3−→2GF (2) in time O(1). By Lemma 25, GF(22) N1=3⌈d/2⌉

−−−−−−−→d

GF (2) in time O(N1). Now for any i, by Lemma 26, GF(22i+1) 22i
+1−−−−→22i GF (22i) in time

poly(22i). By Lemma 25, GF(22i+1) Ni−−→dGF(22i) in time poly(22i) + O(Ni) where Ni =
(22i +1)

⌈
d/22i⌉

. By Lemma 23, we have GF(2t) N−→dGF(2) in time poly(2t, 2log2 dN) = poly(2d)
where

N = 3⌈d/2⌉5⌈d/4⌉ · · · (2t/2 + 1)⌈d/2t/2⌉ ≤ 2O(log2 d)2(log 3
2 + log 5

4 +···)d ≤ 21.66d. ◀

N. H. Bshouty 16:19

The following lemma will be frequently used to prove Claim 19 for larger values of d.

▶ Lemma 28. Let t and t′ be powers of 2, where 2 log(dt) > t′ ≥ log(dt). Then GF(2t) dt/t′

−−−→d

GF(2t′) in time poly(dt).

Proof. We have q = 2t′ ≥ dt ≥ d(t/t′ − 1). By Lemma 21 and 26, the result follows. ◀

The following lemma proves Claim 19 for a power of two t = dO(1).

▶ Lemma 29. Let c be a constant. Let t be a power of two such that t < dc. We have
GF(2t) Õ(21.66d)t−−−−−−→dGF(2) in time poly(2d).

Proof. By Lemma 28, GF(2t) dt/t′

−−−→dGF(2t′) in time poly(dt) for some power of two t′, where
t′ ≤ 2(c + 1) log d. By Lemma 27, GF(2t′) 21.66d

−−−−→dGF(2) in time poly(2d). By Lemma 23,

GF(2t) Õ(21.66d)t−−−−−−→dGF(2) in time poly(2d). ◀

The following lemma proves Claim 19 for a power of two t = 2dO(1) .

▶ Lemma 30. Let c be a constant. Let t be a power of two such that t < 2dc . We have
GF(2t) Õ(21.66d)t−−−−−−→dGF(2) in poly(t, 2d).

Proof. By Lemma 28, GF(2t) dt/t′

−−−→dGF(2t′) in time poly(dt) for some power of two t′,

where t′ ≤ dc+2. By Lemma 29, GF(2t′) Õ(21.66d)t′

−−−−−−−→dGF(2) in time poly(2d). By Lemma 23,

GF(2t) Õ(21.66d)t−−−−−−→dGF(2) in time poly(t, 2d). ◀

The following is from [9], Corollary 17 item 7

▶ Lemma 31. For any q ≥ d and t, we have GF(qt) O(d4t)−−−−→dGF(q).

By Lemma 31 and Lemma 20 we get

▶ Lemma 32. For any q ≥ d and t, we have GF(qt) O(d4t)−−−−→dGF(q) in time qO(t2d5).

The following lemma proves Claim 19 for a power of two t > 2d12 .

▶ Lemma 33. Let t ≥ 2d12 be a power of two. We have GF(2t) Õ(21.66d)t−−−−−−→dGF(2) in time
poly(t, 2d).

Proof. Let 2d > 2ℓ ≥ d power of two. By Lemma 28, we have GF(2t) dt/t′

−−−→dGF(2t′) in time
poly(dt) for a power of two 2 log(dt) > t′ ≥ log(dt). Then again, by Lemma 28, we have
GF(2t′) dt′/t′′

−−−−→dGF(2t′′) in time poly(dt′) for a power of two 2 log(dt′) > t′′ ≥ log(dt′). By
Lemma 32, GF(2t′′) O(d4t′′/ℓ)−−−−−−→dGF(2ℓ) in time

(2ℓ)O((t′′/ℓ)2d5)) ≤ 2O(d6 log2 log t) ≤ 2O(log1/2 t log2 log t) < t.

By Lemma 29, GF(2ℓ) Õ(21.66d)ℓ−−−−−−→dGF(2) in time poly(2d). By Lemma 23, GF(2t) Õ(21.66d)t−−−−−−→d

GF(2) in time poly(t, 2d). ◀

Now Claim 19 follows immediately from Lemma 29 and 33.

STACS 2023

16:20 Non-Adaptive Proper Learning Polynomials

B Proof of Lemma 8

In this Section, we prove
▶ Lemma 7. Let t = d′m be an integer where d < d′ = O(d) and log n < m = O(log n).
There is a deterministic non-adaptive proper exact learning algorithm that learns Pd,s[2t]
with 2s queries in GF(2t)n in time poly(d, s) · Õ(n).

Proof. The proof is the same as in [3].
Let w ∈ GF(2t) such that GF(2t) ≃ GF(2m)[w]. The minimal polynomial p ∈ GF(2m)[x]

of w is of degree d′ − 1 ≥ d. Each element in GF(2t) can be represented as γ0 + γ1w + · · · +
γd′−1wd′−1 where γi ∈ GF(2m) for all i.

Let f(x) =
∑s

i=1 aiMi, where Mi = xri,1xri,2 · · · xri,di
and di ≤ d for all i ∈ [s]. Here, we

assume that the number of monomials in f is exactly s. We will show later the case when
the size is less than s.

We choose n distinct elements α1, α2, · · · , αn in GF(2m). This is possible because 2m ≥ n.
The queries of the algorithm are

ui = ((w − α1)i, (w − α2)i, . . . , (w − αn)i), i = 0, 1, 2, . . . , 2s − 1.

Let vi = f(ui).
We now show how to find Mi, i ∈ [s], and then find the coefficients ai, i ∈ [s].
We first give some observations. Let mi = Mi(u1) and Λ(x) =

∏
i∈[s](x−mi) =

∑s
i=0 λix

i.

Notice that Mi(uj) = mj
i and Λ(mi) = 0 for every i. Now, for every ℓ = 0, 1, 2, . . . , s − 1

0 =
s∑

i=1
aim

ℓ
iΛ(mi) =

s∑
i=1

aim
ℓ
i

s∑
j=0

λjmj
i =

s∑
j=0

λj

s∑
i=1

aim
ℓ+j
i

=
s∑

j=0
λj

s∑
i=1

aiMi(uℓ+j) =
s∑

j=0
λjvℓ+j .

Since λs = 1, we get the linear equation V λ = v, where

V =


v0 v1 v2 · · · vs−1
v1 v2 v3 · · · vs

...
...

...
. . .

...
vs−1 vs vs+1 · · · v2s−1

 , λ =


λ0
λ1
...

λs−1

 and v =


−vs

−vs+1
...

−v2s−1

 .

Ben-Or and Tiwari show in [3] that if f has s monomials, then V is a non-singular matrix.
Then we can find λ = V −1v and therefore Λ(x). By factoring Λ(x), we get mi = Mi(u1).
Let mi = mi,0 + mi,1w + · · · + mi,d′−1wd′−1 where mi,j ∈ GF(2m) for all j. Now since
mi = Mi(u1) = (w − αri,1) · · · (w − αri,di

) and the minimal polynomial of w is of degree
d′ − 1 ≥ d ≥ di, we have mi,0 + mi,1x + · · · + mi,d′−1xd′−1 = (x − αri,1) · · · (x − αri,di

). So
by factoring mi,0 + mi,1x + · · · + mi,d′−1xd′−1, we get αri,1 , . . . , αri,di

and therefore Mi(x).
To find the coefficients ai, we solve the linear equation f(ui) =

∑s
i=1 aiMi(ui) = vi, i =

0, 1, . . . , s − 1. This finishes the case when the number of monomials is s. When the number
of monomial is at most s, then it is known that the number of monomials is equal to the
maximum r such that the upper left r × r sub-matrix of V is non-singular. So we find r and
continue as above. ◀

	1 Introduction
	2 Techniques
	3 Definitions and Preliminary Results
	4 The Learning Algorithm
	4.1 The Reduction Algorithms
	4.2 Query and Time Complexity

	5 The Learning Algorithm for Small epsilon
	5.1 Technique
	5.2 The Algorithm

	6 Upper and Lower Bounds
	6.1 Lower Bounds

	A Proof of Lemma 2
	B Proof of Lemma 8

