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Abstract
For a graph class G, we define the G-modular cardinality of a graph G as the minimum size of a vertex
partition of G into modules that each induces a graph in G. This generalizes other module-based
graph parameters such as neighborhood diversity and iterated type partition. Moreover, if G has
bounded modular-width, the W[1]-hardness of a problem in G-modular cardinality implies hardness
on modular-width, clique-width, and other related parameters. Several FPT algorithms based on
modular partitions compute a solution table in each module, then combine each table into a global
solution. This works well when each table has a succinct representation, but as we argue, when
no such representation exists, the problem is typically W[1]-hard. We illustrate these ideas on
the generic (α, β)-domination problem, which is a generalization of known domination problems
such as Bounded Degree Deletion, k-Domination, and α-Domination. We show that for
graph classes G that require arbitrarily large solution tables, these problems are W[1]-hard in the
G-modular cardinality, whereas they are fixed-parameter tractable when they admit succinct solution
tables. This leads to several new positive and negative results for many domination problems
parameterized by known and novel structural graph parameters such as clique-width, modular-width,
and cluster-modular cardinality.
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1 Introduction

Modular decompositions of graphs have played an important role in algorithms since their
inception [23]. In the world of parameterized complexity [11, 13], Gajarský et. al. [22]
proposed the notion of modular-width, or mw for short, which can be defined as the maximum
degree of a prime node in the modular decomposition tree of G. Unlike other structural
parameters such as treewidth [4], mw can be bounded on certain classes of dense graphs,
making it comparable to the clique-width (cw) parameter [10]. In fact, cw is at most mw

plus two, and mw can sometimes be arbitrarily larger than cw. It is known that several
problems that are hard in cw are fixed-parameter tractable (FPT) in mw, with popular
examples including Hamiltonian Cycle, Graph Coloring [16, 18, 22], and Metric
Dimension [2, 5]. In particular in [22], the main technique used to design such algorithms is
dynamic programming over the modular decomposition. In essence, the values of an optimal
solution are found recursively in each module of the graph G, which are then combined into
a solution for the graph itself, often using small integer linear programs based on the prime
graph of G. Another technique was recently introduced in [19], where the authors show that
the number of potential maximal cliques of a graph is at most O∗(1.73mw), a fact that can
be combined with results of [6, 20] to obtain FPT algorithms for a family of problems.
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Figure 1 Relation among the parameters clique-width (cw), modular-width (mw), cograph-
modular cardinality (cograph-mc), iterated type partitions (itp), stars-modular cardinality (stars-
mc), cluster-modular cardinality (cluster-mc), neighborhood diversity (nd), and linear forest-
modular cardinality (linear forest-mc). Arrows indicate generalizations, e.g. modular-width(mw)
generalizes cograph-modular cardinality and thus is bounded by (a function of) cograph-modular
cardinality.

Despite these efforts, there are still several problems that are known to be hard on cw,
for instance Max-Cut [17] and Bounded Degree Deletion [3, 24], but unknown to be
hard or FPT in mw. Recently, an XP algorithm is given for k-Domination in parameter
treewidth (tw) [34], but the W-hardness for k-Domination in parameter tw, cw or mw is
unknown. Also, the authors of [22] conclude with the question of whether Edge Dominating
Set and Partition into Triangles are FPT in mw, which are 10 years-old questions
that are still unanswered. One promising direction to gain knowledge and tools for mw

algorithms is to study some of its related parameters. We consider such variants in which
the graph must be decomposed into modules that each induces a subgraph belonging to a
specific graph class. Notable examples include neighborhood diversity (nd) [31], in which
each module must induce an edgeless graph or a clique, and iterated type partition (itp) [9],
in which each module must induce a cograph. This idea was also used in [25] from which we
borrow our terminology, where a partition into modules inducing cliques is used to obtain
linear kernels for the cluster editing problem. Meanwhile, as Knop wrote in [29], ‘another
important task in this area is to understand the boundary between modular-width on one
side, and neighborhood diversity, twin-cover number, and clique-width on the other side’.

Our work resides in this boundary, as we propose to generalize the above ideas by
restricting modules to a given graph class G. That is, we define the G-modular cardinality of
a graph G, denoted G-mc(G), as the size of the smallest partition of its vertices into modules
that each induces a subgraph in G. If G has bounded modular-width (e.g. cographs), the
hardness of a problem in G-modular cardinality implies its hardness in mw (and thus cw).
On the other hand, FPT techniques for G-mc may shed light towards developing better
algorithms for mw. Also, by considering graph classes of unbounded modular-width (e.g.
paths, grids), G-mc may be incomparable with mw or even cw, leading to FPT algorithms
for novel types of graphs. To the best of our knowledge, such a generalization had not been
studied, although it is worth mentioning that in [27], the authors propose a similar concept
for treewidth, where some bags of a tree decomposition are allowed to be in some graph class.

Our contributions. We first establish that if G is hereditary and has bounded mw, then
mw(G) is at most G-mc(G) for a graph G /∈ G, allowing the transfer of hardness results. We
then show that for many graph classes, namely those that are easily mergeable, there is a
polynomial-time algorithm to compute G-mc and obtain a corresponding modular partition.

We then introduce techniques to obtain W[1]-hardness results and FPT algorithms for
the G-mc parameter. In essence, we argue that the dynamic programming technique on mw

algorithms works well when a small amount of information from each module is sufficient
to obtain a solution for the whole graph (for instance, the algorithms of [22] require only a
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Table 1 Our results for the (α, β)-Linear Degree Domination ((α, β)-LDD) on different
parameters (the mark ∗ is implied by [3, 24]). Results in boldface are those proved directly in
this paper (other entries are implied by these results). Recall that α = 0 is equivalent to the
k-Domination, α = 1 to the Bounded Degree Deletion (BDD), and α ∈ (0, 1) to the α-
Domination. Not shown in the table: BDD is FPT in parameters linear forest-mc and binary
forest-mc.

(α, β)-LDD problem α = 0 α ∈ (0, 1) α = 1 Parameters
(k-dom) (α-dom +β) (BDD)

β is in the input

W[1]-h W[1]-h W[1]-h∗ cw
W[1]-h W[1]-h W[1]-h mw
W[1]-h W[1]-h W[1]-h cograph-mc
W[1]-h W[1]-h W[1]-h itp
W[1]-h W[1]-h W[1]-h stars-mc

open open FPT cluster-mc
FPT FPT FPT nd

β is any constant

FPT W[1]-h FPT cw
FPT W[1]-h FPT mw
FPT W[1]-h FPT cograph-mc
FPT W[1]-h FPT itp
FPT W[1]-h FPT stars-mc
FPT open FPT cluster-mc
FPT FPT FPT nd

single integer from each module). Such succinct solution tables from each module can often
be combined using integer programs with few integer variables [21, 28, 33]. Conversely, when
too much information is required from each module (e.g. linear in the size of the modules)
to obtain a final solution, we are unable to use integer programming and this typically leads
to W[1]-hardness. This occurs when arbitrary solution tables are possible in each module.

We use a large class of domination problems to illustrate these techniques. Specifically,
for a real number α ∈ [0, 1] and integer β (possible negative), we introduce the (α, β)-Linear
Degree Domination problem. Given a graph G and an integer q, this problem asks for a
X ⊆ V (G) of size at most q such that, for each v ∈ V (G)\X, we have |N(v)∩X| ≥ α|N(v)|+β.
In other words, each unchosen vertex has at least a fraction α of its neighbors dominating it,
plus some number β. The problem is equivalent to the Bounded Degree Deletion (BDD)
[3, 24] if α = 1 and β ≤ 0; equivalent to the k-Domination [8, 32] if α = 0 and β ≥ 1; and
equivalent to the α-Domination [1, 12, 14, 35] if α ∈ (0, 1] and β = 0.

Table 1 illustrates the main results of this paper. The hardness results follow from a more
general result on arbitrary solution tables (Theorem 7). It is slightly technical, so we describe
its high-level implication on the case α = 1 (BDD). In this problem, a possible solution table
is a function f : [n] → N such that f(i) is the minimum maximum degree achievable in G

after deleting i vertices. The theorem states that for graph class G, if for any such f we
can construct a graph in G whose solution table is f , then BDD is W[1]-hard in G-modular
cardinality. We show that the class of disjoint stars satisfies this property, which implies
several other hardness results. On the other hand, several positive results for the BDD
make use of succinct solution tables. In essence, when f can be represented by a constant
number of linear functions, or by a convex function, then we can use integer programming
to merge these tables and obtain positive results. Finally, additional results not shown in
the table can be deduced easily from this technique. We show that BDD is FPT in linear
forest-modular cardinality and binary forest-modular cardinality as parameters, which
are of interest since they are incomparable with modular-width. Due to space constraints,
we refer the reader to the full version of this paper [30] for definitions and complete proofs.

MFCS 2023
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2 Preliminary notions

For an integer n, denote [n] = {1, . . . , n}. The maximum degree of a graph G is denoted by
∆(G). G denotes the complement graph of G. The neighborhood of v ∈ V (G) is N(v). The
set of connected components of a graph G is denoted CC(G). For X ⊆ V (G), G[X] denotes
the subgraph of G induced by X and G − X = G[V (G) \ X]. If X = {v}, we may write
G − v. Slightly abusing notation, we may also write v ∈ G instead of v ∈ V (G), |G| instead
of |V (G)|, and X ∩ G instead of X ∩ V (G).

A graph class G is a (possibly infinite) set of graphs containing at least one non-empty
graph. We say that G is hereditary if, for any G ∈ G, any induced subgraph of G is also in
G. Note that if G is hereditary, the graph consisting of an isolated vertex is in G. We say
that G is a polynomial-time recognition graph class if there is a polynomial-time algorithm
that decides whether a given graph G is in G. Some popular graph classes that we will use
throughout this paper: I is the set of all edgeless graphs; K is the set of all complete graphs;
cluster is the set of graphs in which every connected component induces a complete graph;
stars is the set of graphs in which every connected component is a star graph; cograph is
the set of cographs, where a cograph is either a single vertex, or a graph obtained by applying
either a join or a disjoint union of two cographs [7]. Observe that I ⊆ stars ⊆ cograph.

Modular parameters. For a graph G = (V, E), a module of G is a M ⊆ V such that for
every v ∈ V \ M , either M ⊆ N(v) or M ∩ N(v) = ∅. The empty set, V , and every {v} for
v ∈ V are called the trivial modules. In a prime graph, all modules are trivial. A factor is a
subgraph induced by a module. A module M is strong if for any module M ′ of G, either
M ′ ⊆ M , M ⊆ M ′, or M ∩M ′ = ∅. M is maximal if M ⊊ V and there is no module M ′ such
that M ⊊ M ′ ⊊ V . A partition M of V (G) is called a modular partition if every element
of M is a module of G. If M only contains maximal strong modules, then it is a maximal
modular partition. This partition is unique. Two modules M and M ′ are adjacent in G if
every vertex of M is adjacent to every vertex of M ′, and non-adjacent otherwise. For a
modular partition M of V , the quotient graph G/M is defined by V (G/M) = {vM : M ∈ M}
and vM1vM2 ∈ E(G/M) if and only if M1, M2 are adjacent.

We call MD(G) the modular decomposition tree of G, in which each vertex vM corresponds
to a strong module M . More specifically, each leaf v{v} of the inclusion tree corresponds
to a vertex v of G and the root vertex vV corresponds to V . Moreover, for any two strong
modules M and M ′, M ′ is a proper subset of M if and only if vM ′ is a descendant of vM

in MD(G). An internal vertex vM of MD(G) is parallel if G[M ] is disconnected, is series
if G[M ] is disconnected, and is prime otherwise. The modular-width of G is the maximum
number of children of a prime vertex in MD(G) (see [26] for more). Our variant follows.

▶ Definition 1. Let G be a graph class. For a graph G (not necessarily in G), a module M of
G is a G-module if G[M ] belongs to G. A modular partition M = {M1, . . . , Mk} of a graph
G is called a G-modular partition if each Mi is a G-module. The G-modular cardinality of
G, denoted by G-mc(G), is the minimum cardinality of a G-modular partition of G.

The neighborhood diversity (nd) is equivalent to the (K ∪ I)-modular cardinality. The
iterated type partition (itp) parameter [9] is the number of vertices of the graph obtained
through the following process: start with the smallest modular partition into cliques and
edgeless graphs; contract each module into a single vertex; repeat until no more contraction
is possible. It can be shown that the remaining vertices represent modules that are cographs.
Thus, itp(G) is not smaller than the cograph-modular cardinality of G.
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3 Properties and tractability of G-modular cardinality

In this section, we state two basic results regarding G-mc. First, mw is not larger than G-mc

for graph classes of bounded modular-width. This allows hardness results on G-mc to also
apply to mw. Second, G-mc is polynomial-time computable for “easily mergeable” graph
classes. The first is realtively easy using modular partitions and induction.

▶ Theorem 2. Let G be an hereditary graph class and define ωG := maxH∈G mw(H). Then
for any graph G, mw(G) ≤ max(G-mc(G), ωG).

Let us note that the above bound is tight, in the sense that mw(G) can be at least as large
as either G-mc(G) or ω(G). For instance, if G /∈ G is a prime graph, then mw(G) = G-mc(G),
and if G = arg maxH∈G mw(H), then mw(G) = ωG .

Let us now state the second result. A graph G is a G-join if G is disconnected and
G[C] ∈ G for each C ∈ CC(G). Likewise, G is a G-union if G is disconnected and G[C] ∈ G
for each C ∈ CC(G). If G is a G-join (resp. G-union), a G-merge is a G-modular partition
M of G such that for each C ∈ CC(G) (resp. C ∈ CC(G)), there is some M ∈ M that
contains C. We say that M is a minimum G-merge if no other G-merge has a size strictly
smaller than M. We say that a graph class G is easily mergeable if there exists a polynomial
time algorithm that, given a graph G such that G is either a G-join or a G-union, outputs a
minimum G-merge of G. We say that G is trivially mergeable if, for any G-join or G-union G,
one of {V (G)}, CC(G), or CC(G) is a minimum G-merge of G.

▶ Theorem 3. Suppose that G is a hereditary graph class. Suppose further that G is
polynomial-time recognizable and easily mergeable. Then a G-modular partition of G of
minimum size can be obtained in polynomial time.

The above implies that for G ∈ {I, K, cograph, cluster}, a G-modular partition of
minimum size of a graph G can be computed in polynomial time. It is not hard to show
that I, K, and cograph are trivially mergeable. For cluster, if G is a cluster-join, then
G ∈ cluster. If G is a cluster-union, one may show that we can merge all the connected
components of G that contain one clique into a single clique, and the other connected
components are left intact.

Note that not all graph classes are equally easy to merge. Consider the class “graphs
with at most 100 vertices”. Merging such graphs amounts to solving a bin packing problem
with a fixed capacity of 100, and current polynomial-time algorithms require time in the
order of n100. This is easily mergeable nonetheless, and it would be interesting to find graph
classes that are hereditary and polynomial-time recognizable, but not easily mergeable.

4 Hardness of domination problems with arbitrary solution tables

Let us recall our generic domination problem of interest. For α ∈ [0, 1] and β ∈ Z we define:

The (α, β)-Linear Degree Domination problem
Input: a graph G = (V, E) and a non-negative integer q;
Question: does there exist a subset X ⊆ V of size at most q such that for every v ∈ V \ X,
|N(v) ∩ X| ≥ α|N(v)| + β?

In the above, the vertex set X is called a (α, β)-linear degree dominating set of G. In
addition, for convenience, we also call X the deletion part of G. For any vertex v ∈ V (G−X),
the degree of v in X, denoted by deg(v, G, X), equals the number of vertices in X ∩ V (G)
adjacent to v. The minimum degree of G − X in X equals min{deg(v, G, X) : v ∈ G − X},
which is denoted by δ(G − X, X).

MFCS 2023
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Figure 2 The degree deletion function of a (a0, I, c)-degree deletion graph. The x-axis represents
the number of vertices to delete, while the y-axis represents the minimum maximum degree achievable
by deleting x vertices. The first point of the (i+1)-th horizontal vertex set is (c(ai), ai) for 0 ≤ i ≤ |I|,
and the last point of the (i + 1)-th horizontal vertex set is (c(ai+1) − 1, ai) for 0 ≤ i ≤ |I| − 1.
Disjoint stars are used as an example here since the graph class stars admits arbitrary deletion
tables. The number of stars with ai leaves is c(ai+1) − c(ai) for 0 ≤ i ≤ |I| − 1. The degree deletion
process removes the internal vertices of stars from large to small.

Our goal is to formalize the intuition that graph classes with arbitrary solution tables
lead to W[1]-hardness in G-mc. For (α, β)-Linear Degree Domination, this takes the
form of arbitrary deletion tables for α ∈ (0, 1] and arbitrary retention tables for α = 0.

▶ Definition 4. Let (a0, I, c) be a triple with {a0} ∪ I ⊆ N and c : N → N. We call c a cost
function. We say that (a0, I, c) is decreasing valid if, by listing the elements a1, . . . , a|I| of I

in decreasing order, we have a0 > a1 > . . . > a|I| > 1, and 0 = c(a0) < c(a1) < . . . < c(a|I|).
For a decreasing valid triple (a0, I, c), we say that a graph G = (V, E) is a (a0, I, c)-degree

deletion graph if all of the following conditions hold:
1. G has maximum degree a0 and at most (a0c(a|I|))10 vertices;
2. for any ai ∈ I, there exists X ⊆ V of size c(ai) such that G − X has maximum degree ai;
3. for any ai ∈ I and any X ⊆ V of size strictly less than c(ai), G − X has maximum degree

at least ai−1.
In addition, if G ∈ stars and satisfies the above three conditions, then we say that G is a
(a0, I, c)-degree deletion star graph.

We say that a graph class G admits arbitrary degree deletion tables if, for any decreasing
valid triple (a0, I, c), one can construct in time polynomial in a0c(a|I|) a graph G ∈ G such
that G is a (a0, I, c)-degree deletion graph. Note that the size of G is only required to be
a polynomial function of a0c(a|I|), but we fix it to (a0c(a|I|))10 for convenience. For an
integer x ∈ [0, |V |], we call f(x) = min{∆(G − X) : |X| = x} the degree deletion function
of G, where X is a subset of V . Figure 2 demonstrates the degree deletion function of a
(a0, I, c)-degree deletion graph. The intuition behind degree deletion graphs is that their
deletion function has a stepwise behavior with many steps.

The above notion of an arbitrary solution table works well for α ∈ (0, 1]. For α = 0, we
need to replace “deletion” with “retention”. This is useful for the α = 0 case, where the set
X must contain at least β neighbors of each unchosen vertex. Hence, the steps of the table
describe, for each number x of vertices to include in X, the maximum possible δ(G − X, X)
that can be achieved with a subset of size x.
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▶ Definition 5. Let (a0, I, c) be a triple with {a0} ∪ I ⊆ N and c : N → N. We call c a cost
function. We say that (a0, I, c) is increasing valid if, by listing the elements a1, . . . , a|I| of I in
decreasing order, we have a0 > a1 > . . . > a|I| > 100,1 and c(a0) > c(a1) > . . . > c(a|I|) = 0.

For a increasing valid triple (a0, I, c), we say that a graph G = (V, E) is a (a0, I, c)-degree
retention graph above (p, l), where p and l are positive integers and l < 100, if all of the
following conditions hold:
1. G has maximum degree a0, at most (a0c(a0))10 vertices, and p vertices of degree less

than l;
2. for any ai ∈ {a0} ∪ I, there exists X ⊆ V of size p + c(ai) such that the minimum degree

of G − X in X is ai;
3. for any ai ∈ {a0} ∪ I and any X ⊆ V of size strictly less than p + c(ai), the minimum

degree of G − X in X is at most ai+1, where here we define a|I|+1 = l.

We say that a graph class G admits arbitrary degree retention tables if, for any increasing
valid triple (a0, I, c), there exist integers p and l such that one can construct in time polynomial
in c(a0)a0 a graph G ∈ G such that G is a (a0, I, c)-degree retention graph above (p, l). Note
that condition 2 of Definition 5 imply that p + c(a0) < |V | ≤ (c(a0)a0)10. For any integer
x ∈ [0, |V | − 1], we call f(x) = max{δ(G − X, X) : |X| = x} the degree retention function of
G, where X is a subset of V . Importantly, stars admit both types of tables.

▶ Proposition 6. The graph class stars admits arbitrary deletion tables and arbitrary
retention tables.

▶ Theorem 7. The (α, β)-Linear Degree Domination problem is W[1]-hard in the
following cases:
1. α = 0, β is in the input, and the parameter is the (G ∪ I)-modular cardinality, where G is

any graph class that admits arbitrary degree retention tables;
2. α is any fixed constant in the interval (0, 1), β is any fixed constant in Z, and the

parameter is the stars-modular cardinality;
3. α = 1, β is in the input, and the parameter is the (G ∪ I)-modular cardinality, where G is

any graph class that admits arbitrary degree deletion tables.

The proof of the Theorem 7 is quite long and can be found in [30]. The proof of the three
cases all use the same construction and the same set of claims, but most claims require an
argument for each case. The next section illustrates the main techniques on the case α = 1.
Using the relationship demonstrated in Figure 1 we have the following.

▶ Corollary 8. The (α, β)-Linear Degree Domination problem parameterized by either
clique-width, modular-width, cograph-modular cardinality, iterated type partition, and stars-
modular cardinality, is W[1]-hard in the following cases:
1. α = 0, β is in the input;
2. α is any fixed constant in the interval (0, 1), β is any fixed constant in Z;
3. α = 1, β is in the input.
In particular, Bounded Degree Deletion problem, k-Domination problem, and α-
Domination problem are W[1]-hard in all these parameters.

One can show that these problems are in XP parameterized by stars-modular cardinality.
Indeed, one can choose, for each stars module M , a number in [|M |]∪{0} of vertices to delete
in M , and apply these deletions greedily. There are at most |V (G)|G-mc(G) combinations

1 In fact, any large constant here is enough for our proof in this paper, we fix it to be 100 for convenience.

MFCS 2023
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of choices, and it suffices to try each of them. This works because the greedy strategy is
applicable to stars, and it remains to study the XP complexity for other parameters. The
next proposition is not related to the above hardness results, but allows us to fill in some of
the gaps that the above leaves in our results table. In section 6, we will also show that for
α = 1 and β in the input, the problem is FPT in cluster-modular cardinality.

▶ Proposition 9. The (α, β)-Linear Degree Domination problem is FPT in the following
cases:
1. α ∈ [0, 1], β is in the input, and the parameter is the neighborhood diversity;
2. α ∈ {0, 1}, β is a constant, and the parameter is the clique-width.

The first case requires some work, whereas the second is a simple application of Courcelle’s
theorem [10], as the problem admits a constant-length MSO1 formula.

5 (1, β)-Linear Degree Domination (BDD)

We sketch the proof of the W[1]-hardness of (1, β)-Linear Degree Domination problem,
which is enough to demonstrate the main idea of the reduction technique. Recall that we
assume that α = 1 and β < 0, which is the Bounded Degree Deletion problem. That is,
we must delete at most q vertices such that the resulting subgraph has maximum degree at
most |β|. Furthermore, in the (1, β)-Linear Degree Domination problem, we also call X,
the (1, β)-linear degree dominating set of G, the deletion part of G.

We provide a reduction from the Symmetric Multicolored Clique problem, which we
define as follows. A symmetric multicolored graph G = (V 1 ∪ V 2 . . . ∪ V k, E) is a connected
graph such that, for all distinct i, j ∈ [k],
1. V i = {vi

1, . . . , vi
n}, where n ≥ k;

2. all the vertices of V i are colored by color i;
3. if vi

rvj
s ∈ E(G), then vj

svi
r ∈ E(G) as well.

Then, for the Symmetric Multicolored Clique problem, the input is a symmetry
multicolored graph G and an integer k, and the objective is to decide whether G contains a
k-clique with vertices of all k colors. We also call vi

rvj
s and vi

svj
r symmetry edges.

The reduction in [15, Lemma 1], which proves the W[1]-hardness of the multicolored
clique problem, actually produces a symmetric multicolored graph. Hence, Symmetric
Multicolored Clique is W[1]-hard. We now sketch the following.

▶ Lemma 10. Case 3 for the W[1]-hardness results in Theorem 7 is correct.

Let (G, k) be an instance of Symmetric Multicolored Clique, where G = (V 1 ∪
V 2 ∪ . . . ∪ V k, E). Without loss of generality, suppose k ≥ 100, otherwise, the problem
can be solved in polynomial time. We will construct a corresponding instance (H, β, q) of
(1, β)-Linear Degree Domination, where H is a graph whose G-modular cardinality will
be bounded by O(k2), β = −(nk)10000, and q is the maximum allowed size of X, the desired
deletion part of H (to be specified later). Before proceeding, we will make use of a 2-sumfree-
set, which is a set of positive integers in which every couple of elements has a distinct sum.
That is, I is a 2-sumfree set if, for any (a, b), (a′, b′) ∈ I × I, a + b = a′ + b′ if and only if
{a, b} = {a′, b′} (note that a = b is possible). It is known that one can construct in time O(n3)
a 2-sumfree-set I of cardinality n in which the maximum value is n4, which can be achieved
with a greedy procedure (this is because (n + 1)4 − n4 > n3 and ai + aj − ar has at most n3

different values). We thus assume that we have built a 2-sumfree set I = {a1, . . . , an} for H,
where n4 ≥ a1 > . . . > an ≥ 1. Without loss of generality, we may multiply each ai ∈ I by an
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Ri Rj

Si Sj

Ti Tj

Uij

Rij

Figure 3 Illustration of the construction of H.

integer r, where here we choose r = 2(k −1)2k3. Then, we have that n4r ≥ a1 > . . . > an ≥ r

for the updated I. Moreover, for any distinct pair (a, b), (a′, b′) ∈ I × I, we have that the
absolute value of a + b − a′ − b′ is at least r.

For each color class V i = {vi
1, . . . , vi

n} of G, we provide a bijection fi from V i to I, such
that fi(vi

s) = as for every s ∈ [n]. Clearly, we can use f−1
i (as) to denote the unique vertex

vi
s of V i associated with as ∈ I. We have that, for all s, t ∈ [n], each pair of as, at ∈ I

has a unique sum. For distinct i, j and any u ∈ V i, w ∈ V j such that uw ∈ E(G), if
fi(u) + fj(w) = as + at, then edge uw is either vi

svj
t or vi

tv
j
s. Moreover, for any distinct color

classes V i, V j , edges vi
svj

t and vi
tv

j
s, together, are both in E(G) or both not in E(G). Hence,

by looking at a sum in I, we will be able to tell whether it is corresponding to a pair of
symmetry edges between V i and V j , or not.

Next, we define s = n10, q = ks +
(

k
2
)
s, a0 = q + 1, and an+1 = an − 1. We construct H

as in Figure 3. First, for each color class V i of G, add three factors Ri, Si, Ti to H, where:
Ri is an edgeless graph of size |β| − s.
Si is a (a0, I ∪ {an+1}, c)-degree deletion graph, where we put the costs c(aj) = s − 1

2 aj

for aj ∈ I and c(an+1) = a0.
Ti is an edgeless graph of size s.

We then make Si adjacent with Ri and Ti. Secondly, for each pair of color classes V i, V j

with i < j, we add another two factors Uij , Rij , where:
Rij is an edgeless graph of size |β| − 2s.
Uij is built as follows. Suppose integer set Iij consists of all a + b such that a, b ∈ I and
symmetry edges f−1

i (b)f−1
j (a), f−1

i (a)f−1
j (b) ∈ E(G). Let ℓij = min(Iij).

Then Uij is a (a0, Iij ∪ {ℓij − 1}, cij)-degree deletion graph, where we put the cost cij(a +
b) = s − 1

2(k−1) (a + b), and we put cij(ℓij − 1) = a0.
We then make Uij adjacent with Rij , and adjacent with Ti and Tj . To avoid cumbersome
notation, we define Uij = Uji, Rij = Rji, cij = cji, and Iij = Iji. This completes the
construction of H. It is easy to see that H can be constructed in polynomial time and the
number of factors in H is a polynomial function in k.

All that remains is to argue that the objective instance is equivalent to the original one.
The following lemma gives the forward direction. We only provide a sketch here.

▶ Lemma 11. Suppose that G contains a multicolored clique C of size k. Then there is
X ⊆ V (H) of size at most q = ks +

(
k
2
)
s such that ∆(H − X) ≤ |β|.

Proof sketch. For i ∈ [k], let f−1
i (âi) be the vertex of V i that belongs to the multicolored

clique C, where âi ∈ I is the number associated with the vertex. For any i ̸= j, we know
that vertices f−1

i (âi) and f−1
j (âj) are in C, which means that f−1

i (âi)f−1
j (âj) ∈ E(G). This

MFCS 2023



61:10 Parameterized Complexity of Domination Problems

implies that âi + âj is in the Iij list that was used to construct Uij . We then show how to
construct the vertex set X for H. The intersection of each Ri and X is empty. For each Ti,
add âi vertices to X. For each Si, add c(âi) = s − 1

2 âi vertices to X. This can be done so
that Si − X has maximum degree âi according to Definition 4. The intersection of each Rij

and X is empty. For each Uij , we can add cij(âi + âj) = s − âi+âj

2(k−1) vertices to X so that
Uij − X has maximum degree âi + âj according to Definition 4. It is not hard to verify that
X with exactly q vertices satisfies that ∆(H − X) ≤ |β|. ◀

The converse direction is much more difficult.

▶ Lemma 12. Suppose that there is X ⊆ V (H) with |X| ≤ q such that H − X has maximum
degree at most |β|. Then G contains a multicolored clique of size k.

Proof sketch. Let X ⊆ V (H) be of size at most q such that H − X has maximum degree
|β| or less. To ease notation slightly, for a factor M of H, we will write X(M) := X ∩ V (M)
and χ(M) := |X(M)|. The proof is divided into a series of claims. ◀

▷ Claim 13. For each i ∈ [k], we may assume that χ(Ri) = 0. Moreover for each distinct
i, j ∈ [k], we may assume that χ(Rij) = 0.

The rough idea is that a vertex of X(Ri) can always be replaced by a vertex of Ti \ X

if the latter is non-empty. If V (Ti) \ X is empty, then after an unavoidable at least c(a1)
vertices deletion from Si, no deletion in Ri is needed since each remaining vertex of Si in
H − X has maximum degree at most |β| − s + a1 < |β|. The idea for χ(Rij) = 0 goes the
same way.

▷ Claim 14. For any i ∈ [k], we may assume ∆(Si − X) ∈ {a1, . . . , an}, and that χ(Si) =
c(∆(Si − X)).

The rough idea is that Case 2 of Definition 4 states that we can delete c(aj) vertices
from Si to make ∆(Si − X) = aj , where 0 ≤ j ≤ n + 1. In fact, this is the smallest
maximum degree we can achieve in Si by deleting between c(aj) and c(aj+1) − 1 vertices,
because of the stepwise behavior of arbitrary deletion tables. Moreover, we already know
that χ(Ri) = 0 based on Claim 13. So, if ∆(Si − X) = a0 there is a vertex in Si − X with
degree |β| − s + a0 > |β|, and if ∆(Si − X) = an − 1 or less then c(an − 1) = a0 > q vertices
have to be deleted from Si.

▷ Claim 15. For any distinct i, j ∈ [k], we may assume that ∆(Uij − X) ∈ Iij , and that
χ(Uij) = cij(∆(Uij − X)).

The idea for proving this claim is similar to that of Claim 14. Our next step is to argue
that the degree chosen by Uij must be the sum of the degrees chosen by Si and Sj . More
specifically, for i ∈ [k], we say that Si chose aj ∈ I if ∆(Si − X) = aj and χ(Si) = c(aj).
Likewise, for distinct i, j ∈ [k], we say that Uij chose a, b ∈ I if ∆(Uij − X) = a + b and
χ(Uij) = cij(a+ b). Note that by Claim 14, each Si chooses one aj and by Claim 15, each Uij

chooses one pair a, b such that symmetry edges f−1
i (b)f−1

j (a), f−1
i (a)f−1

j (b) ∈ E(G). The
point to make is that if Si and Sj chose a and b, respectively, then Uij must have chosen a, b.

▷ Claim 16. For each i ̸= j, if Si chose a ∈ I and Sj chose b ∈ I, then Uij chose a, b.
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We sketch it as follows. For each i ∈ [k], we will denote by âi the element of I that Si

chose. We divide the Uij ’s into three groups:

U< = {Uij : Uij chose a′, b′ such that a′ + b′ < âi + âj}
U= = {Uij : Uij chose a′, b′ such that a′ + b′ = âi + âj}
U> = {Uij : Uij chose a′, b′ such that a′ + b′ > âi + âj}

To prove the claim, it suffices to show that U< and U> are empty (this is because Uij ∈ U=

is only possible if Uij chose âi, âj , since all the sum pairs are distinct). The rough idea is as
follows. If each Uij chose the correct âi, âj , then each of them will incur a deletion cost of
cij(âi + âj) = s − âi+âj

2(k−1) and end up cancelling the deletion costs of the Si and Ti factors.
If U< is non-empty, it incurs extra deletion cost with respect to cij(âi + âj) with no real
benefit. The complicated case is when U> is non-empty. In this case, Uij − X has higher
degree than if it had chosen âi, âj and incurs less deletions than cij(âi + âj). However, this
needs to be compensated with extra deletions in Ti and Tj . By using a charging argument,
we can show that the sum of extra deletions required for all the U> members outweighs the
deletions saved in the Uij ’s of U>.

We can now construct a multicolored clique. Define C = {f−1
i (âi) : i ∈

[k] and Si chose âi}. We claim that C is a clique. By Claim 14, each Si chooses some
âi and thus |C| = k. Now let f−1

i (âi), f−1
j (âj) be two vertices of C, where i < j. Then

âi, âj were chosen by Si and Sj , respectively, and by Claim 15 we know that Uij chose
âi + âj . By the construction of the Uij solution table, this is only possible if symmetry
edges f−1

i (âi)f−1
j (âj), f−1

i (âj)f−1
j (âi) ∈ E(G). Therefore, f−1

i (âi)f−1
j (âj) ∈ E(G) and C is

a clique.

6 FPT algorithms for succinct solution tables

In this section, we study the Bounded Degree Deletion problem (i.e. α = 1, β < 0)
on graph classes that admit succinct solution tables. Let G = (V, E) be a graph. Assume
Sx ⊆ 2V consists of all subsets of V with size x ∈ [0, |V |]. X ∈ Sx is called an x-deletion set
of G if ∆(G − X) = min{∆(G − Y ) : Y ∈ Sx}. An x-deletion of G is the process of deleting
all vertices of an x-deletion set from G. Clearly, the degree deletion function f(x) of G is
the maximum degree of G after an x-deletion. A piecewise linear function g : R → R is a
continuous function defined on a sequence of intervals, such that the function is linearly
restricted to each of the intervals (each such linear function is called a sub-function of g). In
addition, a constant piecewise linear function is a piecewise linear function that consists of a
constant number of linear sub-functions.

▶ Definition 17. Let G be a polynomial-time recognizable graph class. For G ∈ G, suppose
that fG(x) is the degree deletion function of G = (V, E), where x ∈ [0, |V |]. We say that G
admits a succinct solution table for Bounded Degree Deletion if, for every G ∈ G, there
exists a function gG : R → R that satisfies at least one of the following conditions:
1. gG is a constant piecewise linear function such that fG(x) = gG(x) for every integer

x ∈ [0, |V (G)|],
2. gG is a piecewise convex linear function such that fG(x) =

⌈
gG(x)

⌉
for every integer

x ∈ [0, |V (G)|].
Moreover, gG can be described and constructed in polynomial time with respect to |V (G)|.

A graph class admits a succinct solution table of type t for Bounded Degree Deletion if
we refer to the condition t, where t ∈ {1, 2}. Type 1 implies the solution table can be divided
into a constant number of blocks, each of which can be encoded into a small number of bits
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(note that for any fixed graph class, the upper bound on the constant should be fixed as
well). In type 2, the solution table could be convex, but could also be non-convex with a
larger number of blocks, but we can reduce this special non-convex function to a convex
function using ceilings (this occurs with cluster-mc). As we show, these definitions capture
the intuition of solution tables that can be merged in FPT time.

▶ Theorem 18. Let G be a graph class that admits a succinct solution table for Bounded
Degree Deletion. Assume a minimum G-modular partition is given. Then, Bounded
Degree Deletion is FPT parameterized by G-modular cardinality.

Application. Let graph class BDT include all graphs with bounded degree and treewidth.
We prove BDT and cluster admit succinct solution tables of type 1 and type 2, respectively.
Thus, Bounded Degree Deletion is FPT in parameter BDT -mc or cluster-mc. Clearly,
BDT -mc is bounded by a function of vertex cover number and is incomparable with mw

(linear forest has unbounded mw). Moreover, cluster-mc is a parameter with size at most
nd and at least mw.

▶ Theorem 19. BDT admits a succinct solution table for Bounded Degree Deletion.
Therefore, the Bounded Degree Deletion is FPT in parameter BDT -mc.

Proof sketch. For every G ∈ BDT, the degree deletion function of G can be represented by
an efficiently computable step function with a constant number of steps. ◀

▶ Lemma 20. Assume cluster graph H contains b complete graphs Ka, where Ka is the
maximum size complete graph in H. Let q ∈ [b, |V (H)|]. Suppose R is obtained from H by
deleting exactly one vertex from every Ka of H. Then, H has a q-deletion such that the
maximum degree of the remaining graph is h if and only if R has a (q − b)-deletion such that
the maximum degree of the remaining graph is h.

▶ Theorem 21. Cluster admits a succinct solution table for Bounded Degree Deletion.
Therefore, the Bounded Degree Deletion is FPT in parameter cluster-mc.

Proof sketch. Let G be a cluster graph and fG(x) be the degree deletion function of G. We
can construct a piecewise convex linear function gG based on the structure of G, and prove
that fG(x) =

⌈
gG(x)

⌉
by using the properties of the two functions and Lemma 20. ◀

Open problems. We conclude with some interesting problems.
Can we characterize graph classes are easily mergeable? For instance, is the class of
H-free graphs easily mergeable, for any fixed graph H?
Is Bounded Degree Deletion fixed-parameter tractable in parameter (K1,t-free)-
modular cardinality, where t ≥ 3 is either fixed or a parameter?
Is k-Domination FPT in parameter cluster-modular cardinality, where β is related to
the input size?
Is α-Domination FPT in parameter cluster-modular cardinality?
The Red-Blue Capacitated Dominating Set problem is W[1]-hard in cw [17]. It is
not hard to prove it to be FPT in mw using succinct solution tables. Does the same hold
for the Red-Blue Exact Saturated Capacitated Dominating Set?
Are Edge Dominating Set, Max-cut, and Partition Into Triangles FPT in
parameter cograph-modular cardinality?
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